TOTAL NONNEGATIVITY AND (3 +1)-FREE POSETS

MARK SKANDERA AND BRIAN REED

ABSTRACT. We factor the squared antiadjacency matrix A% of a (3 + 1)-free poset
as a product of two antiadjacency matrices of unit interval orders. This gives a new
combinatorial interpretation for the entries of A2 in terms of finite planar networks
and a proof that the f-vector of a (3 + 1)-free poset is also the f-vector of a unit
interval order. We also state some inequalities satisfied by the components of these
f-vectors.

1. INTRODUCTION

Much current research in algebraic combinatorics concerns the characterization of
f-vectors of simplicial complexes, polytopes, and related combinatorial structures.
(See [3], [21, Ch.2,3].) One interesting source of f-vectors is the class of (3 + 1)-free
posets because the generating polynomials for the corresponding f-vectors are known
to have only real zeros [18, Cor.4.1], [22, Cor.2.9]. A poset is called (3 4 1)-free if it
contains no induced subposet isomorphic to that shown in Figure 1.1 (a).

An interesting subclass of (3 + 1)-free posets is the class of those which are also
(2 + 2)-free, i.e. which contain no induced subposet isomorphic to that shown in
Figure 1.1 (b). These are often called unit interval orders because a well-known
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result [17] characterizes them as the posets P for which there exists a map
T — Gy, Gz + 1]
from P to closed intervals of the real line which satisfies
z <p y if and only if ¢, < gy.
No analogous result is known to hold for (3 4 1)-free posets in general.

Since unit interval orders form a proper subclass of (3 + 1)-free posets, one might
be surprised to learn that the containment of the corresponding two sets of f-vectors
is not proper. (See Corollary 4.5.) The proof of this fact relies upon the factorization
of a totally nonnegative matrix which we will associate to each (3 + 1)-free poset.

A matrix is called totally nonnegative if the determinant of each of its square
submatrices is nonnegative. A result often attributed to Lindstrém [12] describes the
most important example of a totally nonnegative matrix in terms of a planar network,
a planar acyclic directed graph G with 2n distinguished boundary vertices labeled
counterclockwise as s1,..., Sy, tn,...,t1. (See also [10].) Given a planar network G,
its path matriz A = [a;;], in which a;; counts paths from s; to ¢;, is totally nonnegative.
For instance the matrix

33 2 21
33 2 21
55 443
5 5 443
55 443

is easily verified to be totally nonnegative because it is the path matrix of the planar
network in Figure 1.2. When drawing planar networks, we will understand vertical
edges to be oriented from bottom to top, and other edges to be oriented toward the
right. (See also [7].)

We will finish by stating some inequalities which are satisfied by the f-vectors of
all (3 + 1)-free posets and by posing some open questions.
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2. ORDER IDEALS AND TOTALLY NONNEGATIVE MATRICES

Given an n-element poset P whose elements are labeled 1,...,n, we define the
antiadjacency matriz [20] of P to be the matrix A = [a;;],

e — 0 ifi<py,
Y11 otherwise.

Clearly, distinct labelings of P can result in distinct antiadjacency matrices. It is
easy to see that the antiadjacency matrix of a labeled poset P has no zero entries
below the diagonal if and only if P is labeled naturally (i-e. each pair i, j of elements
satisfying ¢ <p j also satisfies ¢ < j as integers). Further, it is known that unit
interval orders may be labeled so that the corresponding antiadjacency matrices are
totally nonnegative [23, Prob. 6.19 (ddd)], and that (3 + 1)-free posets may be labeled
so that the corresponding squared antiadjacency matrices are totally nonnegative [18,
p.238|.

To characterize the poset labelings which lead to totally nonnegative (squared)
antiadjacency matrices, we will use principal order ideals and dual principal order
ideals. For any element 7 in a poset P, we will denote the corresponding principal
order ideal and principal dual order ideal by A; and V;, respectively.

ANi={jePl|j<pi},
Vi={j€P|j>pi}.

