
Chapter 8

Limit theorems in discrete stochastic geometry

Joseph Yukich

AbstractWe survey two general methods for establishing limit theorems for func-

tionals in discrete stochastic geometry. The functionals are linear statistics with the

general representation ∑x∈X ξ (x,X ), where X is finite and where the interactions
of x with respect to X , given by ξ (x,X ), are spatially correlated. We focus on sub-
additive methods and stabilization methods as a way to obtain weak laws of large

numbers, variance asymptotics, and central limit theorems for normalized and re-

scaled versions of ∑
n
i=1 ξ (ηi,{η j}n

j=1), where η j, j ≥ 1, are i.i.d. random variables.
The general theory is applied to deduce the limit theory for functionals arising in

Euclidean combinatorial optimization, convex hulls of i.i.d. samples, random se-

quential packing, and dimension estimation.

8.1 Introduction

This overview surveys two general methods for establishing limit theorems, includ-

ing weak laws of large numbers, variance asymptotics, and central limit theorems,

for functionals of large random geometric structures. By geometric structures, we

mean for example networks arising in computational geometry, graphs arising in Eu-

clidean optimization problems, models for random sequential packing, germ-grain

models, and the convex hull of high density point sets. Such diverse structures share

only the common feature that they are defined in terms of random points belonging

to Euclidean spaceRd . The points are often the realization of i.i.d. random variables,

but they could also be the realization of Poisson point processes or even Gibbs point

processes. There is scope here for generalization to functionals of point processes

in more general spaces, including manifolds and general metric spaces, but for ease

of exposition we shall usually restrict attention to point processes in Rd . As such,
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this introductory overview makes few demands involving prior familiarity with the

literature.

Our goals are to provide an accessible survey of asymptotic methods involv-

ing (i) subadditivity and (ii) stabilization and to illustrate the applicability of these

methods to problems in discrete stochastic geometry. The treatment of subadditivity

parallels that in [524].

8.1.1 Functionals of interest

Functionals of geometric structures are often formulated as linear statistics on finite

point sets X of Rd , that is to say consist of sums represented as

H(X ) := Hξ (X ) := ∑
x∈X

ξ (x,X ), (8.1)

where the function ξ , defined on all pairs (x,X ), x ∈ X , represents the interaction

of x with respect to input X .

The focus of this chapter is to develop the large n limit theory for the normalized

sums

n−1Hξ ({ηi}n
i=1), (8.2)

where ηi, i ≥ 1, are i.i.d. with values in [0,1]d . We seek mean and variance asymp-

totics for (8.2) as well as central limit theorems for n−1/2(Hξ ({ηi}n
i=1)−EHξ ({ηi}n

i=1)),
as n→∞. In nearly all problems of interest, the values of ξ (x,X ) and ξ (y,X ), x 6= y,

are not unrelated but, loosely speaking, become more related as the Euclidean dis-

tance ‖x − y‖ becomes smaller. This ‘spatial dependency’ is the chief source of

difficulty when developing the limit theory for Hξ on random point sets.

Typical questions motivating this survey, which may be framed in terms of the

linear statistics (8.1), include the following:

1. Given i.i.d. points η1, ....,ηn in the unit cube [0,1]d , what is the asymptotic length

of the shortest tour through η1, ....,ηn? To see that this question fits into the

framework of (8.1), it suffices to let ξ (x,X ) be one half the sum of the lengths of

edges incident to x in the shortest tour on X . Hξ (X ) is the length of the shortest

tour through X .

2. Given i.i.d. points η1, ....ηn in the unit volume d-dimensional ball, what is the

asymptotic distribution of the number of k-dimensional faces, k ∈ {0,1, ...,d−1},
in the random polytope given by the convex hull of η1, ....,ηn? To fit this question

into the framework of (8.1), we let ξk(x,X ) be zero if x is not a vertex in the

convex hull of X and otherwise we let it be the product of (k + 1)−1 and the

number of k-dimensional faces containing x. Hξk(X ) is the number of k-faces in

the convex hull of X .
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3. Open balls B1, ...,Bn of volume n−1 arrive sequentially and uniformly at random

in [0,1]d . The first ball B1 is packed, and recursively for i = 2,3, ..., the i-th ball

Bi is packed iff Bi does not overlap any ball in B1, ...,Bi−1 which has already been

packed. If not packed, the i-th ball is discarded. The process continues until no

more balls can be packed. As n → ∞, what is the asymptotic distribution of the

number of balls which are packed in [0,1]d? To fit this into the set-up of (8.1),

we let ξ (x,X ) be equal to one or zero depending on whether the ball with center

at x ∈ X is accepted or not. Hξ (X ) is the total number of accepted balls.

When X is the realization of a growing point set of random variables, the large

scale asymptotic analysis of the sums (8.1) is sometimes handled by M-dependent

methods, ergodic theory, or mixing methods; see for example Chapter 10. However,

these classical methods, when applicable, may not give explicit asymptotics in terms

of the underlying interaction and point densities, they may not yield second order

results, or they may not easily yield rates of convergence. Our goal is to provide an

abridged treatment of two alternate methods suited to the asymptotic theory of the

sums (8.2), namely to discuss (i) subadditivity and stabilization.

Subadditive methods lean heavily on the self-similarity of the unit cube, but to

obtain distributional results, variance asymptotics, and explicit limiting constants

in laws of large numbers, one needs tools going beyond subadditivity. When the

spatial dependency may be localized, in a sense to be made precise, then this local-

ization yields distributional and second order results, and it also shows that the large

scale macroscopic behaviour of Hξ on random point sets, for example laws of large

numbers and central limit theorems, is governed by the local interactions involving

ξ .

The subadditive approach, described in detail in the monographs [482], [524],

yields a.s. laws of large numbers for problems in Euclidean combinatorial optimiza-

tion, including the length of minimal spanning trees, minimal matchings, and short-

est tours on random point sets. Formal definitions of these archetypical problems

are given below. Subadditive methods also yield the a.s. limit theory of problems

in computational geometry, including the total edge length of nearest neighbour

graphs, the Voronoi and Delaunay graphs, the sphere of influence graph, as well as

graphs graphs arising in minimal triangulations and the k-means problem. The ap-

proach based on stabilization, originating in Penrose and Yukich [398] and further

developed in [57, 395, 396, 400, 402], is useful in proving laws of large numbers,

central limit theorems, and variance asymptotics for many of these functionals; as

such it provides closed form expressions for the limiting constants arising in the

mean and variance asymptotics. This approach has been used to study linear statis-

tics arising in random packing [400], convex hulls [459], ballistic deposition models

[57, 400], quantization [460, 525], loss networks [460], high-dimensional spacings

[56], distributed inference in random networks [12], and geometric graphs in Eu-

clidean combinatorial optimization [398, 399].
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8.1.2 Examples

Letting input X := {x1, ...,xn} be a finite point set in Rd , functionals and graphs of

interest include:

1. Traveling salesman functional; TSP. A closed tour on X or closed Hamiltonian

tour is a closed path traversing each vertex in X exactly once. Let TSP(X ) be the

length of the shortest closed tour T on X . Thus

TSP(X ) :=min
T

∑
e∈T

|e|, (8.3)

where the minimum is over all tours T on X and where |e| denotes the Euclidean

edge length of the edge e. Thus,

TSP(X ) :=min
σ

{

‖xσ(n)− xσ(1)‖+
n−1

∑
i=1

‖xσ(i)− xσ(i+1)‖
}

,

where the minimum is taken over all permutations σ of the integers 1,2, ...,n and

where ‖ · ‖ denotes the Euclidean norm.

2. Minimum spanning tree; MST. Let MST(X ) be the length of the shortest

spanning tree on X , namely

MST(X ) :=min
T

∑
e∈T

|e|, (8.4)

where the minimum is over all spanning trees T on X .

3. Minimal matching; MM. The minimal matching on X has length given by

MM(X ) :=min
σ

n/2

∑
i=1

‖xσ(2i−1)− xσ(2i)‖, (8.5)

where the minimum is over all permutations of the integers 1,2, ...,n. If n has

odd parity, then the minimal matching on X is the minimum of the minimal

matchings on the n distinct subsets of X of size n−1.

4. k-nearest neighbours graph. Let k ∈ N. The k-nearest neighbours (undirected)

graph on X , here denoted GN(k,X ), is the graph with vertex set X obtained

by including {x,y} as an edge whenever y is one of the k nearest neighbours

of x and/or x is one of the k nearest neighbours of y. The k-nearest neighbours

(directed) graph on X , denoted
−→
G N(k,X ), is the graph with vertex set X ob-

tained by placing an edge between each point and its k nearest neighbours. Let

NN(k,X ) denote the total edge length of GN(k,X ), i.e.,

NN(k,X ) := ∑
e∈GN(k,X )

|e|, (8.6)
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with a similar definition for the total edge length of
−→
G N(k,X ).

5. Steiner minimal spanning tree. Consider the problem of finding the graph of

shortest length which connects the vertices of X . Such a graph is a tree, known

as the Steiner minimal spanning tree, and it may include vertices other than those

in X . If not, the graph coincides with the minimal spanning tree graph. The total

edge length of the Steiner minimal spanning tree on X is

ST(X ) := min
S

∑
e∈S

|e|, (8.7)

where the minimum ranges over all connected graphs S on X .

6. Minimal semi-matching. A semi-matching on X is a graph in which all ver-

tices have degree 2, with the understanding that an isolated edge between two

vertices represents two copies of that edge. The graph thus contains tours with

an odd number of edges as well as isolated edges. The minimal semi-matching

functional on X is

SM(X ) := min
SM

∑
e∈SM

|e|, (8.8)

where the minimum ranges over all semi-matchings SM on X .

7. k-TSP functional. Fix k ∈ N. Let C be a collection of k sub-tours on points of

X , each sub-tour containing a distinguished shared vertex x0 and such that each

x ∈ X belongs to exactly one sub-tour. T (k;C,X ) is the sum of the combined

lengths of the k sub-tours in C. The k-TSP functional is the infimum

T (k;X ) := inf
C

T (k;C,X ). (8.9)

Power-weighted edge versions of these functionals are found in [524]. For ex-

ample, MST (p)(X ) is the length of the shortest spanning tree on X with pth power

weighted edges, namely

MST(p)(X ) := min
T

∑
e∈T

|e|p, (8.10)

where the minimum is over all spanning trees T on X .

To allow for power weighted edges, we henceforth let the interaction ξ depend

on a parameter p ∈ (0,∞) and we will write ξ (·, ·) := ξp(·, ·). We henceforth work

in this context, but to lighten the notation we shall suppress mention of p.
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8.2 Subadditivity

This section gives an introductory account of asymptotic methods based on the sub-

additivity of the functionals Hξ defined at (8.1). It culminates with a general um-

brella theorem providing an a.s. law of large numbers for Hξ .

8.2.1 Subadditive functionals

Let xn ∈ R, n ≥ 1, satisfy the ‘subadditive inequality’

xm+n ≤ xm+ xn for all m, n ∈ N. (8.11)

Subadditive sequences are nearly additive in the sense that they satisfy the subad-

ditive limit theorem, namely limn→∞ xn/n = α where α := inf{xm/m : m ≥ 1} ∈
[−∞,∞). This classic result, proved in Hille [245], may be viewed as a limit result

about subadditive functions indexed by intervals.

For certain choices of the interaction ξ , the functionals Hξ defined at (8.1) satisfy

geometric subadditivity over rectangles and, as we will see, consequently satisfy a

subadditive limit theorem analogous to the classic one just mentioned.

