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a b s t r a c t

Spin–orbit coupling constants calculated for several excited states of the NaK molecule are used to interpret
recent experiments. The theoretical results, which provide coupling constants as a function of internuclear
separation R, were convoluted with vibrational wavefunctions in order to determine vibrational-state-
dependent spectroscopic constants that could be compared with recent measurements for the 3 3P state.
Sharp structure in the experimental data could be attributed to rapid changes in the adiabatic spin–orbit
coupling near an avoided crossing.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Several recent high-resolution spectroscopic studies in our lab-
oratory have probed the fine and hyperfine structure of various ex-
cited triplet states of the NaK molecule [1–6]. Other studies have
addressed singlet–triplet spin–orbit coupling [3,7–9]. These stud-
ies have determined the fine structure coupling constants for many
different vibrational levels of several electronic states. In the pres-
ent paper we address the unusual behavior observed for the 3 3P
state [4]. Our analysis is based on our ab initio calculations of the
fine structure coupling constants as a function of the internuclear
separation R performed with the GAMESS electronic structure code
[10].

The present work complements our previous experimental and
theoretical studies of the coupled 3 3P and 4 3P electronic states.
These states exhibit an avoided crossing, leading to a double well
in the 3 3P state. Previous studies [4,6] measured the rovibrational
energy levels of the 3 3P state and accurately determined the double
well shape of that electronic potential. Morgus et al. [4] noticed unu-
sual oscillatory structure in the dependence of the rotational con-
stants Bv on the vibrational quantum number v that could be
explained by the double well. Here we investigate the effects of
the double well and the avoided crossing on fine structure coupling
constants Av , which have been measured [4] for many different
vibrational levels of the 3 3P and estimated [11] for a few levels of
the 4 3P state. The dependence of Av on v exhibits anomalous struc-
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ture, which we can calculate by convoluting a theoretical coupling
function AðRÞ with the square of the vibrational wavefunctions
vv ðRÞ. The sharp change in the form of AðRÞnear the avoided crossing
and the nature of the vibrational wavefunctions vvðRÞ in the double
well lead to the anomalous behavior of Av . By drawing on our previ-
ous experimental work for the most accurate potential curves and
vibrational wavefunctions and combining these with the present
theoretical calculations of spin–orbit coupling functions, we achieve
very satisfactory agreement with the values of Av measured for the
3 3P state.

Several excited state potential curves of NaK are shown in Fig. 1.
The adiabatic 3 3P and 4 3P states we address in the present work
are highlighted. The calculations also included all adiabatic states
correlating to the 3s4s; 3s4p; 3p4s; 3s5s; 3s3d; 3s5p, and 4s4s
separated atom limits. We show the curves calculated by Magnier
et al. [12], which include adjustments based on experimental
atomic data and therefore provide an excellent overall picture.

This paper is organized as follows: Section 2 briefly describes
the theoretical calculations that have been performed. The main
results are presented and discussed in Section 3, and Section 4
contains concluding remarks.
2. Theory

2.1. Methodology implemented in GAMESS

We used the GAMESS electronic structure code [10] to calculate
electronic wavefunctions and spin–orbit coupling matrix elements
for several excited states of NaK. Optimized orbitals were calcu-
lated at the multi-configuration self-consistent field (MCSCF) level.
The active space included Na(3s;3p;4s) and K(4s;4p;5s;3d;5p)
orbitals. The MCSCF orbitals were then used to calculate the singlet
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Fig. 1. Electronic potential curves for high lying triplet and singlet states of NaK
calculated by Magnier et al. [12]. The solid curves represent the states investigated
in this work.
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and triplet electronic wavefunctions using a full configuration
interaction (CI) for the two valence electrons in a space of 86 orbi-
tals. The basis set was Dunning’s triple-zeta valence (TZV) [13],
augmented to include long range orbitals [6] for a better descrip-
tion of excited states. The added orbitals are listed in Table 1.

