AN APPLICATION OF DUMONT'S STATISTIC

Mark Skandera

(Massachusetts Institute of Technology)

Outline

- 1. Eulerian permutation statistics
- 2. The f and h vectors
- 3. An f = h theorem
- 4. Proof by descent
- 5. Proof by Dumont's statistic

Eulerian Statistics

Permutation statistics whose distributions on S_n are given by the *n*th Eulerian polynomial,

$$A_n(x) = \sum_{k=1}^n A(n, k-1)x^k,$$

are known as *Eulerian statistics*.

Two important examples are "des" (descents) and "exc" (excedances).

$$des(\pi) = \#\{i \mid \pi_i > \pi_{i+1}\}.$$

$$exc(\pi) = \#\{i \mid \pi_i > i\}.$$

Example. Let $\pi = 284367951$. Then, $des(\pi) = 4$, $exc(\pi) = 5$.

The Eulerian numbers

Entry (n, k) below is the number of permutations in S_n which have k - 1 descents (or excedances).

$n \backslash k$	1	2	3	4	5	6
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57	302	302	57	1

Dumont's statistic counts the number of distinct non-zero letters in the code of a permutation.

Example. $\pi = 2 \ 8 \ 4 \ 3 \ 6 \ 7 \ 9 \ 5 \ 1$ $\operatorname{code}(\pi) = 1 \ 6 \ 2 \ 1 \ 2 \ 2 \ 2 \ 1 \ 0$

The non-zero letters in $\operatorname{code}(\pi)$ are $LC(\pi) = \{1, 2, 6\}$. Thus, $\operatorname{dmc}(\pi) = 3$.

Question: On which subsets $T \subset S_n$ are des, exc, and dmc equidistributed?

(Open.)

Question: What properties of a labelled poset P guarantee that des, exc, and dmc are equidistributed on $\mathcal{L}(P)$, the set of linear extensions of P?

(Open.)

Theorem: (Björner, Wachs) If P is a forest, then it can be labelled so that INV and MAJ are equidistributed on $\mathcal{L}(P)$.

Generalizing permutations on n letters are $words w = w_1 \cdots w_m$ on n letters, where letters may be repeated in w.

Given a word w, we define R(w) to be the set of all rearrangements of w.

Example.

$$w = 3 \ 2 \ 3 \ 3 \ 1 \ 1 \ 2 \ 1$$
$$u = 1 \ 3 \ 2 \ 1 \ 2 \ 3 \ 1 \ 3 \ \in R(w)$$
$$v = 1 \ 1 \ 1 \ 2 \ 2 \ 3 \ 3 \ \in R(w)$$

We define the non-decreasing rearrangement of w to be the unique rearrangement \bar{w} satisfying $\bar{w}_1 \leq \cdots \leq \bar{w}_m$.

To each word w we will associate the *biword*

$$\tilde{w} = \begin{pmatrix} \bar{w} \\ w \end{pmatrix}$$

Example. Let w = 31231121. Then, $\tilde{w} = \begin{pmatrix} \bar{w} \\ w \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 3 & 1 & 2 & 3 & 1 & 1 & 2 & 1 \end{pmatrix}$

Excedances

We will call position i of w an *excedance* if $w_i \ge \bar{w}_i$.

For example, if

$$\tilde{w} = \begin{pmatrix} \bar{w} \\ w \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 3 & 1 & 2 & 3 & 1 & 1 & 2 & 1 \end{pmatrix},$$

then the excedance set of w is $E(w) = \{1, 3, 4\}.$

Theorem. For any word w, the word statistics dmc, des, and exc are equidistributed on R(w).

$$#\{y \in R(w) | \operatorname{dmc}(y) = k\} = #\{y \in R(w) | \operatorname{des}(y) = k\} = #\{y \in R(w) | \operatorname{exc}(y) = k\}.$$

Rearrangements of words are linear extensions of posets.

Rearrangements of the word

11111223333444

correspond to linear extensions of the poset

5 + 2 + 4 + 3.

One such rearrangement is 14433231134112.

The extension of exc to words is not as innocent as you might think.

lin. ext.	13452	12221
descents	1345/2	1222/1
code	01110	01110
excedances	$\begin{pmatrix} 12345\\ 1\bar{3}\bar{4}\bar{5}2 \end{pmatrix}$	$\begin{pmatrix} 11222\\ 12221 \end{pmatrix}$

The excedance table

Let $c = c_1 \cdots c_m$ be the code of w, and define $\operatorname{etab}(w) = e_1 \cdots e_m$

to be the unique word satisfying

- 1. If i is an excedance in w, then $e_i = i$.
- 2. If $c_i = 0$, then $e_i = 0$.
- 3. Otherwise, e_i is the c_i th excedance of w having value at least w_i .

Example. Let w be the word 431431421, and let c be its code.

$$\begin{pmatrix} w' \\ w \\ c \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 2 & 3 & 3 & 4 & 4 \\ \bar{4} & \bar{3} & 1 & \bar{4} & 3 & 1 & 4 & 2 & 1 \\ 6 & 4 & 0 & 4 & 3 & 0 & 2 & 1 & 0 \end{pmatrix}$$

Since w has excedances at positions 1, 2, and 4, we write these values into e.

$$\begin{pmatrix} w \\ e \end{pmatrix} = \begin{pmatrix} \bar{4} \ \bar{3} \ 1 \ \bar{4} \ 3 \ 1 \ 4 \ 2 \ 1 \\ 1 \ 2 \ 4 \ \end{pmatrix}$$

For non-excedances i, we set e_i equal to the c_i th excedance having value at least w_i ,

$$\begin{pmatrix} w \\ e \end{pmatrix} = \begin{pmatrix} \bar{4} \ \bar{3} \ 1 \ \bar{4} \ 3 \ 1 \ 4 \ 2 \ 1 \\ 1 \ 2 \ 4 \ 4 \ 4 \ 1 \end{pmatrix}.$$

We place zeros elsewhere.

$$d = (1 \ 2 \ 0 \ 4 \ 4 \ 0 \ 4 \ 1 \ 0)$$

Let $\theta : S_n \to S_n$ be the bijection proving the equidistribution of dmc and exc on R(w):

Define the biword y = (^w_{etab(w)}).
 Let y' = (^{w'}_d) be the unique rearrangement of y satisfying code(w') = d.
 Set θ(w) = w'.