More precisely, we will delete an element 7 from such ideals and consider the deleted
ideals

A} ={jePlj<pi},
Vii={jeP|j>pi}.

When discussing the deleted ideals of different posets P and (), we will use the
notation V;*(P) and V;*(Q) to avoid ambiguity.

For each element ¢ of P, we will define its altitude to be the difference in cardinality
between its principal order ideal and principal dual order ideal, and will denote this
number by (i),

a(i) = [Aif = Vil
= [A7[ = [Vl

(See [6, p. 33| for other applications of this function.)
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FIGURE 2.1

Example 2.1. Let P be the poset in Figure 2.1. Then we have

A;=0 V' =1{3,4,5} a(l) = -3
Ay =10 V) ={4,5} a(2) = -2
Az ={1} V5 = {5} a(3)=0
Ay ={1,2} Vi ={5} a(4) =1
Af=1{1,2,3,4} Ve =10 al®) =4

It is easy to verify the following properties of deleted order ideals in (3 + 1)-free
posets and in unit interval orders. (We will use the symbols C, C to denote contain-
ment and strict containment, respectively.)

Observation 2.1. Let i and y be distinct elements of a (3 + 1)-free poset. The
corresponding deleted order ideals satisfy

(2.1) A CA or Vi C VI
Proof. Left to reader. O

Observation 2.2. Let 1 and j be distinct elements of a unit interval order. The
corresponding deleted order ideals satisfy

1. If A; € A3, then Af C A;,
2. IfVr € Vi, then Vy C V7.

Proof. Left to reader. O

In (3 + 1)-free posets, altitude is related to deleted ideals as follows.

Observation 2.3. Let i and j be elements of a (3 + 1)-free poset. Then we have
(2.2) a(i) < a(f)
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if and only if we have

(2.3) A7 < 1A} and V7 D V7,
or
(2.4) Vi*| > |V?| and A C A

Proof. First note that the difference a(j) — (i) is equal to
(2:5) (A51 = [AZ)) + (V7 = V7DD

Assume that ¢ and j satisfy (2.2). Then at least one of the two terms in the sum (2.5)
is nonnegative. Suppose the first term is nonnegative. If the deleted ideals A} and A}
are equal, then |V;*| is greater than or equal to [V}*| and the condition (2.4) is satisfied.
If on the other hand A} and A}, are not equal, then Observation 2.1 guarantees that
V, is contained in V;* and again the condition (2.4) is satisfied. Similarly, when the
second term in the sum (2.5) is nonnegative, then the condition (2.3) is satisfied.

Now assume that at least one of the conditions (2.3) (2.4) is satisfied. In either
case, we have

A7l < |Aj] and [V > [V,
which implies (2.2). O
We will say that a labeling of a poset P respects altitude if each pair 7, j of poset
elements satisfying «(i) < «(j) also satisfies 7 < j (as integers). Note that a labeling
which respects altitude is necessarily natural. The following proposition (essentially
stated in [25, Sect.8.2]) shows that the antiadjacency matrices of naturally labeled

unit interval orders are totally nonnegative precisely when the labelings respect alti-
tude.

Proposition 2.4. Let P be a labeled n-element unit interval order with antiadjacency
matriz A = [a;;]. The labeling of P respects altitude if and only if A satisfies

(2.6) ajkzaig
for1<i<j<nandl <k</{¢<n.

Proof. Suppose that A satisfies (2.6). Then for any two indices g < h, we have
Vgl = Vil and |Ag] < [AZ].
Combining these inequalities, we obtain a(g) < a(h), as desired.

Now suppose that A does not satisfy (2.6). Then for some indices g, h, ¢ with g < h
we have

(2.7) Ugg < Qg OT Ggq > Qpg.
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The first of these two inequalities implies that we have
Ay € A
which by Observations 2.1 and 2.2 implies that we have
Vy CVy and A} C AJ,
which in turn implies that we have
(2.8) a(h) = |A] = V| < IAgl = V5] = alg).
By similar reasoning, the second inequality of (2.7) also implies that we have (2.8).

