
Chapter 1
Limit theorems in discrete stochastic geometry

Joseph Yukich

Abstract This overview surveys two general methods for establishing limit theo-
rems for functionals in discrete stochastic geometry. The functionals of interest are
linear statistics with the general representation ∑x∈X ξ (x,X ), where X is locally
finite and where the interactions of x with respect to X , given by ξ (x,X ), exhibit
spatial dependence. We focus on subadditive methods and stabilization methods as
a way to obtain weak laws of large numbers and central limit theorems for nor-
malized and re-scaled versions of ∑n

i=1 ξ (Xi,{X j}n
j=1), where X j, j ≥ 1, are i.i.d.

random variables. The general theory is applied to particular problems in Euclidean
combinatorial optimization, convex hulls, random sequential packing, and dimen-
sion estimation.

1.1 Introduction

This overview surveys two general methods for establishing limit theorems, includ-
ing weak laws of large numbers and central limit theorems, for functionals of large
random geometric structures. By geometric structures, we mean for example net-
works arising in computational geometry, graphs arising in Euclidean optimization
problems, models for random sequential packing, germ-grain models, and the con-
vex hull of high density point sets. Such diverse structures share only the common
feature that they are defined in terms of random points belonging to Euclidean space
Rd . The points are often the realization of i.i.d. random variables, but they could also
be the realization of Poisson point processes or even Gibbs point processes. There
is scope here for generalization to point processes in more general spaces, including
manifolds and general metric spaces, but for ease of exposition we restrict attention
to point processes in Rd . As such, this introductory overview makes few demands
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involving prior familiarity with the literature. Our goals are to provide an accessi-
ble survey of asymptotic methods involving (i) subadditivity and (ii) stabilization
and to illustrate the applicability of these methods to problems in discrete stochastic
geometry.

Functionals of geometric structures are often formulated as linear statistics on
locally finite point sets X of Rd , that is to say consist of sums represented as

H(X ) := Hξ (X ) := ∑
x∈X

ξ (x,X ), (1.1)

where the function ξ , defined on all pairs (x,X ), x ∈ X , represents the interaction
of x with respect to X . In nearly all problems of interest, the values of ξ (x,X )
and ξ (y,X ), x 6= y, are not unrelated but, loosely speaking, become more related
as the Euclidean distance ||x− y|| becomes smaller. This ‘spatial dependency’ is
the chief source of difficulty when developing the limit theory for Hξ on random
point sets. Despite this inherent spatial dependency, relatively simple subadditive
methods originating in the landmark paper of Beardwood, Halton, and Hammersley
[8], and developed further in [66] and [70], yield mean and a.s. asymptotics of the
normalized sums

n−1Hξ ({xi}n
i=1), (1.2)

where xi are i.i.d. with values in [0,1]d . Subadditive methods lean heavily on the
self-similarity of the unit cube, but to obtain distributional results, variance asymp-
totics, and explicit limiting constants in laws of large numbers, one needs tools going
beyond subadditivity. When the spatial dependency may be localized, in a sense to
be made precise, then this localization yields distributional and second order results,
and it also shows that the large scale macroscopic behaviour of Hξ on random point
sets, e.g. laws of large numbers and central limit theorems, is governed by the local
interactions described by ξ .

Typical questions motivating this survey, which may all be framed in terms of
the linear statistics (1.1), include the following:

1. Given i.i.d. points x1, ....,xn in the unit cube [0,1]d , what is the asymptotic length
of the shortest tour through x1, ....,xn?

2. Given i.i.d. points x1, ....xn in the unit d-dimensional ball, what is the asymptotic
distribution of the number of k-dimensional faces, k ∈ {0,1, ...,d − 1}, in the
random polytope given by the convex hull of x1, ....,xn?

