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Abstract

A volatility smile relates some measure of an option’s implied volatility (IV) eg. annualized
variance rate, to some measure of the option’s moneyness, eg. strike minus forward. The term
smile is used because the graph is typically convex. A yield curve relates the yield to maturity
(YTM) on a bond to the bond’s time to maturity. When the yield curve is concave, which is
typically the case, it is natural to to analogously refer to this curve as a yield frown. In this
paper, we show that the IV smile and the YTM frown are both due to randomness in future
IV’s and future YTM’s respectively. We develop simple models for the risk-neutral dynamics
of IV’s and YTM’s that lead to a quadratic curve for each.

I am grateful to Hans Peter Bermin, Svetlana Borovkova, Travis Fisher, Vasily Strela, Jian Sun,
and Liuren Wu for their comments. They are not responsible for any errors.



“There is a fundamental similarity between the role of interest rates in the pricing of
bonds and the role of volatility in the pricing of index options.” – Emanuel Derman et.
al. (Investing in Volatility).

“This note explores the analogy between the dynamics of the interest rate term structure
and the implied volatility surface of a stock.” – Rogers and Tehranchi.

1 Introduction

The interaction between option pricing and bond pricing has a long history. A footnote in Merton[9]’s
pathbreaking paper on the pricing of stock options develops the first bond pricing model by assum-
ing that the short interest rate follows arithmetic Brownian motion. It was quickly realized that
the role of an underlying asset’s volatility in pricing an option written on this asset is similar to the
role of an interest rate in pricing a bond. Nowadays, implied volatilities are used as a quotation
convention for OTC FX options, just as bond yields have long been used to quote bonds. Historical
data on bond yields and implied variance rates has shown that both time series are mean-reverting
and non-negative. This allows dynamical models developed for one rate to be used to describe the
other.

There has been a fruitful interplay between models developed to price bonds and models de-
veloped to price options. For example, Black, Derman, and Toy[3] developed a binomial tree for
interest rates which was designed to be consistent with an initially given yield curve. This moti-
vated Derman and Kani[6] to develop a binomial tree for stock prices, which was designed to be
consistent with an initially given implied volatility surface. To take another example, Cox Ingersoll
and Ross[5] develop a model for pricing bonds, which uses a mean-reverting square root process to
describe the evolution of the short interest rate. In the CIR model, an explicit formula for pricing
a zero coupon bond is available despite the complicated path dependence that enters the pricing
operator. Afterwards, Heston[8] developed a model for pricing stock options, which uses the same
mean-reverting square root process to describe the evolution of the short variance rate of the un-
derlying stock. In Heston’s model, one has a semi-explicit formula for the price of a stock option,
which has contributed greatly to the model’s popularity.

To take another type of example, Dybvig Ingersoll, and Ross [7] proved that long interest rates
can never fall. Afterwards, Rogers and Tehranchi[10] prove that long implied volatility can never
fall as well.

To take yet another example, Armerin, Jensen, and Bjork[1] show that if the term structure
of yields is required to be flat at all calendar times, then the absence of arbitrage forces this flat
term structure to also be constant as calendar time evolves. Put another way, an initially flat yield
curve cannot move by parallel shifts. Ross conjectures the parallel result for the graph of implied
volatility against strike. Rogers and Tehranchi[10] confirm this conjecture under a mild regulatory
condition.

The purpose of this paper is to shed some new light on the surprising connection between
interest rates and volatility. More precisely, we explore the connection between the continuously
compounded yield on a zero coupon bond and the implied volatility of a European swaption. A yield
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curve relates the yield to maturity on a bond to the bond’s time to maturity. A volatility smile1

relates some measure of the implied volatility of an option’s underlying eg. annualized variance
rate, to some measure of the option’s moneyness. The main objective of this paper is to draw a
precise mathematical connection between a volatility smile and a yield curve. In this paper, we
find particular measures of implied volatility and moneyness of a European swaption, so that the
resulting volatility smile is analogous to the yield curve for zero coupon bonds. The relation is used
to develop arbitrage-free curves in both cases.

At any calendar time t ≥ 0, we define the yield curve as the graph of the continuously com-
pounded yield yt(τ) of a zero coupon bond maturing at some fixed maturity date T ≥ t against
the term τ ≡ T − t. At any calendar time t ≥ 0, we use the term volatility smile whenever some
measure of the time t volatility of the forward swap rate underlying a swaption is graphed against
some measure of the swaption’s time t moneyness at a fixed term and tenor.

For the volatility measure, we use a normal implied variance rate arising from the Bachelier
model, rather than a lognormal implied variance rate arising from the more popular Black model.
We have illustrated our option results with swaptions because the standard quotation convention
in that market uses normal volatilities rather than lognormal volatilities.

In a Bachelier setting, one can consider at least four measures of moneyness:

1. strike rate K ∈ R

2. K − Ft, where Ft ∈ R is the time t forward swap rate at the fixed term and tenor.

3. Ft −K measures the in-the-moneyness of a call while K − Ft measures the in-the-moneyness
of a put.

4. Ft−K
ηt

where ηt is also the annualized implied standard deviation of the terminal forward swap

rate (at term τ and at the moneyness level used to define it).