Thus the labeling of P does not respect altitude. O

In a 0-1 matrix satisfying the conditions of Proposition 2.4, the zero entries form
a Ferrers shape in the upper right corner of the matrix. For instance, the labeling of
the poset in Figure 2.1 respects altitude and the antiadjacency matrix of this poset
is

(2.9)

— = = =
el
e
e e e
_— o O oo

One can prove that such a matrix A is totally nonnegative by constructing a planar
network whose path matrix is A. (One can also use induction, or appeal to the famous
result [1] concerning Toeplitz matrices.) Figure 2.2 shows a planar network whose
path matrix is the antiadjacency matrix (2.9) of the poset in Figure 2.1.

A result analogous to Proposition 2.4 holds for the squared antiadjacency matrices
of (3 + 1)-free posets. Before stating this result, let us give one interpretation of the
entries of these matrices.
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Lemma 2.5. Let P be a labeled n-element (3 + 1)-free poset with antiadjacency ma-
triz A and define the matriz B = [b;;] = A®. Then we have

b4 V= |A3] if VPN A s empty,
Y00 otherwise.

Proof. By the definition of B we have

n
bij = E ik
k=1

= #{k € [n]| ay, = a; = 1}

=#{ke Pligpk £p j}

=n— V7| = A1+ [ViF 0 AGLL
Suppose that b;; is nonzero and let £ be an element satisfying ¢ £p k £p j. Note that
for any element ¢ belonging to the intersection V;* N A}, the subposet of P induced

by {4, 7, k, £} is isomorphic to 3 + 1. Thus this intersection is empty and we have the
desired result. O

Proposition 2.6. Let P be a labeled n-element (3 + 1)-free poset with antiadjacency
matriz A, and define the matriz B = [b;;] = A%. The labeling of P respects altitude if
and only if B satisfies the conditions

1. bjr > big,
2. If bir — by ?é bjlc — bjé; then by = 0 and by, < bjlc — bjg,

for all integers 1 <i<j<nand1 <k </t<n.
Proof. Assume that B satisfies the conditions above. Then for any two integers
1 <4 < j < n, any minimal element g, and maximal element h, we have
big S bjg and b}”‘ 2 bhj-
By the minimality of g and the maximality of 4, both A} and V}; are empty. Therefore
by Lemma 2.5 we have
(2.10) Vil = |V;' and [A7] < [AF].
Combining the inequalities (2.10), we obtain «(i) < a(j), as desired.

Now assume that B does not satisfy the required conditions. By [18, Prop 3.4,
B fails to satisfy condition 2 only if it fails to satisfy condition 1. We may assume
therefore that for some ¢, j, ¢ with © < j, we have

(211) big > bjg or bgi < bgj-

Assume that we have by < bg;. The intersection V" N A7 must be empty since by; is
positive.
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If the intersection V' N A} is also empty, then by Lemma 2.5 we have

(2.12) A3 < A,

and A; is not contained in A}. Observation 2.1 then implies that we have
ViV

and therefore

(2.13) Vil < V7L

Combining the inequalities (2.12) and (2.13), we have

(2.14) alj) < ali)

and the labeling does not respect altitude.

If the intersection V7 M A} is not empty, then some element £ in this intersection
does not belong to A}. In contrast, there can be no element in A} which does not also
belong to A}, for then the subposet of P induced by this element and g, h,¢ would
be isomorphic to 3 + 1. Thus Aj is properly contained in A}, and by Observation 2.1
V;* is contained in V*. Combining these two containments, we again have (2.14), and
the labeling does not respect altitude.

Similarly, the assumption by, > b;, implies the strict inequality [V;*| < [V;*], and
therefore (2.14). O

As an example of Proposition 2.6, consider the labeled poset in Figure 2.3. This
labeling respects altitude. and the corresponding squared antiadjacency matrix is
2

11010 33 2 21
11100 33 2 21
11111 =155 44 3
11111 5 5 4 4 3
11111 5 5 4 4 3
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Again, to prove that such a matrix B is totally nonnegative, it suffices to construct
a planar network having path matrix B. Figure 1.2 (a) shows one such planar network
which is constructed easily from B. Another possibility in Figure 2.4 is constructed
by concatenating two planar networks corresponding to the antiadjacency matrices
of unit interval orders [16]. This observation suggests the possibility of factoring the
squared antiadjacency matrices of (3 + 1)-free posets in general. Such a factorization
is in fact possible and will be considered further in Sections 3 and 4.