Let R :=R(d) denote the collection of d-dimensional rectangles in Rd . Recall

that ξ (·, ·) := ξp(·, ·) depends on the parameter p. Write Hξ (X ,R) for Hξ (X ∩R),

R ∈R. Say that Hξ is geometrically subadditive, or simply subadditive, if there is a

constant c1 := c1(p)< ∞ such that for all R ∈ R, all partitions of R into rectangles

R1 and R2, and all finite point sets X we have

Hξ (X ,R)≤ Hξ (X ,R1)+Hξ (X ,R2)+ c1(diam(R))p. (8.12)

Unlike scalar subadditivity (8.11), the relation (8.12) carries an error term.

Classic optimization problems as well as certain functionals of Euclidean graphs,

satisfy geometric subadditivity (8.12). For example, the length of the minimal span-

ning tree defined at (8.4) satisfies (8.12) when p is set to 1, which may be seen

as follows. Put MST(X ,R) to be the length of the minimal spanning tree on X ∩R.

Given a finite set X and a rectangle R := R1∪R2, let Ti denote the minimal spanning

tree on X ∩Ri, 1 ≤ i ≤ 2. Tie together the two spanning trees T1 and T2 with an

edge having a length bounded by the sum of the diameters of the rectangles R1 and

R2. Performing this operation generates a feasible spanning tree on X at a total cost

bounded by MST(X ,R1) + MST(X ,R2) + diam(R). Putting p = 1, (8.12) follows

by minimality.

Exercise 8.1. Using edge deletion and insertion techniques, show that the TSP

functional(8.3), minimal matching functional (8.5), and nearest neighbour function-

als (8.6) satisfy geometric subadditivity (8.12) with p= 1.
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8.2.2 Superadditive functionals

If geometric functionals Hξ were to simultaneously satisfy a superadditive relation

analogous to (8.12), then the resulting ‘near additivity’ of Hξ would lead directly

to laws of large numbers. This is too much to expect. On the other hand, many

geometric functionals Hξ (·,R) admit a ‘dual’ version - one which essentially treats

the boundary of the rectangle R as a single point, that is to say edges on the boundary

∂R have zero length or ‘zero cost’. This boundary version, introduced in [415] and

used in [416] and [417] and here denoted H
ξ
B (·,R), closely approximates Hξ (·,R)

in a sense to be made precise (see (8.18) below) and is superadditive without any

error term. More exactly, the boundary version H
ξ
B (·,R) satisfies

H
ξ
B (X ,R)≥ H

ξ
B (X ∩R1,R1)+H

ξ
B (X ∩R2,R2). (8.13)

Boundary functionals are defined on a case-by-case basis. For example, the

boundary minimal spanning tree functional is defined as follows. For all rectangles

R ∈R and finite sets X ⊂ R put

MSTB(X ,R) := min

(

MST(X ,R), inf∑
i

MST(Xi ∪{ai})
)

,

where the infimum ranges over all partitions (Xi)i≥1 ofX and all sequences of points

(ai)i≥1 belonging to ∂R. When MSTB(X ,R) 6= MST(X ,R) the graph realizing the

boundary functional MSTB(X ,R) may be thought of as a collection of small trees

connected via the boundary ∂R into a single large tree, where the connections on

∂R incur no cost. See Figure 8.1. It is a simple matter to see that the boundary

MST functional satisfies subadditivity (8.12) with p = 1 and is also superadditive

(8.13). Later we will see that the boundary MST functional closely approximates

the standard MST functional.

Fig. 8.1 The boundary MST graph; edges on boundary have zero cost.
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Exercise 8.2. Show that the TSP (8.3), minimal matching (8.5), and nearest neigh-

bour functionals (8.6) have boundary versions which are superadditive (8.13).

8.2.3 Subadditive and superadditive Euclidean functionals

Recall that ξ (·, ·) := ξp(·, ·). The following conditions endow the functional Hξ (·, ·)
with a Euclidean structure:

Hξ (X ,R) = Hξ (X + y,R+ y) (8.14)

for all y ∈ Rd , R ∈R, X ⊂ R and

Hξ (αX ,αR) = α
pHξ (X ,R) (8.15)

for all α > 0, R ∈ R and X ⊂ R. By αB we understand the set {αx, x ∈ B} and by

y+X we mean {y+x : x ∈X}. Conditions (8.14) and (8.15) express the translation

invariance and homogeneity of order p of Hξ , respectively. Homogeneity (8.15) is

satisfied whenever the interaction ξ is itself homogeneous of order p, that is to say

whenever

ξ (αx,αX ) = α
pξ (x,X ), α > 0. (8.16)

Functionals satisfying translation invariance and homogeneity of order 1 include

the total edge length of graphs, including those defined at (8.3)-(8.9).

Exercise 8.3. Show that the TSP functional (8.3), MST functional (8.4), and mini-

mal matching functional (8.5) are homogeneous of order 1 and are thus subadditive

Euclidean functionals.

Definition 8.1. Let Hξ ( /0,R) = 0 for all R ∈ R and suppose Hξ satisfies geomet-

ric subadditivity (8.12), translation invariance (8.14), and homogeneity of order p

(8.15). Then Hξ is a subadditive Euclidean functional.

If a functional Hξ (X ,R), (X ,R) ∈ N ×R, is superadditive over rectangles and

has a Euclidean structure over N ×R, where N is the collection of locally finite

point sets in Rd , then we say that Hξ is a superadditive Euclidean functional, for-

mally defined as follows:

Definition 8.2. Let Hξ ( /0,R) = 0 for all R ∈ R and suppose Hξ satisfies (8.14) and

(8.15). If Hξ satisfies

Hξ (X ,R)≥ Hξ (X ∩R1,R1)+Hξ (X ∩R2,R2), (8.17)

whenever R ∈R is partitioned into rectangles R1 and R2 then Hξ is a superadditive

Euclidean functional.

It may be shown that the functionals TSP, MST and MM are subadditive Eu-

clidean functionals and that they admit dual boundary versions which are superad-

ditive Euclidean functionals; see Chapter 2 of [524].
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Pointwise close property

To be useful in establishing asymptotics, dual boundary functionals must closely

approximate the corresponding functional. The following closeness condition is suf-

ficient for these purposes. Recall that we suppress the dependence of ξ on p, writing

ξ (·, ·) := ξp(·, ·).

Definition 8.3. Say that Hξ := Hξp and the boundary version H
ξ
B := H

ξp

B , p∈ (0,∞),
are pointwise close if for all finite subsets X ⊂ [0,1]d we have

|Hξ (X , [0,1]d)−H
ξ
B (X , [0,1]d)|= o

(

(card(X ))(d−p)/d
)

. (8.18)

The TSP, MST, MM and nearest neighbour functionals all admit respective

boundary versions which are pointwise close in the sense of (8.18); see Lemma 3.7

of [524]. See [524] for description of other functionals having boundary versions

which are pointwise close in the sense of (8.18).

Growth bounds

Iteration of geometric subadditivity (8.12) leads to growth bounds on subadditive

Euclidean functionals Hξ , namely for all p∈ (0,d) there is a constant c2 := c2(ξp,d)
such that for all rectangles R ∈R and all X ⊂ R, X ∈N , we have

Hξ (X ,R)≤ c2(diam(R))p(cardX )(d−p)/d . (8.19)

Smooth of order p

Subadditivity (8.12) and growth bounds (8.19) by themselves do not provide

enough structure to yield the limit theory for Euclidean functionals; one also needs

to control the oscillations of these functionals as points are added or deleted.

Some functionals, such as TSP, necessarily increase with increasing argument size,

whereas others, such as MST, do not have this property. A useful continuity condi-

tion goes as follows.

Definition 8.4. A Euclidean functional Hξ := Hξp , p ∈ (0,∞), is smooth of order p

if there is a finite constant c3 := c3(ξp,d) such that for all finite sets X1,X2 ⊂ [0,1]d

we have

|Hξ (X1 ∪X2)−Hξ (X1)| ≤ c3(card(X2))
(d−p)/d . (8.20)

8.2.4 Examples of functionals satisfying smoothness (8.20)

1. Let TSP be as in (8.3). For all finite sets X1 and X2 ⊂ [0,1]d we have
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TSP(X1)≤ TSP(X1 ∪X2)≤ TSP(X1)+TSP(X2)+ cdiam([0,1]d),

where the first inequality follows by monotonicity and the second by subadditiv-

ity (8.12). By (8.19) we have TSP(X2)≤ c2

√
d(cardX2)

(d−1)/d and since clearly

cdiam([0,1]d) ≤ cd1/2(card(X2)
(d−1)/d , it follows that the TSP is smooth of or-

der 1.

2. Let MST be as in (8.4). Subadditivity (8.12) and the growth bounds (8.19) imply

that for all finite sets X1,X2 ⊂ [0,1]d we have MST(X1 ∪X2) ≤ MST(X1) +
(c1

√
d + c2

√
d(cardX2)

(d−1)/d ≤ MST(X1)+ c(cardX2)
(d−1)/d . It follows that

the MST is smooth of order 1 once we show the reverse inequality

MST(X1 ∪X2)≥ MST(X1)− c(cardX2)
(d−1)/d . (8.21)

To show (8.21) let T denote the graph of the minimal spanning tree on X1 ∪X2.

Remove the edges in T which contain a vertex in X2. Since each vertex has

bounded degree, say D, this generates a subgraph T1 ⊂ T which has at most

D · cardX2 components. Choose one vertex from each component and form the

minimal spanning tree T2 on these vertices. By the growth bounds (8.19), the

edge length of T2 is bounded by c(D · cardX2)
(d−1)/d . Since the union of the

trees T1 and T2 is a feasible spanning tree on X1, it follows that

MST(X1)≤ ∑
e∈T1∪T2

|e| ≤ MST(X1 ∪X2)+ c(D · cardX2)
(d−1)/d .

Thus smoothness (8.20) holds for the MST functional.

It may be shown that a modification of the Steiner functional (8.7) is smooth of

order 1 (see Chapter 10 of [524]). Smoothness is a common property of geometric

functionals, as indicated in the next exercise.

Exercise 8.4. Show that the minimal matching functional MM defined at (8.5) is

smooth of order 1. Likewise, show that the semi-matching, nearest neighbour, and

k-TSP functionals are smooth of order 1. Hints; see Chapter 3.3 of [524]), Sections

8.2, 8.3 and 8.4 of [524], respectively.

The functionals TSP, MST and MM defined at (8.3)-(8.5) are thus smooth sub-

additive Euclidean functionals which are pointwise close to a canonical boundary

functional. The functionals (8.6)-(8.9) satisfy the same properties. Now we give

some limit theorems for such functionals.

8.2.5 Laws of large numbers for superadditive Euclidean

functionals

We state a basic law of large numbers for Euclidean functionals on i.i.d. uniform

random variables U1, ...,Un in [0,1]d . Recall that a sequence of random variables
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ζn converges completely, here denoted c.c., to a limit random variable ζ , if for all

ε > 0, we have ∑
∞
n=1 P(|ζn −ζ | > ε)< ∞.

Theorem 8.1. Let p ∈ [1,d). If H
ξ
B := H

ξp

B is a smooth superadditive Euclidean

functional of order p on Rd , then

lim
n→∞

n(p−d)/dH
ξ
B (U1, ...,Un) = α(H

ξ
B ,d) c.c., (8.22)

where α(H
ξ
B ,d) is a positive constant. If Hξ := Hξp is a subadditive Euclidean

functional which is pointwise close to H
ξ
B := H

ξp

B as in (8.18), then

lim
n→∞

n(p−d)/dHξ (U1, ...,Un) = α(H
ξ
B ,d) c.c. (8.23)

Remarks.