The analogy between the yield curve and the volatility smile will be most transparent when the
last measure of moneyness is used in conjunction with a normal annualized variance rate to define
the volatility smile. We will show that this last measure of moneyness can be interpreted as the
number of annualized standard deviations that the forward swap rate exceeds the strike rate.

When we draw the analogy between yield curves and volatility smiles, we consider different
models for each. We first consider yields in a very simple model where the short interest rate is
constant over time. The absence of arbitrage forces the yield curve to be flat and constant over
time.

We first consider normal variance rates in a slightly more realistic model where the short interest
rate is stochastic. As a result, the yield curve will not be flat and it will evolve randomly over
calendar time. However, the model in which we first consider normal variance rates is one in which
the instantaneous normal variance rate of each forward swap rate does not vary over time. As a
result, the absence of arbitrage forces the forward swap rate (normal) volatility cube to be constant
over time. When we fix term and tenor of the forward swap rate to specific values, the resulting
volatility smile is flat and constant over calendar time.

1The term smile does not imply that the graph is required to be convex, although it often is.
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To summarize, the yield curve is flat and constant over calendar time in a model of constant
short interest rates. Similarly, the volatility smile is flat and constant over calendar time in a model
of constant short normal variance rates. We next draw an analogy between the yield curve and
the volatility smile when short interest rates are allowed to be stochastic in the first model, and
when short variance rates are allowed to be stochastic in the second model. We posit continuous
dynamics under a martingale measure on yields in the stochastic short interest rate model and we
posit continuous dynamics under a martingale measure on normal implied volatilities (square root
of implied variance rates) in the stochastic short variance rate model. These continuous dynamics
allow us to develop arbitrage-free curves in both cases. When we restrict the continuous dynamics
to parallel shifts, we find that the yield curve and the volatility smile are both quadratic. As a
result, the absence of arbitrage and non-trivial parallel shifts imply non-flat curves which evolve
randomly over time.

An overview of this paper is as follows. The next section considers benchmark models i.e.
models used to define the concept of yield to maturity or implied variance rate. In the bond’s
benchmark model, the yield curve is flat and constant over time, while in the swaption’s benchmark
model, the volatility smile is flat and constant over time. The following section considers market
models, i.e. models which describe how yields and implied volatilities evolve over time under an
appropriately chosen martingale measure. The final section summarizes the paper and suggests
extensions. An appendix contains a technical result concerning the effect of repeatedly applying a
particular differential-integro operator to a function.

2 Benchmark Models

In this section, we describe two different models, each of which have different purposes. A constant
short interest rate model is used to define the yield to maturity of a bond. Similarly, a constant
short normal volatility model is used to define the normal implied volatility of a swaption. In the
next section, we describe two additional models. A market model of stochastic yields is used to
build an arbitrage-free yield curve. Analogously, a market model of stochastic implied volatilities
is used to build an arbitrage-free volatility smile. In this section, we will draw analogies between
the first two models which both have a single parameter. In the next section, we will also draw an
analogy between the second two models, which impose continuous random dynamics on this single
parameter.

2.1 Zero Coupon Bonds and Money Market Account

In this subsection, we state some assumptions which are in force when the objective is to value
bonds. We assume that at least one zero coupon bond of a fixed maturity date T ≥ 0 trades.
When we use the word bond in the sequel, it can always assumed to be a zero-coupon default-free
bond. When we use the word T−bond in the sequel, the T refers to the bond’s maturity date.
Ruling out arbitrage in the T−bond market implies that the value b of the T−bond at any time
t ∈ [0, T ] must be positive. Buying a T−bond with zero or negative price is an obvious arbitrage

3



opportunity. We do not assume that money can be stored costlessly, so a T−bond price above one
does not necessarily imply an arbitrage.

We also assume that there exists a money market account (MMA) which is default-free. Let
rs ∈ R be the possibly random interest rate which the MMA pays at every future date s ≥ 0. An
initial dollar investment in the MMA results in e

∫ t
0 rsds dollars at time t, for all t ≥ 0.

2.1.1 Constant Interest Rate Bond Model

In this subsection, we assume that the short interest rate is correctly known at time 0 to be constant
through time at r ∈ R. Hence, an initial dollar investment in the MMA results in ert dollars at
time t, for all t ≥ 0. Ruling out arbitrage between the MMA and a T− bond implies that the value
b of the T−bond at any time t ∈ [0, T ] must be:

b(r, t;T ) = e−r(T−t), r ∈ R, t ∈ [0, T ], T ≥ 0. (1)

If at some time t ∈ [0, T ] the T− bond is priced at some level at below e−r(T−t), then the arbitrage
involves purchasing the T− bond at time t for at dollars and holding it to its maturity date T . The
arbitrage is completed by shorting e−r(T−t) worth of the MMA at time t and holding it to the bond’s
maturity date2 T . At the strategy entry time t ∈ [0, T ], the arbitrageur pockets e−r(T−t) − at > 0
dollars and at the strategy exit time T , the dollar received from the expiring long bond can be
used to close the short MMA position. If at some time t ∈ [0, T ] the T− bond is instead priced at
some level at above e−r(T−t), then the above positions are reversed so that the arbitrage profit at
the arbitrage entry time t is at − e−r(T−t) > 0 dollars. Assuming zero price impact, both arbitrages
can be scaled up to produce infinite profits.