3. A FACTORIZATION THEOREM

The planar network in Figure 2.4 is constructed using a factorization of the squared
antiadjacency matrix of the poset in Figure 2.3. In general, let A be the antiadjacency
matrix corresponding to any labeling of a (34 1)-free poset. To obtain a factorization

A2=(CD,

one contstructs C' and D from A by “pushing” the zero entries of A to the right
and up, respectively. For example, one labeling of the poset in Figure 2.3 gives an
antiadjacency matrix whose square factors as

2

11111 1111101010
01011 111001 1011
11111{=J11111 |1 1111
11010 11100111111
11111 1111111111

Theorem 3.1. Let P be a labeled (3 + 1)-free poset with antiadjacency matriz A.
Let C be the matriz obtained from A by permuting the entries of each row into non-
increasing order, and let D be the matriz obtained from A by permuting the entries
of each column into nondecreasing order. Then we have

A? =CD.
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Proof. Let n be the cardinality of P and define the matrices B = [b;;] = A? and
E = [e;;] = CD. Since the numbers ¢;; and d;; are given by

Cij =
“ 0 otherwise,

PN B TERVVES
Y10 otherwise,

we have

eij = Zcz’kdkj
k=1

= #{k‘ € [n] |cz'lc = dk]’ = 1}

=#{A} +1,...,n— |V}

_ = V= IAGL AE VE[+ (A <,

0 otherwise.

We claim that the inequality
(31) Ve + A3 < m

holds if and only if the intersection V;* N A} is empty. If the intersection is empty,
then (3.1) is clear. Suppose therefore that the intersection is not empty. Then P
contains some element ¢ which satisfies

1<pl <Pj
and we have
(3.2) Vi UAG < |V + A = 1.

If some element lies outside of the union V;* U A} above, then it is incomparable to
i, ¢, and j, contradicting the fact that P is (3 + 1)-free . Thus the cardinality of this
union is n and the inequality (3.2) gives

n< V74 1A - L
contradicting (3.1).

We therefore obtain the expression

i —

_n = V[ —=|Aj] if V¥ N A} is empty,
0 otherwise,

which is identical to that for b;; given in Lemma 2.5. O
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In the event that the labeling of P in Theorem 3.1 respects altitude, the matrices
C and D in the theorem are the antiadjacency matrices corresponding to altitude
respecting labelings of unit interval orders. Note however that the implied map from
(3 + 1)-free posets to pairs of unit interval orders is neither injective nor surjective.

Corollary 3.2. Let P be a labeled (3 + 1)-free poset with antiadjacency matriz A. If
the labeling of P respects altitude then there are labeled unit interval orders Q1 and
Q2 whose antiadjacency matrices are the matrices C and D defined in Theorem 3.1.
Furthermore the labelings of Q1 and Qo respect altitude.

Proof. Let P be an n-element (3 + 1)-free poset with an altitude respecting labeling.
By Observation 2.3, the sequence (|V*|,...,|V,*|) weakly decreases and the sequence
(JA%], - - -, |A}|) weakly increases. Thus the zero entries of C' and D form Ferrers shapes
in the upper right corners of these matrices. By Proposition 2.4, the corresponding
poset labelings respect altitude. O

Since the class of totally nonnegative matrices is closed under multiplication (see
e.g. [2]), Corollary 3.2 gives an easy proof of the total nonnegativity of the squared an-
tiadjacency matrix A% of a labeled (3 + 1)-free poset whose labeling respects altitude.
It also allows one to combinatorially interpret A? without computing it.