1. In practice, Theorem 8.1 involves taking H
ξ
B := H

ξp

B to be a boundary version

of Hξ := Hξp , but it is conceivable that there are functionals H
ξp

B which satisfy

the conditions of Theorem 8.1 and which are not boundary versions. By con-

sidering boundary functionals, Theorem 8.1 gives laws of large numbers for the

functionals (8.3)-(8.9); see [524] for details.

2. Smooth subadditive Euclidean functionals which are point-wise close to smooth

superadditive Euclidean functionals are ‘nearly additive’ and consequently sat-

isfy Donsker-Varadhan-style large deviation principles, as shown in [463].

3. The papers [242] and [295] provide further accounts of the limit theory for sub-

additive Euclidean functionals.

Proof of Theorem 8.1. We only prove a mean version of (8.22), namely

lim
n→∞

n(p−d)/dEL
p
B(U1, ...,Un) = α(Lp

B,d), (8.24)

referring the reader to [524] for a complete proof. To prove (8.24), we will follow the

proof of Theorem 4.1 of [524]. Fix 1≤ p < d and set ϕ(n) := EL
p
B(U1, ...,Un). The

number of points from the sample (U1, ...,Un) belonging to a given subcube of [0,1]d

of volume m−d is a binomial random variable Binom(n,m−d)with parameters n and

m−d . Superadditivity of L
p
B, homogeneity (8.15), smoothness (8.20), and Jensen’s

inequality in this order yield

ϕ(n)≥ m−p ∑
i≤md

ϕ(Binom(n,m−d))

≥ m−p ∑
i≤md

(

ϕ(nm−d)− c3E(|Binom(n,m−d)−nm−d |(d−p)/d)
)

≥ m−p ∑
i≤md

(

ϕ(nm−d)− c3(nm−d)(d−p)/2d
)

.

Simplifying, we get
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ϕ(n)≥ md−pϕ(nm−d)− c3m(d−p)/2n(d−p)/2d .

Dividing by n(d−p)/d and replacing n by nmd yields the homogenized relation

ϕ(nmd)

(nmd)(d−p)/d
≥ ϕ(n)

n(d−p)/d
− c3

n(d−p)/2d
. (8.25)

Set α :=α(Lp
B,d) := limsupn→∞ϕ(n)/n(d−p)/d and note that α ≤ c3 by the assumed

smoothness. For all ε > 0, choose no such that for all n ≥ no we have

c3/n(d−p)/2d ≤ ε and ϕ(no)/n
(d−p)/d
o ≥ α− ε. Thus, for all m = 1,2, ... it follows

that
ϕ(nomd)

(nomd)(d−p)/d
≥ α−2ε.

To now obtain (8.24) we use the smoothness of L and an interpolation argument.

For an arbitrary integer k ≥ 1 find the unique integer m such that

nomd < k ≤ no(m+1)d .

Then |nomd − k| ≤Cnomd−1 and by smoothness (8.20) we therefore obtain

ϕ(k)

k(d−p)/d
≥ ϕ(nomd)

(no(m+1)d)(d−p)/d
− (Cnomd−1)(d−p)/d

(m+1)d−p n
(d−p)/d
o

≥ (α−2ε)(
m

m+1
)d−p − (Cnomd−1)(d−p)/d

(m+1)d−p n
(d−p)/d
o

.

Since the last term in the above goes to zero as m goes to infinity, it follows that

liminf
k→∞

k(p−d)/dϕ(k)≥ α−2ε.

Now let ε tend to zero to see that the liminf and the limsup of the sequence

ϕ(k)/k(d−p)/d , k ≥ 1, coincide, that is

lim
k→∞

k(p−d)/dϕ(k) = α.

We have thus shown limn→∞ n(p−d)/dEL
p
B(U1, ...,Un)=α as desired. This completes

the proof of (8.24).

8.2.6 Rates of convergence of Euclidean functionals

Recall that we write ξ (·, ·) := ξp(·, ·). If a subadditive Euclidean functional Hξ is

close in mean (cf. Definition 3.9 in [524]) to the associated superadditive Euclidean

functional H
ξ
B , namely if
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|EHξ (U1, ...,Un)−EH
ξ
B (U1, ...,Un)|= o(n(d−p)/d), (8.26)

where we recall that Ui are i.i.d. uniform on [0,1]d , then we may upper bound

|EHξ (U1, ...,Un)−α(H
ξ
B ,d)n(d−p)/d |, thus yielding rates of convergence of

n(p−d)/dEHξ (U1, ...,Un)

to its mean. Since the TSP, MST, and MM functionals satisfy closeness in mean

(p 6= d−1, d ≥ 3) the following theorem immediately provides rates of convergence

for our prototypical examples.

Theorem 8.2. (Rates of convergence of means) Let Hξ and H
ξ
B be subadditive and

superadditive Euclidean functionals, respectively, satisfying the close in mean ap-

proximation (8.26). If Hξ is smooth of order p ∈ [1,d) as defined at (8.20), then for

d ≥ 2 and for α(H
ξ
B ,d) as at (8.22), we have

|EHξ (U1, ...,Un)−α(H
ξ
B ,d)n(d−p)/d | ≤ c

(

n(d−p)/2d ∨n(d−p−1)/d
)

. (8.27)

For a complete proof of Theorem 8.2, we refer to [524]. Koo and Lee [309] give

conditions under which Theorem 8.2 can be improved.

8.2.7 General umbrella theorem for Euclidean functionals

Here is the main result of this section. Let η1, ...,ηn be i.i.d. random variables with

values in [0,1]d , d ≥ 2, and put Xn := {ηi}n
i=1.

Theorem 8.3. (Umbrella theorem for Euclidean functionals) Let Hξ and H
ξ
B be sub-

additive and superadditive Euclidean functionals, respectively, both smooth of order

p ∈ [1,d). Assume that Hξ and H
ξ
B are close in mean (8.26). Then

lim
n→∞

n(p−d)/dHξ (Xn) = α(H
ξ
B ,d)

∫

[0,1]d
κ(x)(d−p)/d dx c.c., (8.28)

where κ is the density of the absolutely continuous part of the law of η1.

Remarks.

1. The above theorem captures the limit behavior of the total edge length of the

functionals described in Section 8.1.1, hence the term ‘umbrella’. Indeed, the

TSP functional satisfies the conditions of Theorem 8.3 and we thus recover as

a corollary the Beardwood-Halton-Hammersley theorem [61]. See [524] for de-

tails.

2. Umbrella theorems for Euclidean functionals satisfying monotonicity and other

assumptions not involving boundary functionals appear in Theorem 2 of [481].

Theorem 8.3 has its origins in [415] and [416].
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3. Theorem 8.3 is used by Baltz et al. [39] to analyze asymptotics for the multiple

vehicle routing problem; Costa and Hero [130] show asymptotics similar to The-

orem 8.3 for the MST on suitably regular Riemannian manifolds and they apply

their results to estimation of Rényi entropy and manifold dimension. Costa and

Hero [131], using the theory of subadditive and superadditive Euclidean func-

tionals, obtain asymptotics for the total edge length of k-nearest neighbour graphs

on manifolds. The paper [242] provides further applications to imaging and clus-

tering.

4. If the ηi fail to have a density then the right-hand side of (8.28) vanishes. On the

other hand, Hölder’s inequality shows that the right-hand side of (8.28) is largest

when κ is uniform on [0,1]d .
5. See Chapter 7 of [524] for extensions of Theorem 8.3 to functionals of random

variables on unbounded domains.

Proof. (Sketch of proof of Theorem 8.3) The Azuma-Hoeffding concentration in-

equality shows that it is enough to prove convergence of means in (8.28). Smooth-

ness then shows that it is enough to prove convergence of n(p−d)/dEHξ (Xn) for

the so-called blocked distributions, i.e. those whose absolutely continuous part is

a linear combination of indicators over congruent sub-cubes forming a partition of

[0,1]d . To establish convergence for the blocked distributions, one combines The-

orem 8.1 with the subadditive and superadditive relations. We refer to [524] for

complete details of these standard methods. �

The limit (8.28) exhibits the asymptotic dependency of the total edge length of

graphs on the underlying point density κ . Still, (8.28) is unsatisfying in that we don’t

have a closed form expression for the constant α(H
ξ
B ,d). Stabilization methods,

described below, are used to explicitly identify α(H
ξ
B ,d).

8.3 Stabilization

Subadditive methods yield a.s. limit theory for the functionals Hξ defined at (8.1)

but they do not express the macroscopic behaviour of Hξ in terms of the local inter-

actions described by ξ . Stabilization methods overcome this limitation, they yield

second order and distributional results, and they also provide limit results for the

empirical measures

∑
x∈X

ξ (x,X )δx, (8.29)

where δx is the point mass at x. The empirical measure (8.29) has total mass given

by Hξ .

We will often assume that the interaction or ‘score’ function ξ , defined on pairs

(x,X ), with X locally finite in Rd , is translation invariant, i.e., for all y ∈ Rd we

have ξ (x+y,X +y) = ξ (x,X ). When x ∈Rd \X , we abbreviate notation and write

ξ (x,X ) instead of ξ (x,X ∪{x}).
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When X is random the range of spatial dependence of ξ at x ∈ X is random and

the purpose of stabilization is to quantify this range in a way useful for asymptotic

analysis. There are several notions of stabilization, with the simplest being that of

stabilization of ξ with respect to a rate τ homogeneous Poisson point process Πτ on

R
d , defined as follows. Let Br(x) denote the Euclidean ball centered at x with radius

r and let o denote a point at the origin of Rd .

8.3.1 Homogeneous stabilization

We say that a translation invariant ξ is homogeneously stabilizing if for all τ and

almost all realizations Πτ there exists R := R(Πτ) < ∞ such that

ξ (o,(Πτ ∩BR(o))∪A) = ξ (o,Πτ ∩BR(o)) (8.30)

for all locally finite A ⊂ R
d \ BR(o). Thus the value of ξ at o is unaffected by

changes in the configuration outside BR(o). The random range of dependency given

by R depends on the realization of Πτ . When ξ is homogeneously stabilizing we

may write

ξ (o,Πτ) = lim
r→∞

ξ (o,Πτ ∩Br(o)).

Examples of homogeneously stabilizing functionals.

1. Nearest neighbour distances. Recalling (8.6), consider the nearest neighbour

graph GN(1,X ) on the point set X and let ξ (x,X ) denote one half the sum of

the lengths of edges in GN(1,X ) which are incident to x. Thus Hξ (X ) is the

sum of edge lengths in GN(1,X ). Partition R2 into six congruent cones Ki,1 ≤
i ≤ 6, having apex at the origin of R2 and for all 1 ≤ i ≤ 6, put Ri to be the

distance between the origin and the nearest point in Πτ ∩Ki. We assert that R :=
2max1≤i≤6 Ri is a radius of stabilization, i.e., points in Bc

2R(o) do not change

the value of ξ (o,Πτ). Indeed, edges in GN(1,Πτ) incident to the origin are not

changed by the addition of points in Bc
2R(o). Such points will be closer to at least

one point in Πτ ∩BR(o) than to the origin and so will not connect to the origin.