An easy way to determine whether a given bond is mis-priced by our simple model is to compute
the yield-to-maturity (YTM) of the bond. Given that the time t market price of some T−bond
is known to be some positive number bt(T ) for T fixed, then whether or not interest rates are
stochastic, the yield-to-maturity of this T−bond is defined as the solution to the equation:

bt(T ) = B(yt(τ), τ), t ≥ 0, (2)

where τ ≡ T − t and:
B(r, τ) ≡ b(r, t;T ) = e−rτ , r ∈ R, τ ≥ 0. (3)

The function B is decreasing in its first argument so the solution y of (2) always exists for any
positive b. In fact, from (2) and (3), we have the following well known explicit formula for the yield:

yt(τ) ≡ − ln bt(T )

τ
, t ≥ 0, τ ≥ 0, (4)

where τ ≡ T − t. For any t ≥ 0, the graph of the T−bond’s yield yt(τ) against its term τ ≡ T − t is
called the yield curve at time t. If a market maker quotes any real yield curve yt(τ), τ > 0 directly,
then bond prices for any maturity date can be calculated by:

bt(T ) = e−yt(τ)τ , t ≥ 0, τ ≥ 0. (5)

2This can be rephrased as rolling over short-term borrowing.
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Since the resulting bond prices are positive, they are arbitrage-free3.
We now return to the world of a constant short interest rate. Replacing the market bond price

bt(T ) in the YTM definition (4) with the model bond value b(r, t;T ) = e−r(T−t) implies that the
only yield curve which is free of our model-based arbitrage is:

yt(T ) = r, r ∈ R, t ∈ [0, T ], T ≥ 0. (6)

Thus, our model-based arbitrage-free yield curve is flat at r and stays constant as calendar time
advances. If two yields of different maturity differ on a fixed date, then either the model is correct
and hence there is an arbitrage, or else the model is incorrect, so one needs to at least introduce
deterministic short rates. Similarly, if two observations of the yield of some fixed term, eg. 10
years, differ over two different calendar times, then the model is incorrect, so one needs to at least
introduce deterministic short rates.

Before discussing swaptions, it will be helpul to describe this simple bond math using the
language of ordinary differential equations. In our constant short rate model, the arbitrage-free
bond price b(r, t;T ) is the unique solution to the following terminal value problem:

db(r, t;T )

dt
− rb(r, t;T ) = 0, r ∈ R, t ∈ [0, T ], T ≥ 0, (7)

subject to:
b(r, T ;T ) = 1, r ∈ R, T ≥ 0. (8)

The time homogeneity of the model implies that the pricing time t and the bond’s maturity date
T enter only through their difference τ ≡ T − t. As a result, the function B(r, τ) ≡ b(r, t;T ) is the
unique solution to the following initial value problem:

dB(r, τ)

dτ
= −rB(r, τ), r ∈ R, τ ≥ 0, (9)

subject to:
B(r, 0) = 1, r ∈ R. (10)

The solution to this initial value problem is simply:

B(r, τ) = e−rτ , r ∈ R, τ ≥ 0. (11)

2.2 Payer Swaptions and Forward Starting Annuity

A payer interest rate swap (IRS) forces it owner to pay a fixed interest rate and receive a floating
interest rate until the swap matures at some fixed date U . The fixed interest rate is determined
at the inception of the swap and is chosen so that the payer IRS has zero cost of entry. This fixed
interest rate is called the swap rate.

3Recall that we do not assume that money can be stored costlessly, so implied negative forward rates do not
necessarily imply arbitrage.

5



A forward payer interest rate swap entered into at t forces its owner into a payer IRS at a fixed
future date T ≥ t. The fixed interest rate paid between the fixed dates T and U is determined at
the inception date t and is chosen so that the forward payer IRS has zero cost of entry at t. This
fixed interest rate is called the forward swap rate. To value a forward starting swap after inception,
let At(T, U) be the spot price at time t ∈ [0, T ] of a forward starting annuity whose unit cash flows
begin at T and end at U > T . Let K(T, U) be the fixed rate determined at time 0. Let Ft(T, U)
be the forward swap rate at time t ∈ [0, T ] for an interest rate swap beginning at T and ending at
U > T . In what follows, we fix both T and U so we drop the arguments of A, K, and F . Then the
value at time t of the forward starting swap is At(Ft −K) dollars.

A payer swaption gives its owner the right to enter into a payer IRS that begins on the same
date T that the swaption matures. Let U > T be the maturity date of the underlying swap. The
time span T − t is called the term of the swaption, while the time span U − T is called the tenor of
the swaption.

For a payer swaption, the payer swap received upon exercise forces its owner to pay a fixed rate
determined at inception and receive the floating interest rate. Of course, the owner of the payer
swaption will only exercise at T if the value at T of the floating rate receipts over (T, U) exceeds
the value at T of the fixed rate payments over (T, U). The payoff at T from a payer swaption is
AT (FT − K)+ dollars. If the forward starting annuity (FSA) is treated as a numeraire, then the
payoff in FSA’s is simply (FT −K)+. Hence, a payer swaption is essentially a European call option
written on the forward swap rate.