Take for example the poset in Figure 2.3 labeled as shown. Its squared antiadja-
cency matrix factors as
2

11010 1110011 1000
11100 1110011110
11111 =1 11111 1111},
11111 11111111111
11111 11111111111
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and counts paths in the planar network shown in Figure 2.4. This factorization also
associates to the poset the two unit interval orders shown in Figure 3.1.

4. f-VECTORS OF (3 + 1)-FREE POSETS

The relationship between the unit interval orders and the (3 + 1)-free poset in
Corollary 3.2 extends beyond the factorization stated in Theorem 3.1. We will show
that for any k, there is a bijective correspondence between the k-element chains in
any two of these three posets.

A k-element chain in a poset P is a sequence of elements (x1, ..., ;) of P which
satisfy

T, <p - <p T
The chain polynomsial or f-polynomial of P is the polynomial
frt)=14+ait+ -+ apt™,
where a; is the number of i-element chains in P. The sequence of numbers
fr=,a,...,an)
is called the f-vector of P and is often written as (1, fo,..., fr_1)-

To better describe the relationship between the posets mentioned above, we will
define a self-map ¢ on the set of all naturally labeled n-element posets. Given such a
poset P with antiadjacency matrix A, we define ¢(P) as follows.

1. If all rows of A are weakly decreasing, define ¢(P) = P.
2. Otherwise,
(a) Let j be the greatest integer in [n — 1] for which we have

(4.1) 0=uai; < a1 =1,
for some index i in [n].
(b) Define A’ to be the matrix obtained from A by exchanging the entries a;

and a; ;41 for each index ¢ satisfying (4.1).
(c) Let ¢(P) be the poset whose antiadjacency matrix is A’.

It is easy to see that the map ¢ is well defined, for the entries of A" = [a;,h] satisfy
afq,h = 1 whenever the integer g is greater than the integer i, and a},h = 0 whenever
a} , and a ,, are both zero.

An equivalent definition of the map ¢ in terms of posets is as follows.
1. Let j be the greatest integer such that we have
(4.2) t<pjandi £pj+1

for some 3.
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2. For each element x satisfying x <p 7,
(a) If z £p j + 1, then define z <ypy j + 1.
(b) Otherwise, define z <4(p) j.
3. For each pair (z,y) of elements, if y is not equal to 7, then define z <4p) y.

It is not difficult to construct the Hasse diagram for the poset ¢(P) from that of
P. Assuming the existence of an element j for which the antiadjacency marix of P
satisfies (4.1), let I be the set of elements of P covered by j and not comparable to
j + 1. For each element 7 in I, replace the edge (i, ) by the edge (7,7 + 1). For each
element h covered by an element in / and not covered by any element in A7 N Aj,,,
introduce the new edge (h,j).

While the map ¢ does not in general preserve altitude, it does preserve |V;*| for all
elements ¢ in P. Further, if P is a (3 + 1)-free poset which satisfies

(4.3) Vil = = |V

we can infer several interesting things about P and ¢(P). Note that a labeling of a
(3+1)-free poset which respects altitude necessarily satisfies the condition (4.3), and
that a labeling of a (3 + 1)-free poset which satisfies the condition (4.3) is necessarily
natural.

Lemma 4.1. Let P be an n-element (3 + 1)-free which satisfies (4.3) and let j be
any integer in [n] which satisfies (4.1) for some i. Then the four deleted ideals
Vi(P), Vi (P), Vi (6(P)),Vii(o(P)) are equal. Furthermore, each element i sat-
isfying (4.1) is covered by j in P and is covered by j + 1 in ¢(P).

Proof. Note that A7(P) is not contained in A}, (P). Therefore by Observation 2.1,
V;*(P) must be contained in V', ,(P). Since the cardinality of V;*(P) is no smaller
than that of V%, (P), these sets must be equal. Since j and j + 1 do not belong to
these deleted ideals, it follows that any element greater than 7 and j+ 1 in P is again
greater than j and j + 1 in ¢(P).

Suppose that some element 7 satisfying (4.1) is not covered by j. Then there is an
element A satisfying

i<ph<pj.

