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Abstract

We show that five nonnegativity properties of polynomials coincide when restricted

to polynomials of the form x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n), where π and σ are

permutations in Sn. In particular, we show that each of these properties may be used

to characterize the Bruhat order on Sn.

1 Introduction

Let x = (xij) be a generic square matrix and define ∆I,I′(x) to be the (I, I ′) minor of x,
i.e., the determinant of the submatrix of x corresponding to rows I and columns I ′. A real
matrix is called totally nonnegative (TNN) if each of its minors is nonnegative. (See e.g.
[9].) A polynomial p(x11, . . . , xnn) in n2 variables is called totally nonnegative if it satisfies

p(A) =
def

p(a1,1, . . . , an,n) ≥ 0 (1)

for each n× n totally nonnegative matrix A = (ai,j). Some recent interest in total nonnega-
tivity concerns a set of polynomials known in quantum Lie theory as the dual canonical basis
of O(SL(n,C) [25]. In particular, Lusztig [17] has proved that these polynomials are TNN.

A polynomial p(x) which is equal to a subtraction-free rational expression in matrix minors
must be TNN. (By a result of Whitney [24], we need not be concerned that the denomi-
nator vanishes for some TNN matrices.) We shall say that such a polynomial p(x) has the
subtraction-free rational function (SFR) property. If this subtraction-free rational expression
may be chosen so that the denominator is a monomial in matrix minors, we shall say that
p(x) has the subtraction-free Laurent (SFL) property. One example of a polynomial having
the SFL property is

x1,2x2,1x3,3 − x1,2x2,3x3,1 − x1,3x2,1x3,2 + x1,3x2,2x3,1

=
∆13,23(x)∆23,13(x) + ∆1,3(x)∆3,1(x)∆23,23(x)

∆3,3(x)
.
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Analogous classes of polynomials may be defined in terms of symmetric functions. (See
[21, Ch. 7] for basic definitions concerning symmetric functions.) In particular, any finite
submatrix of the infinite matrix H = (hj−i)i,j≥0, where hk is the kth complete homogeneous
symmetric function and hk = 0 for k < 0, is called a Jacobi-Trudi matrix. We define
a polynomial p(x1,1, . . . , xn,n) to be monomial nonnegative (MNN) if for each Jacobi-Trudi
matrix A = (ai,j) the symmetric function p(A) is equal to a nonnegative linear combination of
monomial symmetric functions. Defining Schur nonnegative (SNN) polynomials analogously,
we have that every SNN polynomial is MNN. Some recent interest in SNN polynomials is
motivated by problems in algebraic geometry [8, Conj. 2.8, Conj. 5.1], [1].

2 Main result

The five nonnegativity properties defined in Section 1 have been applied most often to
immanants, polynomials which belong to spanC{x1,σ(1) · · · xn,σ(n) | σ ∈ Sn}. (See [11], [12],
[13], [20], [19], [22], [23]. The results of [7] may also be stated in these terms.) Curiously, the
TNN, MNN, and SNN properties coincide when applied to immanants in the main theorems
of the above papers. It is also curious that none of these immanants is known not to have
the SFL property. It would be interesting to identify immanants which have some of these
nonnegativity properties and fail to have others. Nevertheless, our main result shows that
the five properties coincide when applied to immanants of the form

x1,π(1) · · · xn,π(n) − x1,σ(1) · · · xn,σ(n).

We shall use the following well-known characterizations of the Bruhat order on Sn. The
Bruhat order on Sn is often defined by comparing two permutations π = π(1) · · · π(n) and
σ = σ(1) · · · σ(n) according to the following criterion: π ≤ σ if σ is obtainable from π by a
sequence of transpositions (i, j) where i < j and i appears to the left of j in π. (See e.g. [14,
p. 119].) A second well-known criterion compares permutations in terms of their defining
matrices. Let M(π) be the matrix whose (i, j) entry is 1 if j = π(i) and zero otherwise.
Defining [i] = {1, . . . , i}, and denoting the submatrix of M(π) corresponding to rows I and
columns J by M(π)I,J , we have the following.