2.2.1 Constant Normal Volatility Swaption Model

The last subsection assumed that the short interest rate is constant through time. In this subsection,
we instead assume that the short interest rate is stochastic. However, the instantaneous normal
volatility of a forward swap rate will be constant through time. We call this model the Bachelier[2]
swaption pricing model. Under the forward swap measure Qa corresponding to that term and tenor,
the forward swap rate dynamics are assumed to be:

dFt = ηdWt, t ≥ 0, (12)

where the constant η is the instantaneous normal volatility of the forward swap rate. Here, W is a
Qa standard Brownian motion.

Let c denote the arbitrage-free value of a call swaption, measured in FSA’s. Let c(F, t;K,T, η)
be the the arbitrage-free call swaption valuation function in our constant normal volatility model.
This function is the unique solution to the following terminal value problem:

∂

∂t
c(F, t;K,T, η) +

η2

2

∂2

∂F 2
c(F, t;K,T, η) = 0, F ∈ R, t ∈ [0, T ], (13)

subject to:
c(F, T ;K,T, η) = (F −K)+, F ∈ R. (14)

The time homogeneity of the model implies that the pricing time t and the swaption’s maturity
date T enter only through their difference τ ≡ T − t. Similarly, the spatial homogeneity of the
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model implies that the underlying forward rate F and the strike rate K enter only through their
difference x ≡ F −K. As a result, the function C(η, x, τ) ≡ c(F, t;K,T, η) is the unique solution
to the following initial value problem:

∂

∂τ
C(η, x, τ) =

η2

2

∂2

∂x2
C(η, x, τ), x ∈ R, τ ≥ 0, (15)

subject to:
C(η, x, τ) = x+, x ∈ R. (16)

The closed form solution due to Bachelier is:

C(η, x, τ) = ηN ′
(

x

η
√
τ

)
+ xN

(
x

η
√
τ

)
, (17)

where N(z) ≡
z∫
−∞

e−y
2/2

√
2π

dy is the well known standard normal distribution function.

Now allow variance rates to be stochastic and let ct(K,T, U) be the market price in FSA’s of
a K,T, U -payer swaption at time t ∈ [0, T ]. Recall ηt(m),m = x/η denotes the normal implied
volatility of a K,T, U− payer swaption at time t ∈ [0, T ]. Since the swaption maturity date T and
the underlying swap maturity date U are both considered fixed, our notation ηt(m) supresses the
dependence of the implied volatility η on the term τ ≡ T − t and on the tenor U − T . When a call
price of a fixed strike rate K ∈ R, swaption maturity date T , and swap maturity date U is known
at time t, then the normal implied variance rate η2t (m),m = (Ft −K)/η, is defined as the solution
to the equation:

ct(K,T, U) = C

(√
η2t (m), Xt, τ

)
, K ∈ R, U ≥ T ≥ t ≥ 0, (18)

where Xt ≡ Ft − K. Since the function C(η, x, τ) given in (17) is increasing in η2, the inverse
map relating η2 to C exists, but is not explicit. However, if we substitute out the second argument
x = F − K in favor of our moneyness measure m = x/η, then we get a new formula for the call
value:

Ĉ(η,m, τ) = η

[
N ′
(
m√
τ

)
+mN

(
m√
τ

)]
, η > 0,m ∈ R, τ > 0. (19)

Suppose we alternatively define the normal implied variance rate η̂2t (m),m = (Ft − K)/η, as the
solution to the equation:

ct(K,T, U) = Ĉ

(√
η̂2t (m),m, τ

)
, K ∈ R, U ≥ T ≥ t ≥ 0. (20)

Then like yields, there is an explicit formula for this alternative normal implied variance rate:

η̂2t (m) =

 ct(K,T, U)

N ′
(
m√
τ

)
+mN

(
m√
τ

)
2

, t ≥ 0, K ∈ R, U ≥ T ≥ t ≥ 0. (21)
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Replacing the market price ct(K,T, U) in (18) with the Bachelier model value ηN ′
(

Xt
η
√
τ

)
+

XtN
(

Xt
η
√
τ

)
implies that in the Bachelier model, the usual normal implied volatility smile is flat

and constant over time:
η2t (m) = η2, t ≥ 0,m ∈ R. (22)

Hence, the normal implied variance rate is a useful tool for detecting violations of the Bachelier
model. If options at two different moneyness levels differ in terms of their implied variance rates,
then either the Bachelier model dynamics are correct and there is an arbitrage, or else the Bachelier
model dynamics are wrong. If two observations of the implied volatility η of some fixed moneyness,
eg. at-the-money differ over two different calendar times, then the Bachelier model is wrong. If the
Bachelier model dynamics are wrong, then one needs to either add path-dependence, jumps in F ,
or make the short variance rate η2 stochastic by for example allowing it to depend on the forward
swap rate F .

If a market maker quotes a positive implied volatility smile η2t (m),m ∈ R directly, then swaption
prices for any moneyness can be calculated by:

ct(K,T, U) =
√
η2t (m)

[
N ′
(
m√
τ

)
+mN

(
m√
τ

)]
, t ≥ 0, K ∈ R, T ≥ t, (23)

where K = Ft −m
√
η2t (m) and T = t + τ . These prices are free of simple arbitrages that involve

just one strike rate and maturity date. However, they are not necessarily free of arbitrages that
involve more than one strike rate or more than one maturity date. This is a well known drawback
of quoting by implied volatility. A similar problem would arise with quoting yields if one were to
demand that forward interest rates be non-negative.