By our choice of 7, we cannot have i <p j + 1. Neither can we have j + 1 <p j since
P is natural. Thus 7 + 1 is incomparable in P to 7, h, and j, contradicting the fact
that P is a (3 + 1)-free poset.

Suppose that some element 7 satisfying (4.1) is not covered by j+ 1 in ¢(P). Then
for some element h we have

) <¢(p) h <¢(P) ] + 1,
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and since h is not equal to 7 + 1 we have
1 <p h.

By the previous argument, ¢ must be covered by j in P. We therefore have

h £p J.
It follows that we have
h<pj+1,
and by transitivity we have
1<pj+1,
contradicting our assumption that ¢ satisfies (4.1). O

Furthermore it is not difficult to see that the f-vectors of P and ¢(P) are equal.

Proposition 4.2. Let P be a (3 + 1)-free poset whose labeling satisfies (4.3). Then
the f-vector of ¢(P) is equal to that of P.

Proof. If ¢(P) = P then there is nothing to prove. Assume therefore that ¢(P) does
not equal P, and that j is the index satisfying (4.1) in the definition of the map ¢.

It will suffice to show that for any ¢, the sequences (zy,...,z,) which are chains in
P and not chains in ¢(P) are in bijective correspondence with the sequences which
are chains in ¢(P) and not chains in P.

A sequence which is a chain in P and not a chain in ¢(P) necessarily has the form
(1, ey Tty Jy Tig 1y - - - Ta)-
Further, the sequence defined from this by
(X1, s, ]+ 1,1, - ., Xp)
is a chain in ¢(P) and is not a chain in P.

Conversely, a sequence which is a chain in ¢(P) and not a chain in P necessarily
has the form

(Y155 Yn1,5 + 1, Ynt1, - Ye),s
and the sequence defined from this by
(Y1, Yn15 05 Yna1s - - -5 Ye)
is not a chain in P or in ¢(P).
It follows that the map
(X1, o Ti15 G5 Tigy e -y Te) > (X1 ooy i1, ] + 1, @ig1, - - -, Ta)

induced by ¢ is our desired bijection of chains.
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O

In addition to preserving the f-vector of a poset, the map ¢ also preserves 3 + 1
avoidance.

Proposition 4.3. Let P be a labeled (3 4+ 1)-free poset which satisfies (4.3). Then
@(P) is (3 + 1)-free.
Proof. Suppose that ¢(P) is not (341)-free. Then there are four elements {1, Z2, 23, T4}
related as
Z1 <g¢(P) T2 <¢(P) T3
x4 incomparable to z1,x2, 3 in ¢(P).
Since the same four elements do not induce a subposet of P isomorphic to 3 + 1, we

have at least one of the following comparisons in P.

1. T jép ZTo.
2. To jép Zs3.
3. T1 <p T4.
4. x4 <p T3.
Let j be the index refered to in the definition of ¢.
Assume that comparison (1) is true. Then we have
1 <pJ
and z, is equal to j + 1. Since the deleted ideals V}\,(¢(P)) and V*(P) are equal,
the relation z <g(p) z3 (i.e. 7 +1 <gp) z3) implies that we have
J <p 3,

and the relation x4 £4p) 73 implies that z, is not equal to j. Thus the relations
71 £¢(p) T4 and x4 £4(p) T3 imply that we have

T 7(13 x4 and x4 {P X3,
contradicting the fact that P is (3 + 1)-free.

Assume therefore that comparison (1) is false and that comparison (2) is true.
Then z3 is equal to 7 + 1 and we have

T <p Ty <p ]
The comparison x4 £4p) j + 1 implies that we have

T4 Lp J.

Since z; is not covered by j in P, we must have

1 <¢(P) Js
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which implies that x4 is not equal to j. Thus the relation z; £4p) 74 implies that we
have

Ty £p Ty,
contradicting the fact that P is (3 + 1)-free.