Also, edges between points in Πτ ∩BR(o) and the origin will not be affected by

the insertion of points in Bc
2R(o).

2. Voronoi graphs. Consider the graph of the Voronoi tessellation of X and let

ξ (x,X ) be one half the sum of the lengths of the edges in the Voronoi cell C(x)
around x. The Voronoi flower around x, or fundamental region, is the union of

those balls having as center a vertex ofC(x) and exactly two points of X on their

boundary and no points of X inside. Then it may be shown (see Zuyev [532])

that the geometry of C(x) is completely determined by the Voronoi flower and
thus the radius of a ball centered at x containing the Voronoi flower qualifies as a

stabilization radius.
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3. Minimal spanning trees. Let X ⊂ Rd ,d ≥ 2, be locally finite. Given a > 0, let

Ga(X ) be the graph with vertex set X and with edge set {{x,y} : |x−y|< a}. Let

GMST(X ) be the graph with vertex set X obtained by including each edge {x,y}
such that x and y lie in different components of G|x−y|(X ) and at least one of the

components is finite. When X is finite, then GMST(X ) is the minimal spanning

tree graph on X , with total edge length MST(X ), as in (8.4). Let ξ (x,X ) be one

half the sum of the lengths of the edges in GMST(X ) which are incident to x.

Then ξ is homogeneously stabilizing, which follows from arguments involving

the uniqueness of the infinite component in continuum percolation [401].

Given X ⊂ Rd and a > 0, recall that aX := {ax : x ∈ X}. For all λ > 0 define the

λ re-scaled version of ξ by

ξλ (x,X ) := ξ (λ 1/dx,λ 1/dX ). (8.31)

Re-scaling is natural when considering point sets in compact sets K having cardi-

nality roughly λ ; dilation by λ 1/d means that unit volume subsets of λ 1/dK host on

the average one point.

It is useful to consider point processes onRd more general than the homogeneous

Poisson point processes. In what follows, let η1, ...,ηn be i.i.d., with a distribution

which is absolutely continuous with respect to Lebesgue measure on Rd , with den-

sity κ having support K. For all λ > 0, let Πλκ denote a Poisson point process in

R
d with intensity measure λκ(x)dx. We shall assume throughout that κ is bounded

with supremum denoted ‖κ‖∞.

Homogeneous stabilization is an example of ‘point stabilization’ [457] in that ξ
is required to stabilize around a given point x ∈ Rd with respect to homogeneously

distributed Poisson points Πτ . A related ‘point stabilization’ requires that the re-

scaled ξλ ,λ ∈ [1,∞), stabilize around x, but now with respect to Πλκ uniformly in

λ ∈ [1,∞). This goes as follows.

8.3.2 Stabilization with respect to the probability density κ

ξ is stabilizing with respect to the probability density κ and the subset K of Rd if for

all λ ∈ [1,∞) and all x ∈ K, there exists almost surely a R := R(x,λ ) < ∞ (a radius

of stabilization for ξλ at x) such that for all locally finite A⊂ (Rd \Bλ−1/dR
(x)), we

have

ξλ
(

x, [Πλκ ∩Bλ−1/dR
(x)]∪A

)

= ξλ
(

x,Πλκ ∩Bλ−1/dR
(x)
)

. (8.32)

If the tail probability τ(t) defined for t > 0 by τ(t) := supλ≥1, x∈K P(R(x,λ ) > t)

satisfies limsupt→∞ t−1 logτ(t) < 0 then we say that ξ is exponentially stabilizing

with respect to κ and K.

Roughly speaking, R := R(x,λ ) is a radius of stabilization if for all λ ∈ [1,∞),
the value of ξλ (x,Πλκ) is unaffected by changes in point configurations outside
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Bλ−1/dR
(x). In most examples of interest, methods showing that functionals ξ ho-

mogeneously stabilize are easily modified to show stabilization of ξ with respect

to densities κ . While it is straightforward to determine conditions under which the

interaction function ξ from examples 1 and 2 stabilizes exponentially fast, it is not

known whether the interaction ξ from example 3 stabilizes exponentially fast.

Exercise 8.5. Show that the interaction function ξ from examples 1 and 2 stabilizes

exponentially fast when κ is bounded away from zero on its support K, assumed

compact and convex.

We may weaken homogeneous stabilization by requiring that the point sets A in

(8.30) belong to the homogeneous Poisson point process Πτ . This weaker version

of stabilization, called localization, is used in [111] and [459] to establish variance

asymptotics and central limit theorems for functionals of convex hulls of random

samples in the unit ball. Given r > 0, let ξ r(x,X ) := ξ (x,X ∩Br(x)).
Say that R̂ := R̂(x,Πτ) is a radius of localization for ξ at x with respect to Πτ if

almost surely ξ (x,Πτ) = ξ R̂(x,Πτ) and for all s > R̂ we have ξ s(x,Πτ) = ξ R̂(x,Πτ).

8.3.3 A weak law of large numbers for stabilizing functionals

Recall that Πλκ is the Poisson point process on Rd with intensity measure λκ(x)dx.

It is easy to show that λ 1/d(Πλκ −x0) converges to Πκ(x0) as λ → ∞, where conver-

gence is in the sense of weak convergence of point processes. If ξ (·, ·) is a functional

defined on Rd ×N , where we recall that N is the space of locally finite point sets

in Rd , one might hope that ξ is continuous on the pairs (o,λ 1/d(Πλκ − x0)) in the

sense that ξ (o,λ 1/d(Πλκ −x0)) converges in distribution to ξ (o,Πκ(x0)) as λ → ∞.

This turns out to be the case whenever ξ is homogeneously stabilizing as in (8.30).

This is the content of the next lemma; for a complete proof see Section 3 of [395].

Recall that almost every x ∈Rd is a Lebesgue point of κ , that is to say for almost all

x ∈ Rd we have that ε−d
∫

Bε (x)
|κ(y)−κ(x)|dy tends to zero as ε tends to zero.

Lemma 8.1. Let x0 be a Lebesgue point for κ . If ξ is homogeneously stabilizing as

in (8.30), then as λ → ∞

ξλ (x0,Πλκ)
d−→ ξ (o,Πκ(x0)). (8.33)

Proof. (Sketch) We have ξλ (x0,Πλκ) = ξ (o,λ 1/d(Πλκ − x0)) by translation in-

variance of ξ . By the stabilization of ξ , it may be shown [394] that (o,Πκ(x0)) is

a continuity point for ξ with respect to the product topology on Rd ×N , when the

space of locally finite point sets N in Rd is equipped with the metric

d(X1,X2) := (max{k ∈ N : X1 ∩Bk(o) = X2 ∩Bk(o)})−1.

The result follows by the weak convergence λ 1/d(Πλκ − x0)
d−→Πκ(x0) and the con-

tinuous mapping theorem (Theorem 2.7 of [69]. �
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Recall that Xn := {ηi}n
i=1, where η1, ...,ηn are i.i.d. with density κ . Limit theo-

rems for the sums ∑x∈Πλκ
ξλ (x,Πλκ) as well as for the weighted empirical measures

µλ := µ
ξ
λ

:= ∑
x∈Πλκ

ξλ (x,Πλκ)δx and ρn := ρξn :=
n

∑
i=1

ξn(ηi,Xn)δηi
(8.34)

naturally require moment conditions on the summands, thus motivating the next

definition.

Definition 8.5. ξ has a moment of order p > 0 (with respect to κ and K) if

sup
λ≥1, x∈K,A∈K

E[|ξλ (x,Πλκ ∪A)|p]< ∞, (8.35)

where A ranges over all finite subsets of K.

Exercise 8.6. Show that the interaction function ξ from Examples 1 and 2 has mo-

ments of all orders when κ is bounded away from zero on its support.

Let B(K) denote the class of all bounded f : K → R and for all measures µ on

R
d let 〈 f ,µ〉 :=

∫

f dµ . Put µ̄ := µ−Eµ . For all f ∈ B(K) we have by Palm theory

for the Poisson process (see e.g Theorem 1.6 in [394]) that

E[〈 f ,µλ 〉] = λ

∫

K
f (x)E[ξλ (x,Πλκ)]κ(x)dx. (8.36)

If (8.35) holds for some p > 1, then uniform integrability and Lemma 8.1 show

that for all Lebesgue points x of κ one has Eξλ (x,Πλκ)→ Eξ (o,Πκ(x)) as λ → ∞.

The set of points failing to be Lebesgue points has measure zero and so when the

moment condition (8.35) holds for some p > 1, the bounded convergence theorem

gives

lim
λ→∞

λ−1E[〈 f ,µλ 〉] =
∫

K
f (x)E[ξ (o,Πκ(x))]κ(x)dx.

This simple convergence of means E[〈 f ,µλ 〉] is now upgraded to convergence in

Lq, q= 1 or 2.

Theorem 8.4. Put q = 1 or 2. Let ξ be a homogeneously stabilizing (8.30) trans-

lation invariant functional satisfying the moment condition (8.35) for some p > q.

Then for all f ∈ B(K) we have

lim
n→∞

n−1〈 f ,ρn〉= lim
λ→∞

λ−1〈 f ,µλ 〉=
∫

K
f (x)E[ξ (o,Πκ(x))]κ(x)dx in Lq. (8.37)

If ξ is homogeneous of order p as defined at (8.16), then for all α ∈ (0,∞) and τ ∈
(0,∞) we have Πατ

d
= α−1/dΠτ ; see for example the mapping theorem on p. 18 of

[298]. Consequently, if ξ is homogeneous of order p, it follows that Eξ (o,Πκ(x)) =

κ(x)−p/dEξ (o,Π1), whence the following weak law of large numbers.
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Corollary 8.1. Put q= 1 or 2. Let ξ be a homogeneously stabilizing (8.30) transla-

tion invariant functional satisfying the moment condition (8.35) for some p > q. If

ξ is homogeneous of order p as at (8.16), then for all f ∈ B(K) we have

lim
n→∞

n−1〈 f ,ρn〉= lim
λ→∞

λ−1〈 f ,µλ 〉= E[ξ (o,Π1)]
∫

K
f (x)κ(x)(d−p)/d dx (8.38)

where the convergence is in the Lq sense.

Remarks.

1. The proofs of the above laws of large numbers are given in [394, 401].

2. The closed form limit (8.38) links the macroscopic limit behaviour of the point

measures ρn and µλ with (i) the local interaction of ξ at a point at the origin

inserted into the point process Π1 and (ii) the underlying point density κ .

3. Going back to the minimal spanning tree at (8.4), the limiting constant α(MSTB,d)
can be found by putting ξ in (8.38) to be ξMST, letting f ≡ 1 in (8.38), and conse-

quently deducing that α(MSTB,d) = E[ξMST(o,Π1)], where ξMST(x,X ) is one

half the sum of the lengths of the edges in the graph GMST(X ∪{x}) incident to

x.

4. Donsker-Varadhan-style large deviation principles for stabilizing functionals are

proved in [460] whereas moderate deviations for bounded stabilizing functionals

are proved in [55].

