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Call a poset (a + b)-free if it contains no

induced subposet isomorphic to a + b.
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Interval orders are sets of closed intervals

ordered by de�ning

[a

i

; b

i

] < [a

j

; b

j

]

whenever b

i

< a

j

.

In a unit interval order, all intervals have

the same length.



3 + 1 2 + 2

An interval order has no induced subposet

isomorphic to 2 + 2.

A unit interval order has no induced sub-

poset isomorphic to 2 + 2 or to 3 + 1.



(3 + 1)-free posets

1. Stanley's generalization of the chromatic

polynomial X

G

(x) is conjectured to be

e-positive for the incomparability graphs

of (3 + 1)-free posets. (Stanley, Stembridge

1993)

2.X

G

(x) is known to be s-positive for the

same graphs. (Gasharov 1996)

3. The chain polynomial of a (3 + 1)-free

poset has only real zeros. (Stanley 1995,

Gasharov 1996)

How can we characterize posets free only of

3 + 1 ?
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Anti-adjacency matrices

Given any labelling of P , we de�ne its anti-

adjacency matrix A = [a

ij

] by

a

ij

=

(

0 i <

P

j

1 otherwise:

Example

A =

2

6

6

6

6

4

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 1

3

7

7

7

7

5

:



Theorem. A poset P is (3 + 1)-free if and

only if there is a natural labelling of P such

that its squared anti-adjacency matrix is a

submatrix of the in�nite Toeplitz matrix C,

C =

2

6

6

6

6

4

1 0 0 0 � � �

2 1 0 0 � � �

3 2 1 0 � � �

4 3 2 1 � � �

.

.

.

.

.

.

.

.

.

.

.

.

3

7

7

7

7

5

;

with row and column repetition allowed.



These are the non-negative integer matrices

which weakly increase toward the southwest

corner, in which each 2� 2 submatrix

�

b

ik

b

i`

b

jk

b

j`

�

satis�es

(i) b

ik

� b

i`

= b

jk

� b

j`

or

(ii) b

i`

= 0 and b

jk

� b

j`

> b

ik

Example

B = A

2

=

2

6

6

6

6

4

3 3 2 2 0

3 3 2 2 0

4 4 3 3 0

4 4 3 3 0

5 5 4 4 1

3

7

7

7

7

5

:
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P G

The squared anti-adjacency matrix

Suppose A is the anti-adjacency matrix of a

poset P . LetG be the graph whose adjacency

matrix is A.

(i; j) is a directed edge if i >

P

j, and an

undirected edge if i and j are incomparable

or identical.

The matrix B = A

2

counts paths of length 2 in

G.
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Let P be a (3 + 1)-free poset.

Observation. If there is a chain of three ele-

ments i <

P

j <

P

k in P , then b

ik

= 0.

Proof. If b

ik

> 0, then there is an element x,

incomparable both to i and to k.



Observation. Let i, k, and ` be elements of

P . If b

ik

> b

i`

, then there is an element x <

P

`,

such that x 6<

P

k, and x 6>

P

i.

Proof. (1) If b

ik

> b

i`

, then there are more

paths of length two in G from i to k than from

i to `. There must be a vertex x such that

(i; x; k) is a path in G and (i; x; `) is not. In

particular, the edge (`; x) is directed.



x

i

k l

De�nition. Call such a vertex x a (k,`)-

advantage for i, imagining that it \helps" i

get to k, but not to `.



x
lk

j

i

Advantage Lemma

Let P be a (3 + 1)-free poset.

Lemma. If b

ik

� b

i`

> b

jk

� b

j`

, then either

i has a (k; `)-advantage that j doesn't have, or

j has an (`; k)-advantage that i doesn't have.

In particular, one of the following is true:

1. There is an element x such that

j <

P

x <

P

`, and b

j`

= 0.

2. There is an element y such that

i <

P

y <

P

k, and b

ik

= 0.



Proof.

b

ik

� b

i`

= #f(k; `)-advantages for ig

�#f(`; k)-advantages for ig:

Thus, if b

ik

� b

i`

> b

jk

� b

j`

, then

#f(k; `)-adv. for ig +#f(`; k)-adv. for jg

> #f(k; `)-adv. for jg+#f(`; k)-adv. for ig:

If an element x is a (k; `)-advantage for i, and

is not a (k; `)-advantage for j, then j <

P

x,

implying that j <

P

x <

P

`. By our �rst ob-

servation, b

j`

= 0.



Observation. Let B be any real matrix. The

following two conditions on B are equivalent:

1. It is possible to simlutaneously permute the

columns and rows of B so that it weakly

increases to the southwest, i.e.