Electronic wavefunctions Wi were calculated for several elec-
tronic states. The functions Wi, which are defined in LS coupling,
are then used to calculate matrix elements of the spin–orbit Ham-
iltonian Hso. The form of Hso implemented in GAMESS is obtained
by starting with the full Breit–Pauli spin–orbit Hamiltonian and
then replacing the two-electron part with a one-electron approxi-
mation [14]. The final expression is

Hso ¼
a2

2

X
i

X
K

Zeff ;K

r3
iK

liK � si; ð1Þ

where a is the fine structure constant, and l and s denote electron
orbital and spin angular momenta, respectively. The nuclei are de-
Table 1
The long range s; p, and d gaussian basis functions used to augment the TZV basis set
[6,13].

Na Exponent K Exponent

s 0.007660 s 0.006000
p 0.063900
p 0.019800
p 0.005200

d 0.271900 d 0.173200
d 0.090640 d 0.057740
d 0.028900 d 0.026600
d 0.010000 d 0.005000
noted by K and the electrons by i. GAMESS permits using effective
nuclear charges Zeff , but we chose to use the full nuclear charge.
The matrix elements of the full Hamiltonian may be written

Hij ¼ hWij Helec þHsoð ÞjWji ¼ dijEi þ hWijHsojWji: ð2Þ

This matrix is then diagonalized to obtain the energy levels,
including fine structure, as a function of internuclear separa-
tion R.

2.2. Extensions to GAMESS’ methodology

The methodology implemented in GAMESS is designed to calcu-
late energy levels. Because our objective was to calculate coupling
terms explicitly, we made several adjustments in the procedure
described above. For example, the electronic states Wi are formu-
lated using real angular functions, so that the well-defined quan-
tum numbers include R and K, the projections of the spin and
orbital electronic angular momenta, respectively, on the internu-
clear axis. No explicit account is taken of the X quantum number
in GAMESS. The diagonalization of Helec þHso at various values of
R still leads exactly to the desired energies. However, the present
application involves disentangling a large number of excited states,
and it was advantageous to block diagonalize the matrix Helec þHso

by transforming to a basis that explicitly depended on X. The ma-
trix Helec þHso was intercepted and written to a file before it was
diagonalized. Then a second computer code implemented a trans-
formation to a basis depending on X and completed the
calculation.

The electronic wavefunctions we calculated using GAMESS are
made up of the spatial atomic orbitals s; px; py; pz; dz2 ; dxz; dyz, dxy,
and dx2�y2 . These states are multiplied by electron spin states jSRi
(the R in the ket jSRi represents the projection of the electron spin
S on the internuclear axis, and should not be confused with the Rþ

that identifies electronic states with K ¼ 0). The spatial orbitals can
be expressed as spherical harmonics, and the product states of
spherical harmonics and spin orbitals corresponding to specific
values of X can also be written explicitly. Working out the details
allows the necessary transformation to be determined. For those
states that dissociate to an s atom and a p atom, the possible elec-
tronic states can be denoted by 1Rþ; 3Rþ; 1Px;

3Px;
1Py, and 3Py,

where a subscript x or y signifies an electronic wavefunction built,
respectively, from real px or py orbitals formed from linear combi-
nations of spherical harmonics. The addition of the electron spin
allows us to identify Xð¼ Kþ RÞ, and we give the value of X as a
subscript. The wavefunctions for the four Rþ states can then be
written

jRþij00i ¼ j1Rþ0 i
jRþij1;�1i ¼ j3Rþ�1i
jRþij10i ¼ j3Rþ0 i
jRþij11i ¼ j3Rþ1 i: ð3Þ

The wavefunctions for the four Px states are

jPxij00i ¼ 1ffiffiffi
2
p j1P1i � j1P�1i

� �

jPxij1;�1i ¼ 1ffiffiffi
2
p j3P0i � j3P�2i

� �

jPxij10i ¼ 1ffiffiffi
2
p j3P1i � j3P�1i

� �

jPxij11i ¼ 1ffiffiffi
2
p j3P2i � j3P0i

� �
: ð4Þ

The wavefunctions for the four Py states are



Table 3
Matrix elements of the spin–orbit Hamiltonian Hso between the electronic states with
the sd separated atom limit, for each value of X. At large R; Asd

1 � Asd
10 all approach the

atomic spin–orbit constant of the d atom.