Theorem 1 Let π and σ be two permutations in Sn. Then π is less than or equal to σ in

the Bruhat order if and only if for all 1 ≤ i, j ≤ n − 1, the number of ones in M(π)[i],[j] is
greater than or equal to the number of ones in M(σ)[i],[j].

(See [2], [3], [4], [6], [10, pp. 173-177], [16], [15], [18]. for more characterizations.)

Theorem 2 Let π and σ be permutations in Sn. The following conditions on π and σ are

equivalent.
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1. π ≤ σ in the Bruhat order.

2. x1,π(1) · · · xn,π(n) − x1,σ(1) · · · xn,σ(n) is totally nonnegative.

3. x1,π(1) · · · xn,π(n) − x1,σ(1) · · · xn,σ(n) is Schur nonnegative.

4. x1,π(1) · · · xn,π(n) − x1,σ(1) · · · xn,σ(n) is monomial nonnegative.

5. x1,π(1) · · · xn,π(n) − x1,σ(1) · · · xn,σ(n) has the subtraction-free rational function property.

6. x1,π(1) · · · xn,π(n) − x1,σ(1) · · · xn,σ(n) has the subtraction-free Laurent property.

Proof: The implications (3 ⇒ 4) and (6 ⇒ 5 ⇒ 2) are immediate. The implication (2 ⇒ 1)
was estblished in [5, Thm. 2], and the implication (1 ⇒ 6) follows trivially from that proof.
The implication (1 ⇒ 3) was established in [5, Thm. 3]. It will suffice therefore to prove the
implication (4 ⇒ 1).

Suppose that π is not less than or equal to σ in the Bruhat order. By Theorem 1 we may
choose indices 1 ≤ k, ℓ ≤ n−1 such that M(σ)[k],[ℓ] contains q+1 ones and M(π)[k],[ℓ] contains
q ones. Keeping n fixed, let b be a large nonnegative integer which satisfies

(

2b

b

)

> (2b+ 2n)2n
2

,

(which is possible because
(

2b
b

)

grows exponentially) and consider the n × n Jacobi-Trudi
matrix

B =



















hb+k−1 · · · hb+k+ℓ−2 h2b+k−1 · · · h2b+n+k−ℓ−2
...

...
...

...
hb · · · hb+ℓ−1 h2b · · · h2b+n−1−ℓ

hn−k−1 · · · hn−k+ℓ−2 hb+n−k−1 · · · hb+2n−k−ℓ−1
...

...
...

...
h0 · · · hℓ−1 hb · · · hb+n−ℓ−1



















,

defined by the skew shape (2b+ k − ℓ− 1)k(b+ n− ℓ− 1)n−k/(b− ℓ)ℓ. Let

s = k(2b+ k − ℓ− 1) + (n− k)(b+ n− ℓ− 1)− ℓ(b− ℓ)

be the number of boxes in this skew shape.

The polynomial x1,π(1) · · · xn,π(n)−x1,σ(1) · · · xn,σ(n) applied to B may be expressed as hλ−hµ

for some appropriate partitions λ, µ of s, which depend on π, σ, respectively. We claim that
the coefficient of m1s in the monomial expansion of hλ − hµ is negative.

Note that the ratio of the coefficients of m1s in the monomial expansions of hλ and hµ is

(

s

λ1,...,λn

)

(

s

µ1,...,µn

) =
µ1! · · ·µn!

λ1! · · ·λn!
.
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By the locations of ones in the matrices M(π) and M(σ), this ratio is less than or equal to

(2b+ 2n)!k−q−1

(2b)!k−q

(b+ 2n)!n−k−ℓ+2q+2

b!n−k−ℓ+2q

(2n)!ℓ−q−1

0!ℓ−q
,

which in turn is less than or equal to

(2b+ 2n)2n(k−q−1)

(2b)!
(b+ 2n)!2(2b+ 2n)2n(n−k+q−1) =

(b+ 2n)!2

(2b)!
(2b+ 2n)2n(n−2)

≤
(2b+ 2n)2n(n−1)

(

2b
b

) ,

which is less than 1 by our choice of b. It follows that the coefficient of m1s in the monomial
expansion of hλ−hµ is negative and the polynomial x1,π(1) · · · xn,π(n)−x1,σ(1) · · · xn,σ(n) is not
MNN. �
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