Assume therefore that comparisons (1) and (2) are false, while comparison (3) is
true. Then we have

1 <p T2 <p T3,
1 £pJj+1,
and z4 is equal to j. Since V}*(¢(P)) and V%, (P) are equal, the comparison z4 £4(p)
r3 (i.e. j £4p) z3) implies that we have
J+14£p a3,
contradicting the fact that P is (3 4 1)-free.

Finally, assume that comparisons (1)-(3) are false, and that comparison (4) is true.
Then we have

T <p X2,
71 £p Ta,
and x3 is equal to j. The comparison zo <gp) j then implies that we have
xy <pj+1,
and the comparisons x4 <p x3 and x4 7(¢( p) 3 imply that we have
Ty LpJ+1,
contradicting the fact that P is (3 + 1)-free. O

Thus by applying several iterations of the map ¢ to a (3 + 1)-free poset P whose
labeling respects altitude, we obtain the poset (); from Corollary 3.2, and find that
the f-vector of ()1 is equal to that of P.

Theorem 4.4. Let P be a (3 + 1)-free poset and let A be the antiadjacency matriz
corresponding to an altitude-respecting labeling of P. Define the matrices C' and D
as in Theorem 3.1, and let Q1 and Q) be the two labeled unit interval orders whose
antiadjacency matrices are C' and D. Then the f-vectors of all three posets are equal.

Proof. If P is a unit interval order, then P = (); = (02 and we are done. Suppose
therefore that P is not a unit interval order. Then for some number £ we have
#*(P) = @y, which by Proposition 4.2 implies that the f-vectors of P and @, are
equal. Applying the same argument to the dual poset of P, we find that the f-vectors
of P and (), are equal as well. O
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Thus although the set of (3 + 1)-free posets on n elements strictly contains the set
of unit interval orders on n elements (for n > 3), the corresponding containment of
sets of f-vectors is not strict.

Corollary 4.5. The set of f-vectors of (3 + 1)-free posets on n elements is equal to
the set of f-vectors of unit interval orders on n elements.

As is the case with many interesting classes of f-vectors, no characterization of
the f-vectors of (3 4+ 1)-free posets is known. On the other hand, it is not too
difficult to prove some inequalities that must be satisfied by the components of these
f-vectors. Somewhat surprisingly, the inequalities below are satisfied also by pure
O-sequences [8], by the h-vectors of matroid complexes [4], and by the coefficients
of the Poincaré polynomials of singluar Schubert varieties [26]. (See also [9], [19,
Cor.2.4].)

Proposition 4.6. Let a(t) = ap+ait+- - -+a,t™ be the f-polynomial of a (3+1)-free
poset. Then for i =0,...,|™*| we have

(44) a; S aj41,

(4.5) a; < Qi

Proof. Let P be an n-element (3 + 1)-free poset.
If P is a chain we have
a(t) = (1+t)™

Clearly a(t) satisfies the inequalities (4.4) and (4.5). Assume therefore that P is not
a chain, and choose an element = not belonging to some m-element chain in P. Now
define the induced subposets @ and R of P by

Q=P\zx,

R=AUV],
and let b(t) and ¢(t) be the f-polynomials of ) and R respectively. These are related
to a(t) by
(4.6) a(t) = b(t) + te(t).

The longest chain of () clearly has m elements. Therefore we will write
b(t) = bo + bt + - -+ + byt™,

where by, . . ., b, are positive. It is clear that the longest chain in R has at most m —1
elements. Since z is incomparable to at most two elements of any m-element chain in
Q the longest chain in R must have at least m — 2 elements. Therefore we will write

c(t) =co+ert+ -+ epmrt™
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where ¢, - - - , ¢, 9 are positive and ¢,, 1 is nonnegative. Let us define ¢_; to be zero,
so that Equation (4.6) becomes

(47) a; = bz +ci—1, for 1 = 0, ..M.
Assume by induction that the proposition is true for (3 + 1)-free posets having

fewer than n elements, and note that () and R are two such posets. Applying this
inductive hypothesis to (4.4) we see that b(t) satisfies

(48) bz < bH—la for ¢ = 0, ceey LmT—lJ

and c(t) satisfies

(4.9) 6 < et for i=-=1,..., [mT_?’J if ¢,,_1 is zero,
' P D i=—1,...,[®2] if ¢y is positive.
Rewriting (4.9) we have
(4.10) ¢i1<¢, for L2 i ey s zero,
e LB if ¢, 1 is positive.