X ¼ �3
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jPyij00i ¼ 1ffiffiffi
2
p j1P1i þ j1P�1i

� �

jPyij1;�1i ¼ 1ffiffiffi
2
p j3P0i þ j3P�2i

� �

jPyij10i ¼ 1ffiffiffi
2
p j3P1i þ j3P�1i

� �

jPyij11i ¼ 1ffiffiffi
2
p j3P2i þ j3P0i

� �
: ð5Þ

Now that we have a relationship between the GAMESS basis and the
basis needed for the sp case, we can write a 12� 12 transformation
matrix for electronic states. The transformation separates the states
according to the X quantum number and facilitates the analysis of
the results of the sp case.

The molecular states that can be constructed from an s atom
and a p atom are 1Rþ; 3Rþ; 1P, and 3P. In the separated atom limit,
the spin–orbit interaction depends on only one constant, which we
denote Asp, and which may be identified with the constant A in the
effective spin–orbit operator AL � S for the p atom. However, as the
atoms approach each other, different interactions are possible be-
tween the different states. The three equivalent p orbitals of the
separated atoms are transformed into a pz orbital oriented parallel
to the molecular axis and two equivalent perpendicular orbitals (px

and py). The orbitals also depend on whether the molecular state is
a singlet or triplet. In all, there are five distinct ‘‘spin–orbit con-
stants” that define the possible matrix elements of Hso between
the molecular states that arise in the sp case. We denote these con-
stants Asp

1 � Asp
5 , and we relate them to the coupling between spe-

cific molecular states in Table 2. At large internuclear distance
R; Asp

1 through Asp
5 will all approach Asp, which is 1=3 of the calcu-

lated spin–orbit splitting of the separated atom 2P state.
Similarly the molecular states that can be constructed from an s

atom and a d atom are 1Rþ; 3Rþ; 1P; 3P; 1D, and 3D. As in the sp
case, the spin–orbit interaction at the separated atom limit de-
pends on one constant, Asd, which depends only on the electron
in the d orbital. In the molecular picture, there are five d orbitals:
dz2 ; dxz; dyz; dxy, and dx2�y2 . The first three of these correspond to
Rþ and P states, and the transformation relating the GAMESS basis
to the basis in which X is a good quantum number is equivalent to
the one used in the sp case (Eqs. (3)–(5)). The last two d orbitals
correspond to D states, and the appropriate transformation is cal-
culated using similar techniques. The wavefunctions including
electron spin for the four Dxy states are
Table 2
Matrix elements of the spin–orbit Hamiltonian Hso between the electronic states
correlating with the sp separated atom limit, for each value of X. At large R; Asp

1 � Asp
5

all approach the atomic spin–orbit constant of the p atom.

X ¼ �2

X ¼ �1

X ¼ 0
jDxyij00i ¼ 1ffiffiffi
2
p j1D2i � j1D�2i

� �

jDxyij1;�1i ¼ 1ffiffiffi
2
p j3D1i � j3D�3i

� �

jDxyij10i ¼ 1ffiffiffi
2
p j3D2i � j3D�2i

� �

jDxyij11i ¼ 1ffiffiffi
2
p j3D3i � j3D�1i

� �
: ð6Þ

The wavefunctions including electron spin for the four Dx2�y2 states
are

jDx2�y2 ij00i ¼ 1ffiffiffi
2
p j1D2i þ j1D�2i

� �

jDx2�y2 ij1;�1i ¼ 1ffiffiffi
2
p j3D1i þ j3D�3i

� �

jDx2�y2 ij10i ¼ 1ffiffiffi
2
p j3D2i þ j3D�2i

� �

jDx2�y2 ij11i ¼ 1ffiffiffi
2
p j3D3i þ j3D�1i

� �
: ð7Þ

Now that we have a relationship between the GAMESS basis and
the basis needed for the sd case, we can write a 20� 20 transfor-
mation matrix for electronic states. The transformation separates
the states according to the X quantum number and facilitates the
analysis of the results. There are ten distinct ‘‘spin–orbit con-
stants” Asd

1 � Asd
10 that define the possible matrix elements of Hso

between the molecular states in the sd case, and we relate them
to the coupling between specific molecular states in Table 3. At
large internuclear distance R, all the Asd

1 � Asd
10 will approach 2/5

of the calculated spin–orbit splitting of the separated atom 2D
state.
X ¼ �2

X ¼ �1

X ¼ 0
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3. Results and discussion

