
 
Theory of Periodic Systems Based on the All-Electron DFT FP-LAPW 

Method – Applications to Surfaces and Clusters 
 
 The purpose of these state-of-the-art calculations is to address key issues of 
interface and nano science: reactivity, stability, chemisorption bond strengths, band 
structure, magnetic properties, core-level chemical shifts for photoelectron spectroscopy, 
and adhesion of one nanophase to another. 
 
 Most of the calculations are carried out by the methods of Density Functional 
Theory because of the efficiency of this approach for the size of the systems to be 
investigated here. For periodic systems we have gathered an extensive experience with 
the all-electron full-potential linearized plane wave (FP-LAPW)-based code Wien [A1],. 
This code uses "forces" to optimize the structures. The periodic calculations take 
advantage of properties calculation in the k-space through Fourier transform techniques 
employed in expansions of both the electronic wavefunctions and the potential generated 
by the nuclei. Long-range interactions are taken care of by expansions over the reciprocal 
lattice vectors G. In outline, the schematic for Wien applied to adsorption, chemisorption 
and cluster growth is depicted above. 

 
The Kohn-Sham equations of the Density Functional Theory [A2] are solved 

interactively to self-consistency as illustrated in the diagram Fig. 1A. The Wien code 
calculates core-level energy spectra owing to the full-potential contribution by the 
modified Desclaux's program LCORE. This is important for the interpretation and 
prediction of the core-level binding energy chemical shifts in photoelectron spectroscopy, 
the success of which is documented in our recent reports [A3]. The forces in Wien are 
calculated as spelled out in the section Geometry Optimization below. The SCF 
calculation outlined in Fig. 1A starts with superimposed electron density from all atoms 
in the unit cell (clmsum) which is updated after each cycle. LAPW0 then computes the 
"external potential" as a sum of the Coulomb and exchange-correlation potential using 
the total electron density as input, and returns the spherical (vsp) and non-spherical (vns) 
components as input into LAPW1, which solves the Kohn-Sham equations for 
eigenvalues of orbital energies and eigenfunctions. The latter are used for valence 
electron density calculation by LAPW2 (clmval), which is then added together with the 
core density calculated by LCORE (clmcor) and mixed with the "old" densities in 
MIXER which returns new charge density as input into LAPWO.  Net spin is determined 
as the difference between spin-up and spin-down densities, and is refined by the second 
variational treatment of spin-orbit interactions in the valence band.  The core level 
calculations at the fully relativistic level are particularly useful for the interpretation of 
both the chemical shifts and subtle effects of spin-orbit splittings that are observed with 
high-resolution XPS. 



 
 
 Fig. 1A  Flow of programs in the DFT FP-LAPW code Wien. 
 
The SCF cycle terminates upon convergence at a specified tolerance for energy 

and forces. Other details are described in the cited literature. The success of the 
subsequent optimization, described in some detail in the section Geometry Optimization 
below, depends on a judicious choice of the k-vectors and good initial guesses, and is 
facilitated by parallel processing. Both of these items require experience with the method 
(with good initial guesses the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is 
superior in performance to the damped Newton method) and, in the ongoing effort, a 
broad experience in catalytic chemistry for a good initial guess of the structure of surface 
intermediates.  Some technical aspects of the LAPW calculations that handle rapid 
oscillations of the wavefunctions near nuclei, the long-range electrostatic effects, and 
convergence are outlined below 
 
               Geometry Optimization in the DFT FP-LAPW (WIEN) Calculations. 
 

The methods for geometry optimization based on forces (or negative gradients of 
energy) on atoms within a unit cell of a periodic structure are outlined herein. 
Implemented in the Wien code are (a) the damped Newton and (b) the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithms, both of which utilize the driving forces calculated 
in a sequence outlined in (i) – (v) below. 
 

(i)  The Born-Oppenheimer Approximation (B.O.A.) 
 The Schrödinger Equation to be solved is 
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where: 
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where r)(Rn,Φ  is the electronic wave function, which satisfies the electronic equation: 
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Substituting (3) into (1), and using the relation (4), we have: 
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is the nucleus-nucleus interaction, which is in principle a constant term for a given 
nuclear configuration. It can be simply absorbed into En after solving the electronic 
equation (4). Technically, this nuclei-nuclei interaction term diverges. Special treatment 
involving the cancellation theorem, and Ewald's summation technique to calculate the 
energy of a periodic array of point charges, have to be used. 
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The Born-Oppenheimer Approximation assumes 
0=Φ∇ I  and 02 =Φ∇ I            (8) 

Then we have the so-called nuclear equations: 
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(ii) The Hellmann-Feynman Theorem (HF) 
The HF Theorem: If En(λ) is an eigenvalue of the Hamiltonian )r,(ˆ λH with the 
eigenfunction )r,( λnΦ and λ. is a parameter, 
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then we have: 
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Proof: Multiplying )r,( λnΦ<  to both sides of Eq. (10), and integrating over all space of 
r, we get: 
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So: 
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Since ),( λrnΦ are eigenfunctions of the Hamiltonian Ĥ , they form a complete basis set 
for infinite n, and: 