Example. Rearranging
$$\begin{pmatrix} w \\ etab(w) \end{pmatrix} = \begin{pmatrix} 431431421 \\ 120440410 \end{pmatrix},$$

we have
$$\binom{w'}{\text{code}(w')} = \binom{314413241}{404402110}.$$

We therefore set

 $\theta(431431421) = 314413241.$

f-vectors and h-vectors

The f vector of a poset P is $f_P = (f_{-1}, f_0, f_1, \dots, f_{d-1}),$ where f_i counts (i - 1)-element chains in P.

The f vector of a (d-1)-dimensional simplicial complex Σ is

$$f_{\Sigma} = (f_{-1}, f_0, f_1, \dots, f_{d-1}),$$

where f_i counts *i*-faces in Σ .

Define the polynomial f(x) by $f(x) = f_{-1} + f_0 x + \dots + f_{d-1} x^d.$ The *h*-vector of a poset or simplicial complex $h = (h_0, \dots, h_d),$ is defined in terms of the *f*-vector, $h(x) = (1-x)^d f\left(\frac{x}{1-x}\right).$

Theorem. (Stanley) The *h*-vector of the distributive lattice J(P) counts linear extensions of P by descent. **Conjecture.** (Neggers-Stanley) Let J(P) be a finite distributive lattice. Then the chain polynomial $f_{J(P)}(x)$ has only real zeros.

Theorem. (Simion) Let P be a disjoint sum of chains. Then the chain polynomial $f_{J(P)}(x)$ has only real zeros.

Question. If L is a modular lattice, does the chain polynomial $f_L(x)$ have only real zeros? (Open)

Sometimes the h-vector of one simplicial complex is the f-vector of another.

Theorem. (Stanley) If Σ is a balanced Cohen Macauley complex, then its *h*-vector is the *f*-vector of some balanced simplicial complex.

Special case. If J(P) is a finite distributive lattice, then its *h*-vector is the *f*-vector of some balanced simplicial complex.

Proof idea.

For any poset P we can construct a simplicial complex Γ satisfying $f_{\Gamma} = h_{J(P)}$ by associating a (k-1)-simplex to each linear extension of Pwhich has k descents.

Descent removal preserves membership in $\mathcal{L}(P)$.

Example. If P is the antichain $\mathbf{1} + \mathbf{1} + \mathbf{1} + \mathbf{1}$, then Γ is the complex shown above.

$$f_{\Gamma}(x) = h_{J(P)}(x) = 1 + 11x + 11x^2 + x^3.$$

Conjecture. If P is any finite poset, then the h-vector of J(P) is the f-vector of some *poset*.

Theorem. If P is a disjoint sum of chains, then the *h*-vector of J(P) is the *f*-vector of some poset. Let C(w) be the set of codes of rearrangements of the word w. The following basic operations on codes preserve membership in C(w):

- 1. Replace 41 with 13.
- 2. Replace $45 \cdots 51$ with $15 \cdots 53$.

Example.

 $466220110 \in C(w),$ $462520110 \in C(w),$ $266320110 \in C(w).$

The operations move letters to the right and reduce them.

The following operation on codes preserve membership in C(w):

- 1. Move and reduce each 6 until it becomes 2.
- 2. Replace all occurrences of the smallest letter with 0.

Example.

 $266220110 \in C(w),$ $225520110 \in C(w),$ $222440110 \in C(w),$ $222033110 \in C(w),$ $222012210 \in C(w).$

Denote the unique one-letter codes resulting from these operations by $\psi_6(c), \psi_2(c), \psi_1(c)$.

Proof idea.

For any disjoint sum of chains P we can construct a poset Q satisfying $f_Q = h_{J(P)}$ by associating a (k-1)-element chain to each linear extension of P with k letters in its code. Let Q be the subset of one-letter codes in C(w), and let c and c' be codes in Q whose letters are ℓ and ℓ' , respectively.

Define $c <_Q c'$ if

- 1. $\ell < \ell'$.
- 2. The multiplicity of ℓ in c is strictly greater than that of ℓ' in c'.
- 3. For each position *i* such that $c'_i = \ell'$, we have $c_{i+\ell'-\ell} = \ell$.

Example.

 $066000000 >_Q 222002200 >_Q 011111110.$

Theorem. Let c, c', c'' be codes in C(w) on the letters ℓ, ℓ' , and ℓ'' respectively, and suppose that $c <_Q c' <_Q c''$. Then there exists a code d in C(w) on letters $\{\ell, \ell', \ell''\}$ which satisfies

$$\psi_{\ell}(d) = c,$$

$$\psi_{\ell'}(d) = c',$$

$$\psi_{\ell''}(d) = c''.$$

For any poset P which is a disjoint sum of chains, we can construct a poset Q satisfying $f_Q = h_{J(P)}$, by associating a k-element chain to each linear extension of P which has k letters in its code.

Example. If P is the sum of chains $\mathbf{2} + \mathbf{2} + \mathbf{1}$, then Q is the poset shown above.

$$f_Q(x) = h_{J(P)}(x) = 1 + 12x + 15x^2 + 2x^3.$$