3.1. Comparison with other work

We first attempted to reproduce the results of Manaa [15] to val-
idate our model. Manaa performed calculations of the spin–orbit
matrix elements among the electronic states associated with the
3s4p limit (1 1P;1 3P;2 1Rþ, and 2 3Rþ). His calculations used the full
Breit–Pauli approximation, where both the spin–orbit and the spin–
other-orbit contributions were included. His molecular orbitals
were determined from a complete active-space multi-configuration
self-consistent field (CAS-MCSCF) procedure. The CI included the
single and double excitations of the electrons in the active space.

The present results for the spin–orbit matrix elements Asp
1 � Asp

5

are compared with Manaa’s results [15] in Fig. 2. The differences be-
tween these two calculations are typically on the order of 10–15%.
For the asymptotic limit, our result is 14:3 cm�1 compared to Man-
aa’s result of 14:9 cm�1 and the spectroscopic value of 19:2 cm�1

(=1/3 of 57:7 cm�1). Both calculations underestimate the spectro-
scopic values by about 25%. We attribute the differences between
the calculations primarily to Manaa’s use of the two-electron expres-
sion for Hso compared to the one-electron approximation we used
[Eq. (1)]. Another possible source of the difference is that we used
a larger basis set, since we wanted to study the behavior of higher ex-
cited states. The comparison between the present calculations and
Manaa’s results suggests that the uncertainties introduced by the
small CI and the one-electron approximation for Hso are not too large.
We therefore have some confidence that our calculations will be use-
ful for interpreting experimental results.

3.2. Spin–orbit matrix elements

Our calculations included all the molecular states approaching the
following separated atom limits: 3s4s; 3s4p; 3p4s; 3s5s; 3s3d;
Fig. 2. Calculations of the spin–orbit coupling for the 3s4p case of NaK. The present
results for Asp

1 � Asp
5 are shown, as well as the previous calculations of Manaa [15].

Manaa’s results for Asp
4 and Asp

5 were determined by dividing his reported
3P0� � 3Rþ0� and 3P0þ � 1Rþ0þ matrix elements by

ffiffiffi
2
p

, according to Table 2.
3s5p, and 4s4s. There are a total of 68 spin–orbit states, and we consid-
ered several R values in the range 6–100 a0. GAMESS calculated a
68� 68 matrix at each R. Application of the models just described,
which are based on 12 states correlating to an sp asymptote or 20
states correlating to the sd asymptote, posed some additional prob-
lems. The form of the electronic wavefunctions had to be carefully
monitored as a function of R in order to identify the nature of each
state. In many cases, an appropriate set of states could be isolated
and treated separately. In other cases it was necessary to monitor
curve crossings and switch the adiabatic states that were included
in the analysis.

In the case of the 3s4p limit, it was easy to pick out the neces-
sary states to include in the analysis since those electronic states
did not have any large interactions with other electronic states.
From Fig. 1 one can see that electronic states that go to 3p4s;
3s5s; 3s3d; 3s5p, and 4s4s limits will interact with each other at
some values of internuclear distance R. In these cases it was neces-
sary to include these interactions. GAMESS printed out a file with
all the spin–orbit matrix elements (the 68� 68 matrix). For each
R, the electronic states for each 12 state sp model or for each 20
state sd model were identified. Our code read the entire matrix
and then built a smaller matrix with just the appropriate matrix
elements. These matrix elements were the spin–orbit couplings
between electronic states as shown in Tables 2 and 3.

We treated several sets of potential curves separately. First, we
obtained theoretical spin–orbit matrix elements for electronic
states that go to the 3s3d limit. Fig. 3 shows that the calculated
spin–orbit matrix elements Asd

1 � Asd
10 for these electronic states ap-

proach the same asymptotic limit, as expected. More detailed fig-
ures and tables are available electronically [16]. Of these curves,
Asd

4 was used to calculate the spin–orbit coupling constant Av as a
function of vibrational number for the 3 3P electronic state.