3. Open balls B1,B2, ...,Bn of volume n−1 arrive sequentially and uniformly at ran-
dom in [0,1]d . The first ball B1 is packed, and recursively for i = 2,3, ..., the i-th
ball Bi is packed iff Bi does not overlap any ball in B1, ...,Bi−1 which has already
been packed. If not packed, the i-th ball is discarded. The process continues until
no more balls can be packed. As n → ∞, what is the asymptotic distribution of
the number of balls which are packed in [0,1]d?

To see that such questions fit into the framework of (1.1) it suffices to make these
corresponding choices for ξ :
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1’. ξ (x,X ) is one half the sum of the lengths of edges incident to x in the shortest
tour on X ; Hξ (X ) is the length of the shortest tour through X ,

2’. ξk(x,X ) is defined to be zero if x is not a vertex in the convex hull of X and
otherwise defined to be the product of (k+1)−1 and the number of k-dimensional
faces containing x; Hξ (X ) is the number of k-faces in the convex hull of X ,

3’. ξ (x,X ) is equal to one or zero depending on whether the ball with center at
x ∈ X is accepted or not; Hξ (X ) is the total number of balls accepted.

When X is a growing point set of random variables, the large scale asymptotic
analysis of the sums (1.1) is sometimes handled by M-dependent methods, ergodic
theory, or mixing methods. However, these classical methods, when applicable, may
not give explicit asymptotics in terms of the underlying interaction and point den-
sities, they may not yield second order results, or they may not easily yield explicit
rates of convergence. Our goal here is to provide an abridged treatment of two alter-
nate methods suited to the asymptotic theory of the sums (1.2), namely to discuss
(i) subadditivity and (ii) stabilization.

The sub-additive approach, described in detail in the monographs [66], [70],
yields a.s. laws of large numbers for problems in Euclidean combinatorial optimiza-
tion, including the length of minimal spanning trees, minimal matchings, and short-
est tours on random point sets. Formal definitions of these archetypical problems
are given below. Sub-additive methods also yield the a.s. limit theory of problems
in computational geometry, including the total edge length of nearest neighbour
graphs, the Voronoi and Delaunay graphs, the sphere of influence graph, as well
as graphs graphs arising in minimal triangulations and the k-means problem. The
approach based on stabilization, originating in Penrose and Yukich [41] and further
developed in [6, 38, 39, 42, 45], is useful in proving laws of large numbers, central
limit theorems, and variance asymptotics for many of these functionals; as such it
provides closed form expressions for the limiting constants arising in the mean and
variance asymptotics. This approach has been used to study linear statistics aris-
ing in random packing [42], convex hulls [59], ballistic deposition models [6, 42],
quantization [60, 72], loss networks [60], high-dimensional spacings [7], distributed
inference in random networks [2], and geometric graphs in Euclidean combinatorial
optimization [41, 43].

Recalling that X is a locally finite point set in Rd , functionals and graphs of
interest include:

1. Traveling salesman functional; TSP. A closed tour on X or closed Hamiltonian
tour is a closed path traversing each vertex in X exactly once. Let TSP(X ) be the
length of the shortest closed tour T on X . Thus

T SP(X ) := min
T ∑

e∈T
|e|, (1.3)

where the minimum is over all tours T and where |e| denotes the Euclidean edge
length of the edge e. Thus,
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T SP(X ) := min
σ

{
‖xσ(n)− xσ(1)‖+

n−1

∑
i=1
‖xσ(i)− xσ(i+1)‖

}
,

where the minimum is taken over all permutations σ of the integers 1,2, ...,n.
2. Minimum spanning tree; MST. Let MST(X ) be the length of the shortest

spanning tree on X , namely

MST (X ) := min
T ∑

e∈T
|e|, (1.4)

where the minimum is over all spanning trees T of X .
3. Minimal matching. The minimal matching on X has length given by

MM(X ) := min
σ

n/2

∑
i=1
‖xσ(2i−1)− xσ(2i)‖, (1.5)

where the minimum is over all permutations of the integers 1,2, ...,n. If n has
odd parity, then the minimal matching on X is the minimum of the minimal
matchings on the n distinct subsets of X of size n−1.