1),(),( =ΦΦ λλ rr nn        (15) 
Then we have: 
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Notes: 
(1) In the electronic equation, nuclear positions R are taken as parameters, we should 
have: 
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where α
xF  is the Hellmann-Feynman (HF) force along the direction of the X-component 

of R on the αth atom.  
(2) It can be shown that: 

),(),(ˆ
),( λ

λ
λλ

λ
rrHr nm

m

nm
n

mE
Φ

∂
∂

Φ=
∂

∂      (17) 

 
(iii) The Incomplete Basis Set Effect (IBS) 

The HF theorem is in principle correct as long as the basis set ),( λrnΦ is 
complete. But in any ab initio calculation ),( λrnΦ are incomplete, which means that the 
HF force need to be corrected. That is, we will not have the exact relation Eq. (15). 
Instead, we will have: 
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The first term on the right is the HF force, and the second term is a correction, which was 
first shown by Pulay [A4], and is regarded as the wavefunction force, or Pulay force. 

The effect of the Pulay force is then generally regarded as the Incomplete Basis 
Set effect (IBS). In principle, the Pulay force FIBS = 0 only if the basis set ),( λrnΦ is 
complete. However, a relatively weak condition has been shown that if the wavefunction 

),( λrnΦ were comprised of originless orbitals, for example the Plane-Wave (PW) basis 
set, we still have FIBS = 0 [A5]. 
(1) For an LCAO approach, IBS is important. In fact, the CRYSTAL package does 

not calculate forces. 
(2) For a pure Plane-Wave (PW) approach, IBS is very small. Unfortunately, pure 

PW approach has its own problems, especially the convergence problem. 
(3) For a Plane-Wave Pseudo-Potential (PWPP) approach, IBS is not that important. 
(4) For the dual basis set approach such as the FP-LAPW method, IBS is serious. 

Fortunately, corrections to the IBS in the FP-LAPW method can be made in a 
known way. 

 
(iv) The Force Calculation in the FP-LAPW Method 

 
The explicit formation of the Pulay correction in the FP-LAPW approach are 

given by both YSK [A6] and SW [A7]. The two different approaches give similar results, 
and both have been implemented in the WIEN package. 
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where FI is the force acting on the Ith nucleus, FI
HF is the Hellmann-Feynman force, and 

Veff(r) is the effective potential. 
 

(v) The Calculation of Optimized Structures Using Forces 
 

The Pulay force is calculated by evaluating the following two terms: 
(1)       Fcore: a correction due to the spherically treated core electrons. 
(2)       FValence: a correction due to the discontinuous 2nd derivatives of wavefunctions 

across the boundaries of the Muffin-Tin spheres.  
In summary, the total force is the combination of three terms: 
 ValenceCore FFFF HF ++=        (20) 
where the Hellman-Feynman force FHF is calculated e.g. in the “LAPW0" step of the 
Wien code, and is in general easily done. FCore is calculated in the "LCORE" step, which 
is also easy. But calculations of FValence are more difficult. 

In an SCF calculation, information from only two cycles is saved, the current 
cycle and the previous cycle for the convergence test and the mixing scheme. Evaluation 
of FValence needs information of at least three cycles. In the WIEN program, evaluation of 
FValence is done by adding an “-fc" flag in the "run_lapw" program, which is also 
interpreted as force convergence criterion. When the "-fc" flag is used, the SCF 
calculation first goes through the regular energy criterion convergence. After energy 
converges, it turns on the FValence calculation by changing the keyword "TOT" to "FOR" 
in the "case.in2" input file. At least 3 more cycles have to be calculated to find the 



FValence. 
The correction by FValence is in general large. So the "-fc" flag should always be 

used for the "minimization", or geometry optimization. 
After finding the forces on nuclei, we can now change positions of nuclei and 

perform a new SCF calculation. The movements of nuclei are guided by the forces using 
different schemes. In the WIEN program, two different schemes are used, the BFGS [48] 
and the damped Newton scheme [49], 
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where τ

mR  and τ
mF  are the coordinates and the respective force at the time step τ. 

Damping and speed of motion are controlled by two parameters, the "friction" ηm and the 
"step size" δm, which are set in the input file by user. The "minimization" program in 
WIEN is for fixed lattice constants of the unit cell. That is, only internal coordinates of 
atoms within the unit cell are optimized. On the other hand, the lattice parameters of the 
unit cell are optimized by the "optimization" program, which is basically a job-
controlling script file that minimizes the total energy with respect to the lattice 
parameters with fixed fractional internal nuclear positions. So the best geometry 
optimization process should include several steps: First, with fixed fractional internal 
coordinates of atoms, optimization of the lattice parameters. Second, with the 
"optimized" lattice parameters, the internal coordinates of nuclei are "minimized". These 
two steps could be repeated until a satisfactory geometry is reached. 

Final Note: The basic task of geometry optimization is to find the minimum total 
energy of systems. The criterion of a good optimized geometry should be the "total 
energy minimum". Forces basically serve as a guide to effectively find the minimum 
geometry. 
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