8.3.4 Variance asymptotics and central limit theorems for

stabilizing functionals

Asymptotic distribution results for 〈 f ,µλ 〉 and 〈 f ,ρn〉, f ∈ B(K), as λ and n tend

to infinity respectively, require additional notation. For all τ > 0, put

V ξ (τ) := E[ξ (o,Πτ)
2]+

τ

∫

Rd
{E[ξ (o,Πτ ∪{z})ξ (z,Πτ ∪o)]− (E[ξ (o,Πτ)])

2}dz (8.39)

and

∆ ξ (τ) := E[ξ (o,Πτ)]+ τ

∫

Rd
{E[ξ (o,Πτ ∪{z})−E[ξ (o,Πτ)]}dz. (8.40)

The scalarsV ξ (τ),τ > 0, should be interpreted as mean pair correlation functions

for the functional ξ on homogenous Poisson pointsΠτ . By the translation invariance

of ξ , the scalars ∆ ξ (τ),τ > 0, satisfy

∆ ξ (τ) = E[ξ (o,Πτ)]+E

[

∑
x∈Πτ∪{z}

ξ (x,Πτ ∪{z})− ∑
x∈Πτ

ξ (x,Πτ)

]

,
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which suggests that ∆ ξ (τ) may be viewed as the expected ‘add-one cost’ for

∑x∈Πτ
ξ (x,Πτ) when the point set Πτ is augmented to Πτ ∪{z}.

By extending Lemma 8.1 to an analogous result giving the weak convergence of

the joint distribution of ξλ (x,Πλκ) and ξλ (x+λ−1/dz,Πλκ) for all pairs of points

x and z in Rd , we may show for exponentially stabilizing ξ and for bounded K

that λ−1 var[〈 f ,µλ 〉] converges as λ → ∞ to a weighted average of the mean pair

correlation functions.

Furthermore, recalling that µλ := µλ −E[µλ ], and by using either Stein’s method

[395, 402] or the cumulant method [57], we may establish variance asymptotics

and asymptotic normality of 〈 f ,λ−1/2µλ 〉, f ∈ B(K), as shown by the next result,

proved in [57, 395, 402].

Theorem 8.5. (Variance asymptotics and CLT for Poisson input) Assume that κ
is Lebesgue-almost everywhere continuous. Let ξ be a homogeneously stabilizing

(8.30) translation invariant functional satisfying the moment condition (8.35) for

some p > 2. Suppose further that K is bounded and that ξ is exponentially stabiliz-

ing with respect to κ and K as in (8.32). Then for all f ∈ B(K) we have

lim
λ→∞

λ−1 var[〈 f ,µλ 〉] = σ2( f ) :=
∫

K
f (x)2V ξ (κ(x))κ(x)dx < ∞ (8.41)

as well as convergence of the finite-dimensional distributions

(〈 f1,λ
−1/2µλ 〉, . . . ,〈 fk,λ

−1/2µλ 〉),

f1, . . . , fk ∈ B(K), to those of a mean zero Gaussian field with covariance kernel

( f ,g) 7→
∫

K
f (x)g(x)V ξ (κ(x))κ(x)dx. (8.42)

Extensions of Theorem 8.5

1. For an extension of Theorem 8.5 to manifolds, see [403]; for extensions to func-

tionals of Gibbs point processes, see [460]. Theorems 8.4 and 8.5 also extend to

treat functionals of point sets having i.i.d. marks [57, 395].

2. Rates of convergence. Suppose ‖κ‖∞ < ∞. Suppose that ξ is exponentially sta-

bilizing and satisfies the moments condition (8.35) for some p > 3. If σ2( f ) > 0

for f ∈ B(K), then there exists a finite constant c depending on d,ξ , κ , p and f ,

such that for all λ ≥ 2,

sup
t∈R

∣

∣

∣

∣

∣

P

[

〈 f ,µλ 〉−E[〈 f ,µλ 〉]
√

var[〈 f ,µλ 〉]
≤ t

]

−P(N(0,1)≤ t)

∣

∣

∣

∣

∣

≤ c(logλ )3dλ−1/2. (8.43)

For details, see Corollary 2.1 in [402]. For rates of convergence in the multivari-

ate central limit theorem, see [397].
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3. Translation invariance. For ease of exposition, Theorems and 8.4 and 8.5 as-

sume translation invariance of ξ . This assumption may be removed (see [57,

395, 394]), provided that we put ξλ (x,X ) := ξ (x,x+ λ 1/d(−x+X )) and pro-

vided that we replace V ξ (τ) and ∆ ξ (τ) defined at (8.39) and (8.40) respectively,

by

V ξ (x,τ) := E[ξ (x,Πτ)
2]

+ τ
∫

Rd
{E[ξ (x,Πτ ∪{z})ξ (x,−z+(Πτ ∪o))]− (E[ξ (x,Πτ)])

2}dz (8.44)

and

∆
ξ (x,τ) := E[ξ (x,Πτ)]+ τ

∫

Rd
{E[ξ (x,Πτ ∪{z})−E[ξ (x,Πτ)]}dz. (8.45)

4. The moment condition (8.35) may be weakened to one requiring only that A
range over subsets of K having at most one element; see [395].

Proof of variance asymptotics (8.41)

The proof of (8.41) depends in part on the following generalization of Lemma

8.1, a proof of which appears in [395].

Lemma 8.2. Let x be a Lebesgue point for κ . If ξ is homogeneously stabilizing as

in (8.30), then for all z ∈ Rd , we have as λ → ∞

(ξλ (x,Πλκ),ξλ (x+λ−1/dz,Πλκ))
d−→ (ξ (o,Πκ(x)),ξ (z,Πκ(x))). (8.46)

Given Lemma 8.2 we sketch a proof of the variance convergence (8.41). For

simplicity we assume that f is a.e. continuous. By Palm theory for the Poisson

process Πλκ we have

λ−1 var[〈 f ,µλ 〉]

= λ

∫

K

∫

K
f (x) f (y){E[ξλ (x,Πλκ ∪{y})ξλ (y,Πλκ ∪{x})]

−E[ξλ (x,Πλκ)]E[ξλ (y,Πλκ)]}κ(x)κ(y)dxdy

+
∫

K
f (x)2E[ξ 2

λ (x,Πλκ)]κ(x)dx. (8.47)

Putting y = x+λ−1/dz in the right-hand side in (8.47) reduces the double integral

to
∫

K

∫

−λ 1/dx+λ 1/dK
f (x) f (x+λ−1/dz){...}κ(x)κ(x+λ−1/dz)dzdx (8.48)

where
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{...} := {E[ξλ (x,Πλκ ∪{x+λ−1/dz})ξλ (x+λ−1/dz,Πλκ ∪{x})]

−E[ξλ (x,Πλκ)]E[ξλ (x+λ
−1/dz,Πλκ)]}

is the two point correlation function for ξλ .
The moment condition and Lemma 8.2 imply for all Lebesgue points x ∈ K that

the two point correlation function for ξλ converges to the two point correlation

function for ξ as λ → ∞. Moreover, by exponential stabilization, the integrand in

(8.48) is dominated by an integrable function of z overRd (see Lemma 4.2 of [395]).

The double integral in (8.47) thus converges to

∫

K

∫

Rd
f (x)2 ·E[ξ (o,Πκ(x)∪{z})ξ (z,Πκ(x)∪o)]

− (Eξ (o,Πκ(x)))
2κ(x)2 dzdx (8.49)

by dominated convergence, the continuity of f , and the assumed moment bounds.

By Theorem 8.4, the assumed moment bounds, and dominated convergence, the

single integral in (8.47) converges to

∫

K
f (x)2E[ξ 2(o,Πκ(x))]κ(x)dx. (8.50)

Combining (8.49) and (8.50) and using the definition of V ξ , we obtain the variance

asymptotics (8.41) for continuous test functions f . To show convergence for general

f ∈ B(K) we refer to [395].

8.3.5 Proof of asymptotic normality in Theorem 8.5; method of

cumulants

Now we sketch a proof of the central limit theorem part of Theorem 8.5. There are

three distinct approaches to proving the central limit theorem:

1. Stein’s method, in particular consequences of Stein’s method for dependency

graphs of random variables, as given by [120]. This approach, spelled out in

[402], gives the rates of convergence to the normal law in (8.43).

2. Methods based on martingale differences are applicable when κ is the uniform

density and when the functional Hξ satisfies a stabilization criteria involving the

insertion of single point into the sample; see [295] and [398] for details.

3. The method of cumulants may be used [57] to show that the k-th order cumulants

ck
λ of λ−1/2〈 f ,µλ 〉, k ≥ 3, vanish in the limit as λ → ∞. This method makes use

of the standard fact that if the cumulants ck of a random variable ζ vanish for all

k ≥ 3, then ζ has a normal distribution. This approach assumes additionally that

ξ has moments of all orders, i.e. (8.35) holds for all p ≥ 1.
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Here we describe the third method, which, when suitably modified yields moder-

ate deviation principles [55] as well as limit theory for functionals over Gibbs point

processes [460].

To show vanishing of cumulants of order three and higher, we follow the proof

of Theorem 2.4 in section five of [57] and take the opportunity to correct a mistake

in the exposition, which also carried over to [55], and which was first noticed by

Mathew Penrose. We assume the test functions f belong to the class C(K) of con-

tinuous functions on K and we will show for all continuous test functions f on K,

that

〈 f ,λ−1/2µλ 〉
d−→ N(0,σ2( f )), (8.51)

where σ2( f ) is at (8.41). The convergence of the finite-dimensional distributions

(8.42) follows by standard methods involving the Cramér-Wold device.

We first recall the formal definition of cumulants. Put K := [0,1]d for simplicity.
Write

Eexp
(

λ−1/2〈− f ,µλ 〉
)

= exp
(

λ−1/2〈 f ,Eµλ 〉
)

Eexp
(

λ−1/2〈− f ,µλ 〉
)

(8.52)

= exp
(

λ−1/2〈 f ,Eµλ 〉
)

[

1+
∞

∑
k=1

λ−k/2

k!
〈(− f )k,Mk

λ 〉
]

,

where f k :Rdk →R, k = 1,2, ... is given by f k(v1, . . . ,vk) = f (v1) · · · f (vk), and vi ∈
K, 1 ≤ i ≤ k. Mk

λ := Mk
λκ is a measure on Rdk, the k-th moment measure (Chapter

9.5 of [140]), and has the property that

〈 f k,Mk
λ 〉=

∫

Kk
E

[

k

∏
i=1

ξλ (xi,Πλκ)

]

k

∏
i=1

f (xi)κ(xi)d(λ 1/dxi).

In general Mk
λ is not continuous with respect to Lebesgue measure on Kk, but rather

it is continuous with respect to sums of Lebesgue measures on the diagonal sub-

spaces of Kk, where two or more coordinates coincide.

In Section 5 of [57], the moment and cumulant measures considered there are

with respect to the centered functional ξ , whereas they should be with respect to the

non-centered functional ξ . This requires corrections to the notation, which we pro-

vide here, but since higher order cumulants for centered and non-centered measures

coincide, it does not change the arguments of [57], which we include for complete-

ness and which go as follows.

We have

dMk
λ (v1, ...,vk) = mλ (v1, ...,vk)

k

∏
i=1

κ(vi)d(λ 1/dvi),

where mλ (v1, ...,vk) is given by mixed moment
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mλ (v1, ...,vk) := E

[

k

∏
i=1

ξλ (vi;Πλκ ∪{v j}k
j=1)

]

. (8.53)

Due to the behaviour of Mk
λ on the diagonal subspaces we make the standing

assumption that if the differential d(λ
1/d

1 v1) · · ·d(λ
1/d

1 vk) involves repetition of cer-

tain coordinates, then it collapses into the corresponding lower order differential

in which each coordinate occurs only once. For each k ∈ N, by the assumed mo-

ment bounds (8.35), the mixed moment on the right hand side of (8.53) is bounded

uniformly in λ by a constant c(ξ ,k). Likewise, the k-th summand in (8.52) is finite.