2.3 Comparing Benchmark Models

It is interesting to compare the Bachelier IVP (15) and (16) governing swaption values with the
bond IVP (9) and (10) governing bond prices. We repeat both initial value problems here:

d

dτ
B(r, τ) = −rB(r, τ), τ ≥ 0, s.t. B(r, 0) = 1, (24)

∂

∂τ
C(η, x, τ) =

η2

2

∂2

∂x2
C(η, x, τ), x ∈ R, τ ≥ 0, s.t. C(η, x, 0) = x+, x ∈ R. (25)

Let interest and variance rates be random. For t ≥ 0, the yield curve {yt(T ), T ≥ t} solves4:

∂

∂τ
B(yt(τ), τ) = −yt(T )B(yt(T ), τ), s.t. B(yT (T ), 0) = 1 τ = T − t ≥ 0, (26)

while for each fixed term τ > 0, the implied normal volatility smile {η2t (m),m = x/η} solves:

∂

∂τ
C(ηt(m), Ft−K, τ) =

η2t (m)

2

∂2

∂x2
C(ηt(m), Ft−K, τ), s.t. C(ηT (m), x, 0) = x+, m, x ∈ R.

(27)

4Notice that the LHS of (26) is now a partial derivative, not a total derivative. The τ in yt(τ) is held fixed.
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We refer to the function ∂2

∂x2
C(η, x, τ) in (27) as the call’s gamma although one should remember

that C is the call’s value in FSA’s, not dollars. On the RHS of (26), the yield is multiplied by the
negative of the bond price, while on the RHS of (27), the implied variance rate is multiplied by
half the call’s gamma. We claim that for each fixed τ > 0, the call’s gamma ∂2

∂x2
C(η, x, τ) plays the

same role in linking the implied normal variance rate η2 to the moneyness measure m = x/η as the
bond’s pricing function B(r, τ) does in relating the bond’s yield to maturity y to the bond’s term
τ . The reason for this claim will become clear in the next section.

For now, we observe that the bond pricing function B(r, τ) is a fundamental solution of the
operator Dτ + rI since (24) implies that:

(Dτ + rI)B(r, τ) = δ(τ), r ∈ R, τ ∈ R, (28)

where δ(τ) is a Dirac delta function in the τ variable. Let Γ(η, x, τ) ≡ ∂2

∂x2
C(η, x, τ) be the func-

tion relating the call swaption’s gamma to normal volatility η, excess x = F − K, and term τ .
Differentiating the Bachelier call formula (17) twice w.r.t. x implies that:

Γ(η, x, τ) =
N ′
(

x
η
√
τ

)
η
√
τ

, η > 0, x ∈ R, τ > 0. (29)

We observe that the call’s gamma function Γ(η, x, τ) is also a fundamental solution, but for a
different operator than B(r, τ). Differentiating the IVP (25) twice w.r.t. x implies that Γ(η, x, τ)

is a fundamental solution of the operator Dτ − η2

2
Dxx since:(

Dτ −
η2

2
Dxx

)
Γ(η, x, τ) = δ(τ)δ(x), η ∈ R, x ∈ R, τ ∈ R, (30)

where δ(x) is a Dirac delta function in the x variable.
The introduction of stochastic interest rates and stochastic volatilities will change the operators

that these fundamental solutions solve. However, when we set the coefficients in these new opera-
tors to yield to maturity and to the normal implied variance rate respectively, then the functions

B(y, τ) = e−yτ and Γ(η, x, τ) =
N ′
(

x
η
√
τ

)
η
√
τ

will also be fundamental solutions for the new problems.
Besides being fundamental solutions, the two functions B and Γ each arise in the Rodrigues

formula and inner product for Laguerre polynomials and for the probabilists’ Hermite polynomials.
The Laguerre polynomials, usually denoted L0, L1, . . . are a polynomial sequence which may be
defined by the following Rodrigues formula:

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
=

1

n!

(
d

dx
− 1

)n
xn, n = 0, 1, . . . (31)

The Laguerre polynomials are orthogonal with respect to the following inner product:

〈f, g〉 =

∫ ∞
0

f(x)g(x)e−x dx. (32)
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Similarly, the “probabilists’ Hermite polynomials” denoted He0,He1, . . . are given by the following
Rodrigues formula:

Hen(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 =

(
x− d

dx

)n
· 1, n = 0, 1, . . . (33)

The probabilists’ Hermite polynomials are orthogonal with respect to the following inner product:∫ ∞
−∞

Hem(x)Hen(x) e−
x2

2 dx =
√

2πn!δnm m,n = 0, 1, . . . . (34)

One can also define generalized Laguerre polynomials and physicists’ Hermite polynomials Hn. In
fact, the generalized Laguerre polynomials are related to the physicists’ Hermite polynomials:

H2n(x) = (−1)n22nn!L(−1/2)
n (x2), n = 0, 1, . . . (35)

H2n+1(x) = (−1)n22n+1n!xL(1/2)
n (x2), n = 0, 1, . . . (36)

Thus, the connection between the benchmark models for bonds and for options is not as surprising
as it may first seem.

3 Market Models

3.1 Market Model for Yields

In common with the subsection with the Bachelier swaption pricing model, we assume that the
short interest rate is stochastic. However, our focus is on pricing bonds, not swaptions. We assume
that the market gives us initial yields of zero coupon bonds at a finite number of maturities. The
objective is to connect the dots, so as to produce a full yield curve.