Combining (4.6), (4.8), and (4.10) we obtain
ai=b;+cii1 < b1 +ci=a;, fori=0,..., |22
which proves the inequality (4.4).
Applying the inductive hypothesis to (4.5), we see that b(t) satisfies

(4.11) by < by, fori=0,..., [,

while ¢(t) satisfies

(4.12) ¢ <Cmog, fori=—1,..., L’”T’?’J, if ¢,, 1 is zero,
(4.13) ¢ < Cm_1—i, fori=0,. |_T_2J, if ¢,,_1 1s positive.

First suppose c,, 1 is zero. Then we have the inequality
i1 < Cm—o—(im1) = Cm_1-4, fori=0,..., |72
Combining this inequality with (4.7) and (4.11) we obtain
a; =b;+ci—1 < byi + Cno1-i = Ay,
which proves the inequality (4.5).

Now suppose that ¢,, 1 is positive. Combining (4.6), (4.10), (4.11), and (4.13) we
obtain

(4.14) a; =b; +ci1 < b+ ¢ <bpoi + Cu1-i = s,
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for i =0,...,|”2]. Indeed (4.14) also holds for i = ||, for when m is even we
have

and when m is odd we have

This proves the inequality (4.5). O

5. OPEN PROBLEMS

A more thorough understanding of the f-vectors of (3 4+ 1)-free posets (equiva-
lently, of unit interval orders) would be interesting because this might help to prove
conjectures that certain combinatorially defined polynomials have only real zeros.
(See for example [13, p. 114] or [24, Prob. 20].)

Problem 5.1. Characterize the f-vectors of unit interval orders.

On the other hand, a better understanding of the factorization in Theorem 3.1
might help to obtain results for (3 + 1)-free posets analogous to those already known
for unit interval orders. For instance the number of nonisomorphic unit interval
orders on n elements is well-known to be the nth Catalan number [5], [27], but no
such formula is known for (3 + 1)-free posets.

Problem 5.2. Find a formula for the number of nonisomorphic (3 + 1)-free posets
on n elements.

Perhaps one could obtain a lower bound for the formula in Problem 5.2 by counting
appropriate pairs of unit interval orders.

Problem 5.3. Characterize the pairs of unit interval orders which result from the
factorization in Corollary 3.2. (Equivalently, characterize the corresponding pairs of
antiadjacency matrices, or the corresponding planar networks.)

A second consequence of an answer to Problem 5.3 might be a new interpretation
of the elements of a (3 + 1)-free poset.

Problem 5.4. Find a representation of (3 + 1)-free posets analogous to the interval
representation of unit interval orders.

It is not hard to show that an n-element unit interval order is uniquely determined
by its sequence (a(1),...,a(n)) of altitudes. The analogous statement is not true for
(3 4 1)-free posets. Nevertheless, one might use altitude sequences to obtain a lower
bound for the number of (3 4+ 1)-free posets on n elements.



20 MARK SKANDERA AND BRIAN REED

Question 5.5. Is there a simple characterization of the altitude sequences arising
from (3 + 1)-free posets on n elements, or a simple formula counting such sequences?

An interesting related problem, stated by Postnikov [14], is based upon a conjecture
of Kostant [11].

Problem 5.6. Let P be a labeled poset with altitude sequence (a(1),...,a(n)).
Show that if P is a unit interval order, then there are two permutations 7 = my,..., 7,
and o4,...,0, in S, which satisfy

i — o; = afi),

fori=1,...,n.

The statement is trivially true if we assume P has dimension at most two, and
thus is true for many unit interval orders, which have dimension at most three [15].
(See also [6, Sect. 5.4], [25, Sect. 8.3].) The analogous statement involving (3 + 1)-free
posets is false however.
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