For all i = 1,2, ... we let Ki denote the i-th copy of K. For any subset T of the

positive integers, we let

KT := ∏
i∈T

Ki.

If |T | = l, then for all λ ≥ 1, by MT
λ we mean a copy of the l-th moment measure

on the l-fold product space KT
λ . MT

λ is equal to Ml
λ as defined above.

When the series (8.52) is convergent, the logarithm of the Laplace functional

gives

log

[

1+
∞

∑
k=1

1

k!
λ−k/2〈(− f )k,Mk

λ 〉
]

=
∞

∑
l=1

1

l!
λ−l/2〈(− f )l ,cl

λ 〉; (8.54)

the signed measures cl
λ are cumulant measures. Regardless of the validity of (8.52),

the existence of all cumulants cl
λ , l = 1,2, ... follows from the existence of all mo-

ments in view of the representation

cl
λ = ∑

T1,...,Tp

(−1)p−1(p−1)!MT1

λ
· · ·MTp

λ
,

where T1, ...,Tp ranges over all unordered partitions of the set 1, ..., l (see p. 30 of

[341]). The first cumulant measure coincides with the expectation measure and the

second cumulant measure coincides with the variance measure.

We follow the proof of Theorem 2.4 of [57], with these small changes: (i) re-

place the centered functional ξ with the non-centered ξ (ii) correspondingly, let all

cumulants cl
λ , l = 1,2, ... be the cumulant measures for the non-centered moment

measures Mk
λ , k = 1,2, .... Since c1

λ coincides with the expectation measure, Theo-

rem 8.4 gives for all f ∈C(K)

lim
λ→∞

λ−1〈 f ,c1
λ 〉= lim

λ→∞
λ−1E[〈 f ,µ

ξ
λ
〉] =

∫

K
f (x)E[ξ (o,Πκ(x))]κ(x)dx.

We already know from the variance convergence that

lim
λ→∞

λ−1〈 f 2,c2
λ 〉= lim

λ→∞
λ−1 var[〈 f ,µ

ξ
λκ

〉] =
∫

K
f (x)2V ξ (κ(x))κ(x)dx.
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Thus, to prove (8.51), it will be enough to show for all k ≥ 3 and all f ∈C(K) that

λ−k/2〈 f k,ck
λ 〉 → 0 as λ → ∞. This will be done in Lemma 8.4 below, but first we

recall some terminology from [57].

A cluster measure U
S,T
λ

on KS ×KT for non-empty S,T ⊂ {1,2, ...} is defined by

U
S,T
λ

(B×D) = MS∪T
λ (B×D)−MS

λ (B)MT
λ (D)

for all Borel B and D in KS and KT , respectively.

Let S1,S2 be a partition of S and let T1,T2 be a partition of T . A product of a

cluster measure U
S1,T1

λ
on KS1 ×KT1 with products of moment measures M|S2| and

M|T2| on KS2 ×KT2 will be called a (S,T ) semi-cluster measure.

For each non-trivial partition (S,T ) of {1, ...,k} the k-th cumulant ck is repre-

sented as

ck = ∑
(S1,T1),(S2,T2)

α((S1,T1),(S2,T2))U
S1,T1M|S2|M|T2|, (8.55)

where the sum ranges over partitions of {1, ...,k} consisting of pairings (S1,T1),
(S2,T2), where S1,S2 ⊂ S and T1,T2 ⊂ T , and where α((S1,T1),(S2,T2)) are integer

valued pre-factors. In other words, for any non-trivial partition (S,T ) of {1, ...,k},
ck is a linear combination of (S,T ) semi-cluster measures; see Lemma 5.1 of [57].

The following bound is critical for showing that λ−k/2〈 f ,ck
λ 〉 → 0 for k ≥ 3 as

λ → ∞. This lemma appears as Lemma 5.2 in [57].

Lemma 8.3. If ξ is exponentially stabilizing as in (8.32), then the functions mλ clus-

ter exponentially, that is there are positive constants a j,l and c j,l such that uniformly

|mλ (x1, ...x j,y1, ...,yl)−mλ (x1, ...,x j)mλ (y1, ...,yl)| ≤ a j,l exp(−c j,lδλ
1/d),

where δ := min1≤i≤ j,1≤p≤l |xi − yp| is the separation between the sets {xi} j
i=1 and

{yp}l
p=1 of points in K.

The constants a j,l , while independent of λ , may grow quickly in j and l, but

this will not affect the decay of the cumulant measures in the scale parameter λ .

The next lemma provides the desired decay of the cumulant measures; we provide

a proof which is slightly different from that given for Lemma 5.3 of [57].

Lemma 8.4. For all f ∈C(K) and k = 2,3, ... we have λ−1〈 f k,ck
λ
〉= O

(

‖ f‖k
∞

)

.

Proof. We need to estimate
∫

Kk
f (v1)... f (vk)dck

λ
(v1, ...,vk).

We will modify the arguments in [57]. Given v := (v1, ...,vk) ∈ Kk, let Dk(v) :=
Dk(v1, ...,vk) :=maxi≤k(‖v1−vi‖+ ...+‖vk−vi‖) be the l1 diameter for v. Let Ξ(k)
be the collection of all partitions of {1, ...,k} into exactly two subsets S and T . For all

such partitions consider the subset σ(S,T ) of KS ×KT having the property that v ∈
σ(S,T ) implies d(x(v),y(v)) ≥ Dk(v)/k2, where x(v) and y(v) are the projections
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of v onto KS and KT , respectively, and where d(x(v),y(v)) is the minimal Euclidean

distance between pairs of points from x(v) and y(v). It is easy to see that for every

v := (v1, ...,vk) ∈ Kk, there is a splitting of v, say x := x(v) and y := y(v), such that

d(x,y) ≥ Dk(v)/k2; if this were not the case then a simple argument shows that,

given v := (v1, ...,vk) the distance between any pair of constituent components must

be strictly less than Dk(v)/k, contradicting the definition of Dk. It follows that Kk is

the union of the sets σ(S,T ), (S,T ) ∈ Ξ(k). The key to the proof of Lemma 8.4 is

to evaluate the cumulant ck
λ

over each σ(S,T ) ∈ Ξ(k), that is to write 〈 f ,ck
λ
〉 as a

finite sum of integrals

〈 f ,ck
λ
〉= ∑

σ(S,T )∈Ξ(k)

∫

σ(S,T )
f (v1) · · · f (vk)dck

λ (v1, ...,vk),

then appeal to the representation (8.55) to write the cumulant measure dck
λ (v1, ...,vk)

on each σ(S,T ) as a linear combination of (S,T ) semi-cluster measures, and finally

to appeal to Lemma 8.3 to control the constituent cluster measures US1,T1 by an

exponentially decaying function of λ 1/dDk(v) := λ 1/dDk(v1, ...,vk).
Given σ(S,T ), S1 ⊂ S and T1 ⊂ T , this goes as follows. Let x ∈ KS and y ∈ KT

denote elements of KS and KT , respectively; likewise we let x̃ and ỹ denote elements

of KS1 and KT1 , respectively. Let x̃c denote the complement of x̃ with respect to x and

likewise with ỹc. The integral of f against one of the (S,T ) semi-cluster measures

in (8.55), induced by the partitions (S1,S2) and (T1,T2) of S and T respectively, has

the form
∫

σ(S,T )
f (v1) · · · f (vk)d

(

M
|S2|
λ

(x̃c)U i+ j

λ
(x̃, ỹ)M

|T2|
λ

(ỹc)
)

.

Letting uλ (x̃, ỹ) := mλ (x̃, ỹ)−mλ (x̃)mλ (ỹ), the above equals

∫

σ(S,T )
f (v1) · · · f (vk)mλ (x̃

c)uλ (x̃, ỹ)mλ (ỹ
c)

k

∏
i=1

κ(vi)d(λ 1/dvi). (8.56)

We use Lemma 8.3 to control uλ (x̃, ỹ) := mλ (x̃, ỹ)−mλ (x̃)mλ (ỹ), we bound f

and κ by their respective sup norms, we bound each mixed moment by c(ξ ,k), and

we use σ(S,T )⊂ Kk to show that

∫

σ(S,T )
f (v1) · · · f (vk)d

(

M
|S2|
λ

(x̃c)U i+ j

λ
(x̃, ỹ)M

|T2|
λ

(ỹc)
)

≤ D(k)c(ξ ,k)2‖ f‖k
∞‖κ‖k

∞

∫

Kk
exp(−cλ 1/dDk(v)/k2)d(λ 1/dv1) · · ·d(λ 1/dvk).

Letting zi := λ 1/dvi the above bound becomes

λD(k)c(ξ ,k)2‖ f‖k
∞‖κ‖k

∞

∫

(λ 1/dK)k
exp(−cDk(z)/k2)dz1 · · ·dzk

≤ λD(k)c(ξ ,k)2‖ f‖k
∞‖κ‖k

∞

∫

(Rd)k−1
exp(−cDk(0,z1, ...,zk−1)/k2)dz1 · · ·dzk
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where we use the translation invariance of Dk(·). Upon a further change of variable

w := z/k we have

∫

σ(S,T )
f (v1) · · · f (vk)d

(

M
|S2|
λ

(x̃c)U i+ j

λ
(x̃, ỹ)M

|T2|
λ

(ỹc)
)

≤ λ D̃(k)c(ξ ,k)2‖ f‖k
∞‖κ‖k

∞

∫

(Rd)k−1
exp(−cDk(0,w1, ...,wk−1))dw1 · · ·dwk−1.

Finally, since Dk(0,w1, ...,wk−1)≥ ‖w1‖+ ...+‖wk−1‖ we obtain

∫

σ(S,T )
f (v1) · · · f (vk)d

(

M
|S2|
λ

(x̃c)U i+ j

λ
(x̃, ỹ)M

|T2|
λ

(ỹc)
)

≤ λ D̃(k)c(ξ ,k)2‖ f‖k
∞‖κ‖k

∞

(

∫

Rd
exp(−‖w‖)dw

)k−1

= O(λ )

as desired. �

8.3.6 Central limit theorem for functionals of binomial input

To obtain central limit theorems for functionals over binomial input Xn := {ηi}n
i=1

we need some more definitions. For all functionals ξ and τ ∈ (0,∞), recall the ‘add

one cost’ ∆ ξ (τ) defined at (8.40). For all j = 1,2, ..., let S j be the collection of all

subsets of Rd of cardinality at most j.

Definition 8.6. Say that ξ has a moment of order p > 0 (with respect to binomial

input Xn) if

sup
n≥1,x∈Rd ,D∈S3

sup
(n/2)≤m≤(3n/2)

E[|ξn(x,Xm ∪D)|p] < ∞. (8.57)

Definition 8.7. ξ is binomially exponentially stabilizing for κ if for all x ∈Rd ,λ ≥
1, and D ⊂ S2 almost surely there exists R := Rλ ,n(x,D) < ∞ such that for all finite

A⊂ (Rd \Bλ−1/dR
(x)), we have

ξλ
(

x,([Xn ∪D]∩Bλ−1/dR
(x))∪A

)

= ξλ
(

x, [Xn ∪D]∩Bλ−1/dR
(x)
)

, (8.58)

and moreover there is an ε > 0 such that the tail probability τε(t) defined for t > 0

by

τε(t) := sup
λ≥1,n∈N∩((1−ε)λ ,(1+ε)λ )

sup
x∈Rd , D⊂S2

P(Rλ ,n(x,D) > t)

satisfies limsupt→∞ t−1 logτε(t) < 0.
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If ξ is homogeneously stabilizing then in most examples of interest, similar meth-

ods can be used to show that ξ is binomially exponentially stabilizing whenever κ
is bounded away from zero.

