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Abstract. Posets containing no subposet isomorphic to the disjoint sums of chains

3+ 1 and/or 2+ 2 are known to have many special properties [7], [10], [15], [17].

However, while posets free of 2+ 2 and posets free of both 2+ 2 and 3+ 1 may

be characterized as interval orders, no such characterization is known for posets

free of only 3+ 1. We give here a characterization of (3+ 1)-free posets in terms

of their antiadjacency matrices. Using results about totally positive matrices, we

show that this characterization leads to a simple proof that the chain polynomial

of a (3+ 1)-free poset has only real zeros.

R

�

esum

�

e. Les ensembles partiellement ordonn�es qui ne contiennent pas un sous-

ensemble partiellement ordonn�e isomorphique �a 3+ 1 et/ou 2+ 2 poss�edent pro-

pri�et�es interessantes [7], [10], [15], [17]. Cependant, alors que les ensembles sans

2+ 2, et les ensembles sans 2+ 2 et 3+ 1 poss�edent une caracterisation par or-

dres d'intervalle, aucune caracterisation analogue pour les ensembles seulement sans

3+ 1 n'est connue. Nous pr�esentons une caracterisation bas�ee sur leurs matrices

antiadjacentes. En utilisant les resultats sur les matrices totallement positives, nous

montrons que cette caracterisation produit une preuve simple que le polynôme des

châ�nes d'un ensemble partiellement ordonn�e sans 3+ 1 ne poss�ede que des z�eros

r�eelles.

1. Introduction

For nonnegative integers a and b, we denote by a + b the poset which is the disjoint

sum of an a-element chain and a b-element chain. A poset is called (a + b)-free if

it contains no induced subposet isomorphic to a + b. (See [13, ch. 3] for basic

de�nitions.) For example, the �rst two posets in Figure 1.1 are 2+ 2 and 3+ 1. The

third poset P is (2 + 2)-free but not (3+ 1)-free, because the subposet induced by

the elements f2; 3; 4; 6g is isomorphic to 3 + 1. For any poset P , we will denote the

order relation in P by the symbol <

P

, reserving < for comparisons of numbers and

vectors.
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Figure 1.1

Fishburn [6] characterized (2+ 2)-free posets by showing that any such poset P

may be represented as a set of closed intervals of real numbers [c

i

; d

i

], ordered by

[c

i

; d

i

] <

P

[c

j

; d

j

]; if d

i

< c

j

:

He also showed that for posets free of both 3 + 1 and 2+ 2, the intervals may be

chosen to have unit length. In honor of these results, posets in the above classes are

often called interval orders and unit interval orders.

A second well known characterization of (2+ 2)-free, (3+ 1)-free posets involves

natural labellings and antiadjacency matrices. Let P be a poset with n elements. Any

bijective function � : P ! f1; : : : ; ng is called a labelling of P , and is called natural

if it satis�es �(x) < �(y) whenever x <

P

y. If the elements x and y are labelled as

i and j, we will often write i <

P

j to mean x <

P

y. For a �xed labelling of P , we

de�ne an antiadjacency matrix A = [a

ij

] by

a

ij

=

(

0; if i <

P

j

1; otherwise:

Theorem 1.1. Let P be a poset on n elements. P is (2+ 2)-free and (3+ 1)-free if

and only if it may be naturally labelled so that the corresponding antiadjacency matrix

A satis�es a

jk

� a

i`

; for all integers 1 � i � j � n and 1 � k � ` � n.

That is, the positions (i; j) such that a

ij

= 0 form a Ferrers shape in the upper right

corner of A.

Unfortunately, little is known about posets free only of 3+ 1. Characterization of

(3+ 1)-free posets is desirable, because several results and conjectures about posets

require avoidance only of 3 + 1. For instance, Stanley's generalization of the chro-

matic polynomial [14] is known to be s-positive for the incomparability graphs of

(3+ 1)-free posets [10], and is conjectured to be e-positive for these graphs as well

[14, 17, 19]. Further, the chain polynomial of a (3 + 1)-free poset has only real zeros.

(See [17] and Corollary 4.1). This implies that the f -vector of a (3+ 1)-free poset is

log-concave and unimodal.
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We will characterize (3+ 1)-free posets with a result analogous to Theorem 1.1.

Observing serveral properties of squared antiadjacency matrices in Section 2, we we

use these properties to prove the main theorem in Section 3. In Section 4 we derive

a result of Stanley [17, Cor. 2.9] as a corollary of the main theorem and discuss some

open questions regarding the chain polynomials of posets.

2. The squared antiadjacency matrix

Let P be a �nite poset with elements labelled f1; : : : ; ng, and let A be the cor-

responding antiadjacency matrix. The squared antiadjacency matrix B = A

2

has a

simple combinatorial interpretation. Let G = (P;E) be the graph whose adjacency

matrix is A. The vertex set of G consists of the elements f1; : : : ; ng of P , and the edge

set consists of the ordered pairs (i; j) 2 P � P such that i 6<

P

j. (See Figure 2.1.)