We assume no arbitrage and that P is the real world probability measure. Let Q be the martin-
gale measure equivalent to P, which arises when the MMA is taken to be the numeraire. Suppose
that under Q, the risk-neutral yield dynamics are given by the solution to the following stochastic
differential equation (SDE):

dyt(τ) = bt(τ)dt+ ωt(τ)dZt, t ≥ 0, (37)

where Z is a Q standard Brownian motion. We refer to b(τ) as the risk-neutral drift process for the
τ−yield, while we refer to ωt(τ) as the τ−yield’s volatility process. Importantly, we do not need to
specify the Q dynamics of these processes when our only goal is to produce an entire arbitrage-free
yield curve from a few given market quotes.

Let bt(T ) be the market price of a bond. By the definition of yield to maturity yt(τ):

bt(T ) = B(yt(τ), τ), t ≥ 0, τ ≥ 0, (38)

where the bond pricing function is defined as:

B(y, τ) = e−yτ , y ∈ R, τ ≥ 0. (39)
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The absence of arbitrage implies that at each time t, each bond’s price grows in expectation at
the short rate rt. As a result, we obtain the following no arbitrage constraint on yields:

∂

∂τ
B(yt(τ), τ) =

ω2
t (τ)

2

∂2

∂y2
B(yt(τ), τ) + bt(τ)

∂

∂y
B(yt(τ), τ)− rtB(yt(τ), τ), τ ≥ 0. (40)

From (39), we have the following three greeks:

1. ∂
∂τ
B(yt(τ), τ) = −yt(τ)B(yt(τ), τ)

2. ∂
∂y
B(yt(τ), τ) = −τB(yt(τ), τ)

3. ∂2

∂y2
B(yt(τ), τ) = τ 2B(yt(τ), τ).

Substituting the 3 greeks in (40) and dividing out −B(yt(τ), τ) implies:

yt(τ) = rt + bt(τ)τ − ω2
t (τ)

2
τ 2, τ ≥ 0. (41)

A specification of the risk-neutral drift and diffusion processes governing yields determines an
arbitrage-free yield curve. For example, suppose that the risk-neutral drift and diffusion processes
are both independent of τ , i.e.

bt(τ) = bt, ωt(τ) = ωt, t ≥ 0, τ ≥ 0. (42)

Then the SDE (37) implies that the yield curve moves continuously and only by parallel shifts.
Substituting (42) in (41) implies that the resulting yield curve is quadratic in τ opening down5 .

yt(τ) = rt + btτ −
ω2
t

2
τ 2, τ ≥ 0. (43)

Given the market yields of three bonds at time t, the numerical values of the processes rt, bt
and ωt can be determined. Note that the variation over time of b and ω2 is entirely consistent
with the model. This consistency is in stark contrast to parameter variation in short rate models.
Unpredictable parameter variation over time in short rate models requires an alternative dynamical
specification, which will in general lead to a different functional form of the yield curve. While
market models enjoy this advantage for the problem of yield curve construction, they can only
be used to value bonds. In contrast, a short rate model can be used to value bonds and other
derivatives consistently.

If more than three yields are observed, then one can either do a least squares fit of (43) or re-
parametrize (41 appropriately. There are various specifications of the dependence of the processes
bt and ωt on τ which either lead to more realistic behavior of yields eg. mean reversion and/or lead
to closed form solutions for the yield curve.

5It can be shown more generally that when a yield curve moves only by parallel shifts, then whether its risk-neutral
dynamics are continuous or not, the absence of arbitrage forces the yield curve to be concave.
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3.2 Market Model for Implied Volatilities

In common with the last subsection, we assume that the short interest rate is stochastic. However,
our focus is on pricing swaptions, not bonds. At some given term and tenor, we assume that the
market gives us implied normal volatilities of swaptions at a finite number of strike rates. The
objective is to connect the dots so as to produce a full volatility smile.

We assume no arbitrage and that P is the real world probability measure. Let Qa be the
martingale measure equivalent to P, which arises when the forward starting annuity is taken to be
the numeraire.

Suppose that under Qa, the forward swap rate process F solves the following stochastic differ-
ential equation (SDE):

dFt =
√
VtdWt, t ≥ 0, (44)

where W is a Qa standard Brownian motion. The stochastic process V is the instantaneous normal
variance rate of F . In contrast to classical stochastic volatility models such as SABR, we do not
directly specify the dynamics of this process. Let ηt(m) be the normal implied volatility at the same
fixed term and tenor as the forward starting annuity. The argument m is called moneyness and
is given by the fraction Ft−K

ηt(m)
. Since η2 is the annualized variance rate, η2τ is the non-annualized

variance of the terminal forward swap rate. Its square root η
√
τ is the standard deviation of the

terminal forward swap rate. If we drop the
√
τ , then η is the annualized standard deviation of the

terminal forward swap rate, i.e. what this standard deviation would be if the term were one year.
Hence, the moneyness measure m is the number of annualized standard deviations ηt(m) that the
underlying forward rate F exceeds the strike rate K, as indicated previously.