Exercise 8.7. Show that the interaction function ξ from Examples 1 and 2 is bi-

nomially exponentially stabilizing whenever κ is bounded away from zero on its

support, assumed compact and convex.

Theorem 8.6. (CLT for binomial input) Assume that κ is Lebesgue-almost every-

where continuous. Let ξ be a homogeneously stabilizing (8.30) translation invariant

functional satisfying the moment conditions (8.35) and (8.57) for some p > 2. Sup-

pose further that K is bounded and that ξ is exponentially stabilizing with respect

to κ and K as in (8.32) and binomially exponentially stabilizing with respect to κ
and K as in (8.58). Then for all f ∈ B(K) we have

lim
n→∞

n−1 var[〈 f ,ρn〉] = τ2( f )

:=
∫

K
f (x)2V ξ (κ(x))κ(x)dx−

(

∫

K
f (x)∆ ξ (κ(x))κ(x)dx

)2

(8.59)

as well as convergence of the finite-dimensional distributions

(〈 f1,n
−1/2ρn〉, . . . ,〈 fk,n

−1/2ρn〉),

f1, . . . , fk ∈ B(K), to a mean zero Gaussian field with covariance kernel

( f ,g) 7→
∫

K
f (x)g(x)V ξ (κ(x))κ(x)dx

−
∫

K
f (x)∆ ξ (κ(x))κ(x)dx

∫

K
g(x)∆ ξ (κ(x))κ(x)dx. (8.60)

Proof. We sketch the proof, borrowing heavily from coupling arguments appearing

in the complete proofs given in [57, 398, 395]. Fix f ∈ B(K). Put Hn := 〈 f ,ρn〉,
H ′

n := 〈 f ,µn〉, where µn is defined at (8.34) and assume that Πnκ is coupled to Xn

by setting Πnκ =
⋃N(n)

i=1 ηi, where N(n) is an independent Poisson random variable

with mean n. Put

α := α( f ) :=
∫

K
f (x)∆ ξ (κ(x))κ(x)dx.

Conditioning on the random variable N := N(n) and using that N is concentrated

around its mean, it can be shown that as n → ∞ we have

E[(n−1/2(H ′
n −Hn − (N(n)−n)α))2]→ 0. (8.61)

The arguments are long and technical (cf. Section 5 of [395], Section 4 of [398]).

Let σ2( f ) be as at (8.41) and let τ2( f ) be as at (8.59), so that τ2( f ) = σ2( f )−
α2.



8 Limit theorems in discrete stochastic geometry 267

By Theorem 8.5 we have as n → ∞ that n−1 var[H ′
n] → σ

2( f ) and n−1/2(H ′
n −

EH ′
n)

d−→ N(0,σ2( f )). We now deduce Theorem 8.6, following verbatim by now

standard arguments (see for example p. 1020 of [398], p. 251 of [57]), included here

for sake of completeness.

To prove convergence of n−1 var[Hn], we use the identity

n−1/2H ′
n = n−1/2Hn +n−1/2(N(n)−n)α+n−1/2[H ′

n −Hn − (N(n)−n)α]. (8.62)

The variance of the third term on the right-hand side of (8.62) goes to zero by (8.61),

whereas the second term has variance α2 and is independent of the first term. It

follows that with σ2( f ) defined at (8.41), we have

σ
2( f ) = lim

n→∞
n−1 var[H ′

n] = lim
n→∞

n−1 var[Hn]+α
2,

so that σ2( f ) ≥ α
2 and n−1 var[Hn] → τ

2( f ). This gives (8.59).

Now to prove Theorem 8.6 we argue as follows. By Theorem 8.5, we have

n−1/2(H ′
n −EH ′

n)
d−→ N(0,σ2( f )). Together with (8.61), this yields

n−1/2[Hn −EH ′
n +(N(n)−n)α]

d−→ N(0,σ2( f )).

However, since n−1/2(N(n)−n)α is independent of Hn and is asymptotically normal

with mean zero and variance α2, it follows by considering characteristic functions

that

n−1/2(Hn −EH ′
n)

d−→ N(0,σ2( f )−α
2). (8.63)

By (8.61), the expectation of n−1/2(H ′
n −Hn − (N(n)− n)α) tends to zero, so in

(8.63) we can replace EH ′
n by EHn, which gives us

n−1/2(Hn −EHn)
d−→ N(0,τ2( f )).

To obtain convergence of finite-dimensional distributions (8.60) we use the

Cramér-Wold device.

�

8.4 Applications

Consider a linear statistic Hξ (X ) of a large geometric structure on X . If we are
interested in the limit behavior of Hξ on random point sets, then the results of the

previous section suggest checking whether the interaction function ξ is stabilizing.
Verifying the stabilization of ξ is sometimes non-trivial and may involve discretiza-
tion methods. Here we describe four non-trivial statistics Hξ for which one may

show stabilization/localization of ξ . Our list is non-exhaustive and primarily fo-

cusses on the problems described in Section 8.1.1.
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8.4.1 Random packing

Given d ∈ N and λ ≥ 1, let η1,λ ,η2,λ , . . . be a sequence of independent random

d-vectors uniformly distributed on the cube Qλ := [0,λ 1/d)d . Let τi, i ≥ 1, be i.i.d.

time marks, independent of ηi, i ≥ 1, and uniformly distributed on [0,1]. Equip each

vector ηi with the time mark τi and re-order the indices so that τi are increasing. Let

S be a fixed bounded closed convex set in Rd with non-empty interior (i.e., a ‘solid’)

with centroid at the origin o of Rd (for example, the unit ball), and for i ∈N, let Si,λ

be the translate of S having centroid at ηi,λ and arrival time τi. Thus Sλ := (Si,λ )i≥1

is an infinite sequence of solids sequentially arriving at uniform random positions in

Qλ at arrival times τi, i ≥ 1 (the centroids lie in Qλ but the solids themselves need

not lie wholly inside Qλ ).

Let the first solid S1,λ be packed (i.e., accepted), and recursively for i= 2,3, . . .,
let the i-th solid Si,λ be packed if it does not overlap any solid in {S1,λ , . . . ,Si−1,λ}
which has already been packed. If not packed, the i-th solid is discarded. This

process, known as random sequential adsorption (RSA) with infinite input, is ir-

reversible and terminates when it is not possible to accept additional solids. At ter-

mination, we say that the sequence of solids Sλ jams Qλ or saturates Qλ . The

number of solids accepted in Qλ at termination is denoted by the jamming number

Nλ := Nλ ,d := Nλ ,d(Sλ ).
There is a large literature of experimental results concerning the jamming num-

bers, but a limited collection of rigorous mathematical results, especially in d ≥ 2.

The short range interactions of arriving particles lead to complicated long range spa-

tial dependence between the status of particles. Dvoretzky and Robbins [163] show

in d = 1 that the jamming numbers Nλ ,1 are asymptotically normal.

By writing the jamming number as a linear statistic involving a stabilizing in-

teraction ξ on marked point sets, and recalling Remark 1 following Theorem 8.5,

one may establish [458] that Nλ ,d are asymptotically normal for all d ≥ 1. This puts

the experimental results and Monte Carlo simulations of Quintanilla and Torquato

[410] and Torquato (ch. 11.4 of [494])) on rigorous footing.

Theorem 8.7. Let Sλ and Nλ := Nλ (Sλ ) be as above. There are constants µ :=
µ(S,d) ∈ (0,∞) and σ2 := σ2(S,d) ∈ (0,∞) such that as λ → ∞ we have

∣

∣λ−1ENλ −µ
∣

∣= O(λ−1/d) (8.64)

and λ−1 var[Nλ ]→ σ2 with

sup
t∈R

∣

∣

∣

∣

∣

P

(

Nλ −ENλ
√

var[Nλ ]
≤ t

)

−P(N(0,1)≤ t)

∣

∣

∣

∣

∣

= O((logλ )3dλ−1/2). (8.65)

To prove this, one could enumerate the arriving solids in Sλ , by (xi, ti), where

xi ∈ Rd is the spatial coordinate of the i-th solid and ti ∈ [0,∞) is its temporal co-

ordinate, i.e. the arrival time. Furthermore, letting X := {(xi, ti)}∞
i=1 be a marked
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point process, one could set ξ ((x, t),X ) to be one or zero depending on whether the

solid with center at x ∈ Sλ is accepted or not; Hξ (X ) is the total number of solids

accepted. Thus ξ is defined on elements of the marked point process X . A natural

way to prove Theorem 8.7 would then be to show that ξ satisfies the conditions of

Theorem 8.5. The moment conditions (8.35) are clearly satisfied as ξ is bounded by

1. To show stabilization it turns out that it is easier to discretize as follows.

For any A ⊂ R
d , let A+ := A×R+. Let ζ (X ,A) be the number of solids with

centers in X ∩A which are packed according to the packing rules. Abusing notation,

let Π denote a homogeneous Poisson point process in Rd ×R+ with intensity dx×
ds, with dx denoting Lebesgue measure on Rd and ds denoting Lebesgue measure

on R+. Abusing the terminology at (8.30), ζ is homogeneously stabilizing since

it may be shown that almost surely there exists R < ∞ (a radius of homogeneous

stabilization for ζ ) such that for all X ⊂ (Rd \BR)+ we have

ζ ((Π ∩ (BR)+)∪X ,Q1) = ζ (Π ∩ (BR)+,Q1). (8.66)

Since ζ is homogeneously stabilizing it follows that the limit

ζ (Π , i+Q1) := lim
r→∞

ζ (Π ∩ (Br(i))+, i+Q1)

exists almost surely for all i ∈ Zd . The random variables (ζ (Π , i + Q1), i ∈ Zd)
form a stationary random field. It may be shown that the tail probability for R decays

exponentially fast.

Given ζ , for all λ > 0, allX ⊂Rd ×R+, and all Borel A⊂Rd we let ζλ (X ,A) :=
ζ (λ 1/dX ,λ 1/dA). Let Πλ , λ ≥ 1, denote a homogeneous Poisson point process in

R
d ×R+ with intensity measure λ dx× ds. Define the random measure µ

ζ
λ

on Rd

by

µ
ζ
λ
( · ) := ζλ (Πλ ∩Q1, ·) (8.67)

and the centered version µ
ζ
λ

:= µ
ζ
λ
−E[µ

ζ
λ
]. Modification of the stabilization meth-

ods of Section 8.3 then yield Theorem 8.7; this is spelled out in [458].

For companion results for RSA packing with finite input per unit volume we refer

to [400].

8.4.2 Convex hulls

Let K ⊂ R
d be a compact convex body with non-empty interior and having a C3

boundary of positive Gaussian curvature x 7→ Hd−1(x), with x ∈ ∂K. Letting Πλ be

a Poisson point process in Rd of intensity λ we let Kλ be the convex hull of K∩Πλ .

The random polytope Kλ , together with the analogous polytope Kn obtained by

considering n i.i.d. uniformly distributed points in B1(o), are well-studied objects in

stochastic geometry, with a long history originating with the work of Rényi and Su-

lanke [421]. See the surveys of Affentranger [3], Buchta [88], Gruber [207], Schnei-



270 Joseph Yukich

der [444, 446], and Weil and Wieacker [513]), together with Chapter 8.2 in Schnei-

der and Weil [451]. See the overview in Section 7.1.