Clearly, B = [b

ij

] counts paths of length two in G. That is, b

ij

is the number of

ordered triples (i; x; j), where (i; x) and (x; j) belong to E.

Observation 2.1. Assume that P is (3+ 1)-free, and let i, j, k, and ` be elements

of P .

1. If i <

P

j <

P

k, then b

ik

= 0.

2. If b

ik

> b

i`

, then there is an element x <

P

`, such that i 6<

P

x 6<

P

k

3. If b

ik

> b

jk

, then there is an element y >

P

j, such that k 6>

P

y 6>

P

i.

Proof. (1) Assume b

ik

> 0. Then, for some element x of P , (i; x) and (x; k) belong

to E, implying that i 6<

P

x 6<

P

k. In fact, x must be incomparable to i and k,

for if x <

P

i, then x <

P

i <

P

j <

P

k, and if k <

P

x, then i <

P

j <

P

k <

P

x,

both impossible. Similarly, x cannot be comparable to j. Thus, the subposet of P

induced by fi; j; k; xg is isomorphic to 3+ 1, contradicting our assumption that P is

(3+ 1)-free.
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(2) If b

ik

> b

i`

, then there are more paths of length two in G from i to k than from

i to `. It follows that for some element x of P , the pairs (i; x) and (x; k) belong to

E, and the pair (x; `) does not.

(3) Apply the argument of (2) to the dual poset of P .

Elements such as x in Observation 2.1 (2) are central to the proof of Lemma 2.2.

To simplify notation, we introduce the following de�nition.

De�nition 2.1. Let i; k; `; and x be elements of P . Call x a (k; `)-advantage for i if

(i; x) and (x; k) are edges in the graph G and (x; `) is not.

We use the word advantage, imagining that x helps us to travel from i to k, but not

from i to `. In the language of partially ordered sets, x is a (k; `)-advantage for i if

x <

P

`, and i 6<

P

x 6<

P

k. Note that in Figure 2.1, the vertex x is a (k; `)-advantage

for i, although it is not a (k; `)-advantage for j.

Lemma 2.2. Assume that P is (3+ 1)-free, and let i; j; k, and ` be elements of P .

If b

ik

� b

i`

> b

jk

� b

j`

, then one of the following is true:

1. P contains an element x such that j <

P

x <

P

` and b

j`

= 0.

2. P contains an element y such that i <

P

y <

P

k and b

ik

= 0.

Proof. Let us denote by �(k; `; i) the number of elements of P which are (k; `)-

advantages for i. Then,

b

ik

� b

i`

= �(k; `; i)� �(`; k; i):

Assuming that b

ik

� b

i`

> b

jk

� b

j`

, we have

�(k; `; i) + �(`; k; j) > �(k; `; j) + �(`; k; i);

and at least one of the following two inequalities must be true.

�(k; `; i) > �(k; `; j);

�(`; k; j) > �(`; k; i):

Suppose that �(k; `; i) > �(k; `; j). Then P contains an element x which is a (k; `)-

advantage for i and not a (k; `)-advantage for j. By De�nition 2.1, the pairs (i; x)

and (x; k) belong to E and the pairs (x; `) and (j; x) do not. Thus, j <

P

x <

P

` and

by Observation 2.1 (1), b

j`

= 0. Similarly, if �(`; k; j) > �(`; k; i), then P contains an

element y such that the pairs (y; k) and (i; y) do not belong to E. Thus, i <

P

y <

P

k

and b

ik

= 0.



A CHARACTERIZATION OF (3+ 1)-FREE POSETS 5

3. Main Result

Theorem 3.1. Let P be a poset on n elements. P is (3+ 1)-free if and only if it may

be naturally labelled so that the squared antiadjacency matrix B satis�es the following

two conditions for all integers 1 � i � j � n and 1 � k � ` � n.

1. b

jk

� b

i`

2. If b

ik

� b

i`

6= b

jk

� b

j`

, then b

i`

= 0 and b

ik

< b

jk

� b

j`

:

Example 3.1. Corresponding to any natural labelling of the poset P in Figure 2.1

is the squared antiadjacency matrix

B =

2

6

6

6

6

4

2 2 0 0 0

2 2 0 0 0

4 4 2 2 0

4 4 2 2 0

5 5 3 3 1

3

7

7

7

7

5

:

Condition (1) of the theorem says that entries of the squared antiadjacency matrix

increase to the left in rows and downward in columns. To prove that a (3+ 1)-free

poset P may be labelled to satisfy this condition, we will begin with an arbitrary

labelling of P and the squared antiadjacency matrix B. Note that relabelling P

corresponds to simultaneous row and column permutation of B. Let us denote the

ith row and ith column of any matrix M by M

i�

and M

�i

.