The spin–orbit matrix elements Asp
1 � Asp

5 for electronic states
associated with the 3s5p limit are shown in Fig. 4, and tables are
available electronically [16]. Asp

1 represents the spin–orbit coupling
Fig. 3. Calculated spin–orbit coupling constants Asd
1 � Asd

10 for the electronic states
51;3Rþ;31;3P, and 11;3D that correlate with the 3s3d limit. Asd

4 =2 is shown in more
detail in Fig. 5. Asd

9 and Asd
10 appear anomalous due to an avoided crossing of an

electronic state with the same X. The other state involved in this crossing
dissociates to a different asymptotic limit.



Fig. 4. Results for the electronic states 61;3Rþ and 41;3P that correlate with the 3s5p
limit. The curves show the Asp

1 � Asp
5 obtained in our calculation. The results for Asp

1

were used to calculate Av for the 43P state. Asd
5 appears anomalous due to an

avoided crossing with an electronic state correlated with a different asymptotic
limit.

Fig. 5. Spin–orbit interaction as a function of R for the 33P and the 43P states.
Panel (a) shows the results of ab initio calculations. The sharp change near R ¼ 8:8a0

is due to the avoided crossing of the 33P and 43P states. The curves corresponding
to the 33P and 43P states are Asd

4 =2 and Asp
1 , respectively. Panel (b) shows effective

spin–orbit coupling terms A11 and A22 that can be associated with diabatic curves
that do not cross. Panel (c) shows modified Asd

4 ðRÞ=2 and Asp
1 ðRÞ terms determined by

using a more accurate form of the avoided crossing, as described in the text.

Fig. 6. Calculated values of the spin–orbit constant Av for the 3 3P state are
compared with the measurements of Morgus et al. [4]. Panel (a) shows values
calculated using vibrational wavefunctions determined from the present ab initio
potential curve. Panel (b) shows corresponding results using vibrational wavefunc-
tions determined from the fitted potential curves of Miles et al. [6]. In both cases,
the theoretical spin–orbit interaction from the present work was used. At v ¼ 16
and 19, the values of Av are lower due to these rovibrational levels being mostly in
the inner well of the 33P state.
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of the 4 3P state at R > 15a0. Asp
1 is also needed to calculate the

spin–orbit value as a function of vibrational number for the
strongly interacting 3 3P state.

3.3. Spin–orbit interaction of the 33P and 43P states

The results of the present theoretical calculations can be related
to the experimental values of Av for the 3 3P state reported by Mor-
gus et al. [4] if we obtain an expression for the spin–orbit interac-
tion as a function of internuclear distance R. Av is related to the
internuclear separation by the following integral:

Av ¼
1
2

Z
vvðRÞ
�� ��2Asd

4 ðRÞdR; ð8Þ

where vvðRÞ is the vibrational wavefunction. We will include the
factor of 1

2 with Asd
4 ðRÞ when we discuss the spin–orbit interaction

as a function of R.
The theoretical spin–orbit coupling terms Asd

4 ðRÞ=2 for the 3 3P
and Asp

1 ðRÞ for the 4 3P states are shown in Fig. 5(a). The sharp
change between R ¼ 8 and 9 a0 is due to the avoided crossing be-
tween these two electronic states (shown in bold in Fig. 1). To eval-
uate Eq. (8) we first determined the rovibrational wavefunctions
for the 3 3P state by using the theoretical curve obtained with
the ab initio calculations. The vibrational wavefunctions were
determined using LEVEL [17], which solves the radial Schrödinger
equation for specific rovibrational levels.

Figure 6(a) shows the theoretical values of Av calculated from
Eq. (8) and the experimental values [4]. The structure in the calcu-
lated Av near v ¼ 20 may also be attributed to the avoided crossing
of the 3 3P adiabatic potential, which leads to a double well (see
Fig. 1). For states with v in the range 15–25, some wavefunctions
are localized in the inner well and others are in the outer well
(examples of vibrational wavefunctions for several different levels
of the 3 3P double well potential were presented in Fig. 5 of Ref.
[4]). Asd
4 ðRÞ=2 is different for these two regions of R; the switch be-

tween inner well and outer well values causes the sharp structure
in the solid curve in Fig. 5(a). The values of Av obtained by the con-
volution in Eq. (8) therefore vary sharply depending on the details
of the vibrational wavefunctions.