To compensate for the absence of a specification of the instantaneous normal variance rate V ,
we suppose that under Qa, the implied volatility process ηt(m) is the solution to the following
stochastic differential equation (SDE)

dηt(m) = µt(m)dt+ ωt(m)dZt, m ∈ R, t ≥ 0, (45)

where Z is a Qa standard Brownian motion. We refer to µt(m) as the FSA measure drift process
and we refer to ωt(m) as the volvol process. Let ρt ∈ [−1, 1] be the bounded stochastic process
governing the correlation between the two standard Brownian motions W and Z at time t. The
processes F and ρ are scalar-valued stochastic processes, while the processes ηt(m), µt(m) and
ωt(m) are function-valued stochastic processes.

Recall that the swaption’s value depends on Ft and K only though the excess Xt = Ft − K.
Subtracting K from F in (44) implies:

dXt =
√
VtdWt, t ≥ 0. (46)

The absence of arbitrage implies that at each time t, each swaption’s price is a local martingale.
As a result, we obtain the following no arbitrage constraint on implied volatilities ηt(m):

∂

∂τ
C(ηt(m), Xt, τ) =

[
ω2
t (m)

2

∂2

∂η2
+ ρtωt(m)

√
Vt

∂2

∂η∂x
+
Vt
2

∂2

∂x2
+ ut(m)

∂

∂η

]
C(ηt(m), Xt, τ),

(47)
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for m ∈ R.
For the Bachelier call formula, vega and gamma are related by:

∂

∂η
C(ηt(m), x, τ) = ηt(m)τΓ(ηt(m), x, τ), m ∈ R, x ∈ R, τ > 0. (48)

Substituting (48) in (49) implies that:

∂

∂τ
C(ηt(m), Xt, τ) =

[
ω2
t (m)

2

∂2

∂η2
+ ρtωt(m)

√
Vt

∂2

∂η∂x
+

1

2
[Vt + 2ηt(m)µt(m)τ ]

∂2

∂x2

]
C(ηt(m), Xt, τ),

(49)
for m ∈ R. The coefficient of ∂2

∂x2
C(ηt(m), Xt, τ) is Vt + 2ηt(m)µt(m)τ . Notice that Vt is the short

term ATM implied variance, 2ηt(m) is the derivative of the variance rate η2t (m) w.r.t. the normal
volatility ηt(m), and µt(m)τ is the expected change in the volatility over a period of length τ . Hence
one can interpret Vt+2ηt(0)µt(0)τ as the ATM implied variance rate at term τ . We will see it plays
the same role as the short rate in a yield curve construction.

The normal implied variance rate η2(m) at moneyness m ∈ R has the property that it balances
the maturity derivative6 with the gamma trading profits, i.e.:

∂

∂τ
C(ηt(m), x, τ) =

η2t (m)

2
Γ(ηt(m), x, τ), m ∈ R, x ∈ R, τ > 0. (50)

The appendix proves that for any function f : R 7→ R and for n = 0, 1, . . .:

(DηD
−1
x )n

f
(
x
η

)
η

=

(
−x
η

)n f (x
η

)
η

, η > 0, x ∈ R. (51)

Hence when f(z) = N ′(z/
√
τ)√

τ
:

f
(
x
η

)
η

=
N ′
(

x
η
√
τ

)
η
√
τ

= Γ(η, x, τ). (52)

As a result:
(DηD

−1
x )nΓ(η, x, τ) = (−m)nΓ(η, x, τ), η > 0, x ∈ R, τ > 0, (53)

where recall that m ≡ x/
√
η. This is analogous to the obvious statement that for n = 0, 1, . . .:

Dn
yB(y, τ) = (−τ)nB(y, τ), y ∈ R, τ ≥ 0, (54)

where B(y, τ) = e−yτ . Equations (53) and (54) are the basis of our statement that the function Γ
relating swaption gamma to η and x at each τ > 0 has the same role in generating the volatility
smile, η2 vs. m = x/η, as the function B relating bond price to y and τ has in generating a yield
curve, y vs. τ .

6If the dependence of η on τ were made explicit, then the LHS of (50) would hold constant the τ ′s inside
η(x/
√
τ , τ).
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Evaluating (53) at n = 1 and n = 2 leads to the following two greeks:

∂2

∂η∂x
C(η, x, τ) = DηD

−1
x Γ(η, x, τ) = −mΓ(η, x, τ). (55)

∂2

∂η2
C(η, x, τ) = (DηD

−1
x )2Γ(η, x, τ) = m2Γ(η, x, τ). (56)

Substituting the three greek relations (50), (55), and (56) in the no arbitrage condition (49) and
dividing out Γ(η, x, τ)/2 implies:

η2t (m) = [Vt + 2ηt(m)µt(m)τ ]− ρtωt(m)
√
Vtm+

ω2
t (m)

2
m2, m ∈ R. (57)

A specification of the drift process µt(m) and of the volvol process ωt(m) governing normal
implied volatilities determines an arbitrage-free implied variance rate curve. For example, suppose
that the drift and vol-vol processes are both independent of m, i.e.