Observation 3.2. The following two conditions on any real matrix M are equivalent.

1. It is possible to simlutaneously permute the columns and rows of M so that its

entries weakly increase to the left in rows and downward in columns.

2. The rows and columns of M corresponding to any pair of indices i and j satisfy

one of the following pairs of vector inequalities.

(a) M

i�

�M

j�

and M

�i

�M

�j

.

(b) M

i�

�M

j�

and M

�i

�M

�j

.

The �rst statement simply says that we may sort the columns of M in weakly

decreasing order while simultaneously sorting the rows in weakly increasing order.

With a moment's thought, we see that this is possible if and only if the conditions in

the second statement are true.

Proposition 3.3. Any (3+ 1)-free poset may be naturally labelled so that the entries

of its squared antiadjacency matrix weakly increase to the left in rows and downward

in columns.

Proof. Let P be a (3+ 1)-free poset and assume that for each labelling of P , the

corresponding antiadjacency matrix fails to satisfy condition (2) of Observation 3.2.
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(Trivially, condition (2) fails to hold for each non-natural labelling of P .) We consider

two cases for a �xed labelling of P and the corresponding squared antiadjacency

matrix B.

Case 1: Two columns of B are incomparable as vectors. That is,

B

�i

6� B

�j

and B

�i

6� B

�j

;

for some indices i 6= j. Then for some indices k 6= ` we have b

ik

> b

i`

and b

jk

< b

j`

,

implying that

b

ik

� b

i`

> b

jk

� b

j`

:

Applying Lemma 2.2 to this inequality, we have b

j`

= 0 or b

ik

= 0, both contradictions.

The argument for incomparable rows is identical.

Case 2: All columns of B are pairwise comparable as vectors, as are all rows, but

for some indices i 6= j, we have an incorrect pair of comparisons of the form

B

i�

	 B

j�

and B

�i

	 B

�j

:

That is, there are elements k and ` in P , not necessarily distinct, satisfying b

i`

> b

j`

and b

ki

> b

kj

:

By Observation 2.1 (3), P contains an element x <

P

j, such that k 6<

P

x 6<

P

i. By

Observation 2.1 (2), P contains an element y >

P

j, such that i 6<

P

y 6<

P

`. Thus,

x <

P

j <

P

y is a chain, and each of these three elements is incomparable to i. This

contradicts our assumption that P is (3+ 1)-free.

It is not hard to show that any labelling of a (3+ 1)-free poset which satis�es the

�rst condition of Theorem 3.1 also satis�es the second condition.

Proposition 3.4. Let P be a (3+ 1)-free poset, naturally labelled so that its squared

antiadjacency matrix B weakly increases to the left in rows and downward in columns.

Let i; j; k, and ` be numbers satisfying 1 � i < j � n and 1 � k < ` � n. Then the

2� 2 submatrix

�

b

ik

b

i`

b

jk

b

j`

�

satis�es one of the following two conditions:

1. b

ik

� b

i`

= b

jk

� b

j`

.

2. b

i`

= 0 and b

ik

< b

jk

� b

j`

.

Proof. Suppose that condition (1) is not satis�ed.

Case 1: (b

ik

� b

i`

> b

jk

� b

j`

). We apply Lemma 2.2 to this inequality. If b

j`

= 0,

then b

i`

= 0 and b

ik

> b

jk

, contraditing our assumptions about weakly increasing

entries of B. If instead b

ik

= 0, then b

i`

= 0 and b

j`

> b

jk

, another contradiction.
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Case 2: (b

ik

� b

i`

< b

jk

� b

j`

). Again we apply Lemma 2.2. If b

jk

= 0, then all four

numbers are zero, a contradiction. We conclude that b

i`

= 0 and that condition (2)

is satis�ed.

Finally, we show that the only posets satisfying the conditions of Theorem 3.1 are

those which are (3+ 1)-free.

Proposition 3.5. Let P be a labelled poset containing 3+ 1 as an induced subposet,

and let B be its squared antiadjacency matrix. Then there are two distinct elements

i and k such that

b

ik

6= 0 and b

ii

� b

ik

6= b

ki

� b

kk

:

Proof. Let 1; 2; 3; and 4 be four elements of P such that 1 <

P

2 <

P

3 is a chain, and

4 is incomparable to 1; 2; and 3. Let G = (P;E) be the graph de�ned in Section 2.