The foregoing discussion leads to the conclusion that reliable
potential curves are critical for the calculation of accurate Av . The



Fig. 7. Diabatic (——) and adiabatic (- - - -) potential curves for the coupled 33P and
43P states determined by Miles et al. [6].

Table 4
Values of Av for 43P rovibrational levels calculated by convoluting the spin–orbit
coupling function Asd

1 ðRÞ with the appropriate vibrational wavefunction vvJðRÞ.

v J ¼ 14 J ¼ 30 J ¼ 45

0 5.78 cm�1 5.75 cm�1 5.70 cm�1

1 5.75 5.72 5.67
2 5.74 5.71 5.66
3 5.74 5.71 5.66
4 5.72 5.69 5.65
5 5.70 5.67 5.63
6 5.67 5.64 5.60
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location of the sharp structure in Asd
4 and the form of the vibrational

wavefunctions in the double well potential are both sensitive to
the details of the avoided crossing of the 3 3P and 4 3P states.
The results presented in Fig. 6(a) were calculated using vibrational
wavefunctions determined from our ab initio potentials, which are
less precise than those determined by fitting high resolution spec-
troscopic data. Fortunately, previous work in our group has led to
the determination of precise 3 3P and 4 3P potential curves and the
coupling between them [4,6]. Miles et al. [6] determined accurate
diabatic potential curves and coupling terms for these states by
fitting the experimental data. We have performed additional calcu-
lations using these more accurate curves.

The adiabatic and diabatic potential curves determined by Miles
et al. [6] are shown in Fig. 7. For these curves the avoided crossing
occurs at a slightly smaller value of R than we obtained in our ab
initio calculations, and it is necessary to modify the form of
Asd

4 ðRÞ=2 to account for this difference. The results for Asd
4 ðRÞ=2 for

the 3 3P and Asp
1 ðRÞ for the 4 3P states shown in Fig. 5(a) may be

considered ‘‘adiabatic” functions. By interpolating between values
of Asd

4 ðRÞ=2 and Asp
1 ðRÞ away from the point of maximum coupling,

we were able to estimate corresponding ‘‘diabatic” functions that
can be associated with the diabatic potentials determined by Miles
et al. [6]. Then we used the coupling terms of Miles et al. to calcu-
late improved values of the spin–orbit coupling for each of the adi-
abatic states. The adiabatic coupling terms are weighted averages
of the diabatic functions shown in Fig. 5(b), where the weights
are determined from the work of Miles et al. [6]. This procedure
leads to the adjusted Asd

4 ðRÞ=2 and Asp
1 ðRÞ shown in Fig. 5(c). Using

the modified form of Asd
4 ðRÞ=2 (the solid line in Fig. 5(c)), and using

Miles’ adiabatic potential to determine the vibrational wavefunc-
tions, we recalculated the Av for the 3 3P state. The results, which
are shown in Fig. 6(b), compare very well with the known experi-
mental values of the 3 3P state.

Corresponding calculations were also performed for the 4 3P
state. We used the upper adiabatic potential determined by diago-
nalizing Miles’ diabatic potential matrix [6] at each R and calcu-
lated vibrational wavefunctions using LEVEL [17]. The resulting
Av , which are tabulated in Table 4, do not exhibit the dramatic fluc-
tuations found for the 3 3P. This result is easily understood. The
4 3P states considered are all localized in the same range of R,
and the Av obtained correspond closely to the average value of
Asp
1 ðRÞ in that range. At this point, we cannot make a comparison

with experimental data. Although some preliminary data are avail-
able [11], a full deperturbation analysis has not yet been
performed.
4. Concluding remarks

We have calculated spin–orbit coupling terms as a function of R
for selected excited states of NaK. Convolution of these coupling
terms with appropriate vibrational wavefunctions provides spec-
troscopic constants that can be compared with recent experimen-
tal studies. Our results provide a quantitative model for the strong
dependence on vibrational quantum number v of the spin–orbit
coupling constant Av for the double well 3 3P state. We emphasize,
however, the importance of using very accurate potentials and
vibrational wavefunctions in the calculation.
Acknowledgment

This work was supported by the National Science Foundation
Grant No. PHY-0652938.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jms.2009.08.012. Supplemen-
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