µt(m) = µt, ωt(m) = ωt, t ≥ 0,m ∈ R. (58)

Then from (45), the normal implied volatility curve η(m) moves continuously and only by parallel
shifts7. Suppose furthermore that µt = 0. Substituting µt = 0 and (58) in (57) implies that the
resulting implied variance rate curve is quadratic in m opening up:

η2t (m) = Vt − ρtωt
√
Vtm+

ω2
t

2
m2, m ∈ R. (59)

If µt(m) is not zero but is independent of m as in (58), then (59) becomes:

η2t (m) = [Vt + 2ηt(m)µtτ ]− ρtωt
√
Vtm+

ω2
t

2
m2, m ∈ R. (60)

It is straightforward to use the quadratic root formula in (60) to determine the dependence of ηt(m)
on m at term τ . In theory, the market quote of a short term ATM implied vol determines Vt.
As in the case of yields, the market quotes of three co-terminal implied volatilities can be used to
determine the numerical values of µt, ρt, and ωt.

3.3 Comparing Market Models

It is interesting to compare the arbitrage-free yield curve that arises when all yields are driven by
a continuous single factor:

yt(τ) = rt + bt(τ)τ − ω2
t (τ)

2
τ 2, τ ≥ 0, (61)

7Note that by Itô’s formula, the volatility smile η2(m) will not move by parallel shifts. Also it can be shown more
generally that when an implied volatility curve η(m)

√
τ is flat and moves only by unpredictable parallel shifts, then

whether its risk-neutral dynamics are continuous or not, there is arbitrage.

14



with the arbitrage-free volatility smile that arises when all implied volatilities are driven by a
continuous single factor:

η2t (m) = [Vt + 2ηt(m)µt(m)τ ]− ρtωt(m)
√
Vtm+

ω2
t (m)

2
m2, m ∈ R. (62)

Both curves have three components. Setting τ = 0 in (61) gives the short rate, which is the first
component in (61). Analogously, setting m = 0 in (62) gives Vt + 2ηt(0)µt(0)τ which is the ATM
implied variance rate at term τ . The last component in both expressions is due to stochastic
variation in the yield or the volatility. The middle component of the yield curve is due to the drift
of yields, while the middle component of the volatility smile is due to the quadratic covariation
of implied volatility and the forward swap rate. If we change measure away from Q to a measure
under which yields are driftless, then the drift in yields under Q would all be due to the covariation
of yields with the Radon Nikodym derivative. As a result, the middle component in both curves
can be seen as due to quadratic covariation.

It is also interesting to compare the quadratic yield curve in the last section:

yt(τ) = rt + btτ −
ω2
t

2
τ 2, τ ≥ 0, (63)

with the quadratic volatility smile in (59):

η2t (m) = Vt − ρtωt
√
Vtm+

ω2
t

2
m2, m ∈ R. (64)

The reason that the yield curve opens down while the volatility smile opens up is due to the fact
that the relation between bond prices and yields is opposite in sign to the relation between swaption
prices and implied variances.

4 Summary and Extensions

In this paper, we found particular measures of implied volatility and moneyness of a European
swaption, so that the resulting volatility smile is analogous to the yield curve for zero coupon bonds.
The relation was used to develop arbitrage-free curves in both cases. There are various avenues for
future research. One can see if the long maturity behavior of yields discovered by Dybvig, Ingersoll,
and Ross[7] has its counterpart for normal implied volatilities at extreme strikes. One can try to
see if the analogous curve constructions are available when yields and implied volatilities can jump.
One can also explore the similarity of the arbitrage if flat curves move only by unpredictable parallel
shifts. One can redo the analysis with Black implied volatilities or even implied volatilities from
other models. One can bring in other instruments and associated market rates such as coupon bonds
and yields or corporate bonds and credit spreads. Finally, one can explore the role of fundamental
solutions in the analogy. In the interests of brevity, these extensions are best left for future research.
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Appendix

In this appendix, we provide a short proof that for any sufficiently differentiable function f : R 7→ R
and for n = 0, 1, . . .:

(DsD
−1
x )n

f
(
x
s

)
s

=
(
−x
s

)n f (x
s

)
s

, s > 0, x ∈ R. (65)

We first show the result holds for n = 1, i.e.

DsD
−1
x

f
(
x
s

)
s

=
(
−x
s

) f (x
s

)
s

, s > 0, x ∈ R. (66)

The LHS is:

DsD
−1
x

f
(
x
s

)
s

= Ds

x∫
−∞

f
(
y
s

)
s

dy = Ds

x
s∫

−∞

f(z)dz =
−x
s
f
(
x
s

)
s

, (67)

by the fundamental theorem of calculus and the chain rule. Thus, the result (66) does hold for any
function f of x

s
, when the function f is divided by the scale factor s > 0. Notice from (67) that the

effect of applying the operator DsD
−1
x to the fraction f

s
, where the numerator f just depends on x

s

is another fraction g
s
, where the numerator g(z) ≡ −zf(z) just depends on z = x

s
. As a result, one

can apply the operator DsD
−1
x to the fraction g

s
to obtain:

(
DsD

−1
x

)2 f (xs)
s

=
−x
s
g
(
x
s

)
s

=

(
−x
s

)2
f
(
x
s

)
s

. (68)

Repeating this exercise n− 2 times leads to the desired result (65). Re-arranging (65) implies that
for any sufficiently differentiable function f : R 7→ R and for n = 0, 1, . . .:

snDn
sD
−n
x

f
(
x
s

)
s

= (−x)n
f
(
x
s

)
s

, s > 0, x ∈ R. Q.E.D. (69)
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