Clearly, b

13

6= 0, since (1; 4) and (4; 3) are edges in G. We claim that

b

11

� b

13

6= b

31

� b

33

:

De�ne the sets

X = fx 2 P j(1; x) 2 E; (x; 1) 2 E; (x; 3) 62 Eg;

Y = fx 2 P j(x; 1) 2 E; (x; 3) 62 Eg;

and note that

jXj = b

11

� b

13

;

jY j = b

31

� b

33

:

Certainly X is a subset of Y . Moreover, it is a proper subset, since the element 2

belongs to Y and not to X. Thus, b

11

� b

13

< b

31

� b

33

:

Having completed the proof of Theorem 3.1, we now reconsider the theorem in terms

of totally positive matrices. A real matrix, �nite or in�nite, is called totally positive

(or sometimes totally nonnegative) if each k�k minor is nonnegative. Totally positive

matrices have many interesting properties [1] [2] and arise frequently in combinatorics.

(See [5], [8], [9], [18], [19], [21].)

One important property of a �nite square totally positive matrix is that all of

its eigenvalues are nonnegative and real. (See [2, Thm 1.1]). It is well known that

the antiadjacency matrix of any (2+ 2)-free, (3+ 1)-free poset is totally positive,
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provided the poset is labelled as in Theorem 1.1. An in�nite matrix which is well

known to be totally positive is

C =

2

6

6

6

6

6

6

6

4

1 0 0 0 � � �

2 1 0 0 � � �

3 2 1 0 � � �

4 3 2 1 � � �

: : : :

: : : :

: : : :

3

7

7

7

7

7

7

7

5

:

It is easy to see that the matrices satisfying the conditions of Theorem 3.1 are es-

sentially submatrices of C: each is determined by a �nite multiset of columns and a

�nite multiset of rows. (See Example 3.1.) Thus, the squared antiadjacency matrix

B = A

2

of any (3+ 1)-free poset is totally positive.

4. Chain Polynomials and Open Questions

Many open problems in algebraic combinatorics concern the f -vectors of posets

and simplicial complexes. (See for example [16, Ch. 2-3].) We de�ne the f -vector of

a �nite poset P to be the integer sequence

f

P

= (f

0

; : : : ; f

d�1

);

where f

i�1

is the number of i-element chains in P , and d is the maximum cardinality of

a chain in P . While it would be desirable to characterize the f -vectors corresponding

to particular classes of posets, few results of this type are known. Typical results

relate the integers f

0

; : : : ; f

d�1

by linear and quadratic inequalities. (See [3].) The

f -vector is called unimodal if

f

0

� � � � � f

j

� � � � f

d�1

;

for some index j, and log concave if

f

2

i

� f

i�1

f

i+1

;

for all i = 1; : : : ; d� 2. To prove that f

P

is unimodal and log concave, it su�ces to

show that the related chain polynomial,

f

P

(x) = 1 +

d

X

i=1

f

i�1

x

i

;

has only real zeros. Further, the following identity relates the chain polynomial f

P

(x)

to the antiadjacency matrix A [15].

f

P

(x) = det(I + xA):(4.1)

Thus, f

P

(x) has only real zeros if and only if A has only real eigenvalues.
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By Theorem 1.1, the chain polynomial of a (2+ 2)-free, (3+ 1)-free poset has only

real zeros. (See discussion following Proposition 3.5.) Similarly, by Theorem 3.1, the

same holds for (3+ 1)-free posets. This result was originally proved in [17, Cor. 2.9],

using facts about symmetric functions [10] [17, Thm. 2.8].

Corollary 4.1. Let P be a (3+ 1)-free poset. Then the chain polynomial f

P

(x) has

only real zeros.

Proof. Label P as in Theorem 3.1, and let A be the corresponding antiadjacency

matrix. By the discussion following Proposition 3.5, the matrix B = A

2

is totally

positive and therefore has only nonnegative real eigenvalues. It follows that A has

only real eigenvalues, and that f

P

(x) = det(I + xA) has only real zeros.

The converse of Corollary 4.1 is not true, for there are many posets containing 3+ 1

as an induced subposet, whose chain polynomials have only real zeros. An important

open problem is to determine which posets have this property. In particular, we have

the following conjecture due to Stanley [18] and Neggers [11].

Conjecture 4.2. Let J(Q) be a �nite distributive lattice. Then the chain polynomial

f

J(Q)

(x) has only real zeros.

Various proofs show that the conjecture holds for the special cases in which Q is

a disjoint sum of chains [12], a Ferrers poset [4], and a series-parallel poset [22]. In

addition, Stembridge has veri�ed the conjecture for all posets Q having eight or fewer

elements [20]. A more general open problem is to determine whether the conjecture

holds for the larger class of modular lattices. No counterexamples are known. It

would be interesting to apply the identity (4.1) to either open question or to the

special cases.

Another open problem is to count the (3+ 1)-free posets of cardinality n. By the

comment following Theorem 1.1, the Catalan numbers count (2+ 2)-free, (3+ 1)-

free posets. It would be interesting to apply the discussion following Proposition 3.5

to obtain a simple formula for (3+ 1)-free posets.
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