Functionals of Kλ of interest include its volume, here denoted Vd(Kλ ) and the

number of k-dimensional faces of Kλ , here denoted fk(Kλ ), k ∈ {0,1, ...,d − 1}.
Note that f0(Kλ ) is the number of vertices of Kλ . The k-th intrinsic volumes of Kλ

are denoted by Vk(Kλ ), k ∈ {1, ...,d −1}.
As seen in Section 7.1, we have for all d ≥ 2 and all k ∈ {0, ...,d −1} that there

are constants Dk,d such that

lim
λ→∞

λ−(d−1)/(d+1)E fk(Kλ ) = Dk,d

∫

∂K
Hd−1(x)

1/(d+1)dx.

and one may wonder whether there exist similar asymptotics for limiting variances.

This is indeed the case, which may be seen as follows.

Define the functional ξ (x,X ) to be one or zero, depending on whether x ∈ X
is a vertex in the convex hull of X . When K = B1(o) the unit ball in Rd , by refor-

mulating functionals of convex hulls in terms of functionals of re-scaled parabolic

growth processes in space and time, it may be shown that ξ is exponentially local-

izing [111]. The arguments are non-trivial and we refer to [111] for details. Taking

into account the proper scaling in space-time, a modification of Theorem 8.5 yields

variance asymptotics for Vd(Kλ ), namely

lim
λ→∞

λ (d+3)/(d+1) var[Vd(Kλ )] = σ2
V , (8.68)

where σ2
V ∈ (0,∞) is a constant. This adds to Reitzner’s central limit theorem (Theo-

rem 1 of [419]), his variance approximation var[Vd(Kλ )]≈ λ−(d+3)/(d+1) (Theorem

3 and Lemma 1 of [419]), and Hsing [248], which is confined to d = 2. The stabi-

lization methods of Theorem 8.5 yield a central limit theorem for Vd(Kλ ).
Let k ∈ {0,1, ...,d − 1}. Consider the functional ξk(x,X ), defined to be zero if

x is not a vertex in the convex hull of X and otherwise defined to be the product

of (k +1)−1 and the number of k-dimensional faces containing x. Consideration of

the parabolic growth processes and the stabilization of ξk in the context of such

processes (cf. [111]) yield variance asymptotics and a central limit theorem for the

number of k-dimensional faces of Kλ , yielding for all k ∈ {0,1, ...,d −1}

lim
λ→∞

λ−(d−1)/(d+1) var[ fk(Kλ )] = σ2
fk
, (8.69)

where σ2
fk
∈ (0,∞) is given as a closed form expression described in terms of

paraboloid growth processes. For the case k = 0, this is proved in [459], whereas

[111] handles the cases k > 0. This adds to Reitzner (Lemma 2 of [419]), whose

breakthrough paper showed var[ fk(Kλ )]≈ λ (d−1)/(d+1).

Theorem 8.5 also yields variance asymptotics for the intrinsic volumes Vk(Kλ )
of Kλ for all k ∈ {1, ...,d −1}, namely

lim
λ→∞

λ (d+3)/(d+1) var[Vk(Kλ )] = σ2
Vk

, (8.70)
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where again σ2
Vk

is explicitly described in terms of paraboloid growth processes. This

adds to Bárány et al. (Theorem 1 of [46]), which shows var[Vk(Kn)]≈ n−(d+3)/(d+1).

8.4.3 Intrinsic dimension of high dimensional data sets

Given a finite set of samples taken from a multivariate distribution in Rd , a funda-

mental problem in learning theory involves determining the intrinsic dimension of

the sample [156, 299, 427, 492]. Multidimensional data ostensibly belonging to a

high-dimensional space Rd often are concentrated on a smooth submanifold M or

hypersurface with intrinsic dimension m, where m < d. The problem of determining

the intrinsic dimension of a data set is of fundamental interest in machine learning,

signal processing, and statistics and it can also be handled via analysis of the sums

(8.1).

Discerning the intrinsic dimension m allows one to reduce dimension with min-

imal loss of information and to consequently avoid difficulties associated with the

‘curse of dimensionality’. When the data structure is linear there are several meth-

ods available for dimensionality reduction, including principal component analy-

sis and multidimensional scaling, but for non-linear data structures, mathematically

rigorous dimensionality reduction is more difficult. One approach to dimension es-

timation, inspired by Levina and Bickel [328] uses probabilistic methods involving

the k-nearest neighbour graph GN(k,X ) defined in Section 8.1.2.

For all k = 3,4, ..., the Levina and Bickel estimator of the dimension of a data

cloud X ⊂M, is given by

m̂k(X ) := (card(X ))−1 ∑
x∈X

ξk(x,X ),

where for all x ∈ X we have

ξk(x,X ) := (k−2)

(

k−1

∑
j=1

log
Dk(x)

D j(x)

)−1

,

where D j(x) := D j(x,X ), 1≤ j ≤ k, are the distances between x and its j-th nearest

neighbour in X . We also define for all ρ > 0 the functionals

ξk,ρ(x,X ) := (k−2)

(

k−1

∑
j=1

log
Dk(x)

D j(x)

)−1

1(Dk(x) < ρ)

and we put

m̂k,ρ(X ) := (card(X ))−1 ∑
x∈X

ξk,ρ(x,X ).

Let {ηi}n
i=1 be i.i.d. random variables with values in a submanifold M and put

Xn := {ηi}n
i=1. Levina and Bickel [328] argue that m̂k(Xn) approximates the intrin-
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sic dimension of Xn, i.e., the dimension of M. Indeed, m̂k is an unbiased estimator

when the underlying sample is a homogeneous Poisson point process onRm, as seen

by the next exercise.

Exercise 8.8. Recall that Π1 is a homogeneous Poisson point process on Rm of in-

tensity 1. Conditional on Dk, the collection {(D j(o,Π1)

Dk(o,Π1)
)m}k−1

j=1 is a sample from a

Unif[0,1]-distribution. Deduce that

Eξk(o,Π1) = m(k−2)E

(

k−1

∑
j=1

log(1/U j)

)−1

= m.

Subject to regularity conditions on M and the density κ , the papers [403] and

[526] substantiate the arguments of Levina and Bickel and show (i) consistency of

the dimension estimator m̂k(Xn) and (ii) a central limit theorem for m̂k,ρ(Xn), ρ
fixed and small, together with a rate of convergence. This goes as follows.

For all τ > 0, recall that Πτ is a homogeneous Poisson point process on Rm of

intensity τ . Recalling the notation (8.39) and (8.40), we put

V ξk(τ,m) := E[ξk(o,Πτ)
2] +

+ τ

∫

Rm

[

E[ξk(o,Πτ ∪{u})ξk(u,Πτ ∪o)]− (E[ξk(o,Πτ)])
2
]

du (8.71)

and

δ ξk(τ,m) := E[ξk(o,Πτ)]+ τ

∫

Rm
E[ξk(o,Πτ ∪{u})−ξk(o,Πτ)]du. (8.72)

We put δ ξk(m) := δ ξk(1,m). Let Πλκ be the collection {η1, ...,ηN(λ )}, where ηi

are i.i.d. with density κ and N(λ ) is an independent Poisson random variable with

parameter λ . Thus Πλκ is a Poisson point process on M with intensity λκ . By

extending Theorems 8.4 and 8.5 to C1 submanifolds M as in [403], we obtain the

following limit theory for the Levina and Bickel estimator.

Theorem 8.8. Let κ be bounded away from zero and infinity on M. We have for all

k ≥ 4

lim
λ→∞

|m̂k(Πλκ)−m|= lim
n→∞

|m̂k(Xn)−m|= 0, (8.73)

where m = dim(M) and where the convergence holds in probability. If κ is a.e.

continuous then there exists ρ1 > 0 such that if ρ ∈ (0,ρ1) and k ≥ 7, then

lim
n→∞

nvar[m̂k,ρ(Xn)] = σ2
k (m) :=

m2

k−3
− (δ ξk(m))2 (8.74)

and as n → ∞,

n1/2(m̂k,ρ(Xn)−Em̂k,ρ(Xn))
d−→ N(0,σ2

k (m)). (8.75)
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Remark. Theorem 8.8 adds to Chatterjee [116], who does not provide variance

asymptotics (8.74) and who considers convergence rates with respect to the weaker

Kantorovich-Wasserstein distance. Bickel and Yan (Theorems 1 and 3 of Section 4

of [67]) establish a central limit theorem for m̂k(Xn) for linear M.

8.4.4 Clique counts, Vietoris-Rips complex

A central problem in data analysis involves discerning and counting clusters. Ge-

ometric graphs and the Vietoris-Rips complex play a central role and both are

amenable to asympototic analysis via stabilization techniques. The Vietoris-Rips

complex is studied in connection with the statistical analysis of high-dimensional

data sets [118], manifold reconstruction [119], and it has also received attention

amongst topologists in connection with clustering and connectivity questions of data

sets [112].

If X ⊂ R
d is finite and β > 0, then the Vietoris-Rips complex Rβ (X ) is the

abstract simplicial complex whose k-simplices (cliques of order k + 1) correspond

to unordered (k + 1) tuples of points of X which are pairwise within Euclidean

distance β of each other. Thus, if there is a subset S of X of size k+1 with all points

of S distant at most β from each other, then S is a k-simplex in the complex.

Given Rβ (X ) and k ∈N, let N
β
k (X ) be the cardinality of k-simplices in Rβ (X ).

Let ξ
β
k (x,X ) be the product of (k+1)−1 and the cardinality of k-simplices contain-

ing x in Rβ (X ). Thus N
β
k (X ) = ∑x∈X ξ

β
k (x,X ). The value of ξ

β
k (x,X ) depends

only on points distant at most β from x, showing that β is a radius of stabiliza-

tion for ξ
β
k and thus ξ

β
k is trivially exponentially stabilizing (8.32) and binomially

exponentially stabilizing (8.58).

The next scaling result, which holds for C1 submanifolds M, links the large

scale behavior of the clique count with the density κ of the underlying point set.

Let ηi be i.i.d. with density κ on the manifold M. Put Xn := {ηi}n
i=1. Let Πτ be a

homogeneous Poisson point process on Rm of constant intensity τ , dx the volume

measure on M, and let V ξ
β
k and δ ξ

β
k be defined as in (8.39) and (8.40), respectively,

with ξ replaced by ξ
β
k . It is shown in [403] that a generalization of Theorems 8.4

and 8.6 to binomial input on manifolds yields:

Theorem 8.9. Let κ be bounded on M; dimM = m. For all k ∈ N and all β > 0

we have

lim
n→∞

n−1N
β
k (n1/mXn) =

∫

M

E[ξ
β
k (o,Πκ(x))]κ(x)dx in L2. (8.76)

If κ is a.e. continuous and bounded away from zero on its support, assumed to be a

compact subset of M, then
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lim
n→∞

n−1 var[N
β
k (n

1/mXn)]

= σ2
k (m) :=

∫

M

V ξ
β
k (κ(x))κ(x)dx−

(

∫

M

δ ξ
β
k (κ(x))κ(x)dx

)2

(8.77)

and, as n → ∞

n−1/2(N
β
k (n

1/mXn)−EN
β
k (n

1/mXn))
d−→ N(0,σ2

k (m)). (8.78)

This result extends Proposition 3.1, Theorem 3.13, and Theorem 3.17 of [394].

For more details and for further simplification of the limits (8.76) and (8.77) we

refer to [403].