2

4

b

i;j

� b

i+1;j

j^ j^

b

i+1;j

� b

i+1;j+1

3

5

;

2. The rows and columns of B correspond-

ing to any pair of indices i and j satisfy one

of the following pairs of vector inequali-

ties.

row(i) � row(j) and column(i) � column(j)

row(i) � row(j) and column(i) � column(j)



Proposition. If P is a (3 + 1)-free poset then

there is a natural labelling of P such that the en-

tries of its squared anti-adjacency matrix

B weakly increase toward the southwest.

Proof.Assume that B fails to increase toward

the southwest.



Case 1: Some pair of columns (or rows) is

not comparable as a pair of vectors.

Then there is a 2� 2 submatrix

�

b

ik

> b

i`

b

jk

< b

j`

�

;

and

b

ik

� b

i`

> 0 > b

jk

� b

j`

:

Applying the Advantage Lemma to this inequal-

ity, we have either b

j`

= 0 or b

ik

= 0, both

contradictions.



Case 2: For some i; j,

row(i) � row(j) and column(i) � column(j):

Then for some elements k, `, of P we have the

incorrect pair of inequalities

b

ki

> b

kj

and b

i`

> b

j`

:

There must be an element x 6= j such that

x <

P

j, x 6<

P

i, and x 6>

P

k,

and an element y 6= j such that

j <

P

y, y 6>

P

i, and y 6<

P

`.
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j

lyx

( )  ( )

By the graph above, both x and y must be in-

comparable to i, contradicting our assumption

that P is (3 + 1)-free.



Proposition. Let P be a (3 + 1)-free poset,

naturally labelled so that its squared anti-

adjacency matrixB weakly increases toward the

southwest.

Then each 2� 2 submatrix

�

b

ik

b

i`

b

jk

b

j`

�

satis�es one of the following two conditions:

1. b

ik

� b

i`

= b

jk

� b

j`

2. b

i`

= 0 and b

jk

� b

j`

> b

ik



�

b

ik

b

i`

b

jk

b

j`

�

Proof. Suppose that condition (1) is not satis-

�ed, and apply the Advantage Lemma.

Case 1: (b

ik

� b

i`

> b

jk

� b

j`

).

If b

j`

= 0, then b

i`

= 0 and b

ik

> b

jk

: )( :

If b

ik

= 0, then b

i`

= 0 and b

j`

> b

jk

: )( :

Case 2: (b

ik

� b

i`

< b

jk

� b

j`

).

If b

jk

= 0, then b

ik

= b

i`

= b

j`

= 0: )( :

Conclude: b

i`

= 0, and b

jk

� b

j`

> b

ik

.



Converse

Proposition. If P is naturally lablelled poset

containing 3 + 1 as an induced subposet,

then its squared anti-adjacency matrix is not

a submatrix of the in�nite Toeplitz matrix

C =

2

6

6

6

6

4

1 0 0 0 � � �

2 1 0 0 � � �

3 2 1 0 � � �

4 3 2 1 � � �

.

.

.

.

.

.

.

.

.

.

.

.

3

7

7

7
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5

:



2

1

3

4

Proof. Let Q = 3 + 1 and label Q so that

B =

2

6

6

4

2 1 1 2

3 2 1 3

4 3 2 4

4 3 2 4

3

7

7

5

:

Then, b

11

� b

13

< b

31

� b

33

.

To increase b

11

� b

13

without increasing b

31

�

b

33

, we need a new element x to be a (1; 3)-

advantage for 1 and not a (1; 3)-advantage for

3. This is clearly impossible. Similarly, we can-

not decrease the second di�erence without de-

creasing the �rst.



De�nition. We de�ne the chain polyno-

mial of a �nite poset P by

f

P

(x) =

r

X

i=0

c

i

x

i

;

where c

i

is the number of i-element chains in P,

and r is the maximum cardinality of a chain in

P . We de�ne c

0

= 1.



2

1

3

4

f

P

(x) = 1 + 4x + 3x

2

+ x

3

:



Formula for the chain polynomial

If A is the anti-adjacency matrix of P then the

chain polynomial is given by

f

P

(x) = det(I + xA):

(Stanley, 1996). From this formula we see that

f

P

(x) has only real zeros if and only if A has

only real eigenvalues.



Corollary. Let P be a (3 + 1)-free poset.

Then the chain polynomial f

P

(x) has only real

zeros.

Proof. Since B = A

2

is a submatrix of a totally

positive matrix, it is totally positive, and there-

fore has only nonnegative real eigenvalues.

Thus, A has only real eigenvalues, and

f

P

(x) = det(I + xA)

has only real zeros.



Conjecture: (Stanley-Neggers) Let J(Q) be

a �nite distributive lattice. Then the chain

polynomial f

J(Q)

(x) has only real zeros.

By Simion (1984), the conjecture holds for the

special case of products of chains.

By Wagner (1990), if the conjecture holds for

two distributive lattices, it holds for their

product.

The question of whether the conjecture holds for

the larger class of modular lattices is open

as well.