4. k-nearest neighbours graph. Let k ∈ N. The k-nearest neighbours (undirected)
graph on X , here denoted GN(k,X ), is the graph with vertex set X obtained
by including {x,y} as an edge whenever y is one of the k nearest neighbours of
x and/or x is one of the k nearest neighbours of y. The k-nearest neighbours (di-
rected) graph onX , denoted GN(k,X ), is the graph with vertex setX obtained by
placing an edge between each point and its k nearest neighbours. Let NN(k,X )
denote the total edge length of GN(k,X ), i.e.,

NN(k,X ) := ∑
e∈GN(k,X )

|e|, (1.6)

with a similar definition for the total edge length of GN(k,X ).
5. Steiner minimal spanning tree. A Steiner tree on X is a connected graph con-

taining the vertices in X . The graph may include vertices other than those in X .
The total edge length of the Steiner minimal spanning tree on X is

ST (X ) := min
S

∑
e∈S
|e|, (1.7)

where the minimum ranges over all Steiner trees S on X .
6. Minimal semi-matching. A semi-matching on X is a graph in which all ver-

tices have degree 2, with the understanding that an isolated edge between two
vertices represents two copies of that edge. The graph thus contains tours with
an odd number of edges as well as isolated edges. The minimal semi-matching
functional on X is

SM(X ) := min
SM

∑
e∈SM

|e|, (1.8)
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where the minimum ranges over all semi-matchings SM on X .
7. k-TSP functional. Fix k ∈ N. Let C be a collection of k sub-tours on points of
X , each sub-tour containing a distinguished vertex x0 and such that each x ∈ X
belongs to exactly one sub-tour. T (k;C,X ) is the sum of the combined lengths of
the k sub-tours in C. The k-TSP functional is the infimum

T (k;X ) := inf
C

T (k;C,X ). (1.9)

Power-weighted edge versions of these functionals are found in [70].

1.2 Subadditivity

Sub-additive functionals

Let xn ∈ R, n≥ 1, satisfy the ‘sub-additive inequality’

xm+n ≤ xm + xn for all m, n ∈ N. (1.10)

Sub-additive sequences are nearly additive in the sense that they satisfy the sub-
additive limit theorem, namely limn→∞ xn/n = α where α := inf{xm/m : m ≥ 1} ∈
[−∞,∞). This classic result, proved in Hille (1948), may be viewed as a limit result
about sub-additive functions indexed by intervals.

For certain choices of the interaction ξ , the functionals Hξ defined at (1.1) satisfy
geometric subadditivity over rectangles and, as we will see, consequently satisfy a
sub-additive limit theorem analogous to the classic one just mentioned. To allow
greater generality we henceforth allow the interaction ξ to depend on a parameter
p ∈ (0,∞) and we will write ξ (·, ·) := ξp(·, ·). For example, ξp(·, ·) could denote the
sum of the pth powers of lengths of edges incident to x, where the edges belong to
some specified graph on X .

We henceforth work in this context, but to lighten the notation we will suppress
mention of p.

Let R := R(d) denote the collection of d-dimensional rectangles in Rd . Write
Hξ (X ,R) for Hξ (X ∩ R), R ∈ R. Say that Hξ is geometrically sub-additive, or
simply sub-additive, if there is a constant c1 := c1(p) < ∞ such that for all R ∈ R,
all partitions of R into rectangles R1 and R2, and all finite point sets X we have

Hξ (X ,R)≤ Hξ (X ,R1)+Hξ (X ,R2)+ c1(diam(R))p. (1.11)

Unlike scalar subadditivity (1.10), the relation (1.11) carries an error term.
Classic optimization problems as well as certain functionals of Euclidean graphs,

satisfy geometric subadditivity (1.11). For example, the length of the minimal span-
ning tree defined at (1.4) satisfies (1.11) when p is set to 1, which may be seen
as follows. Put MST(X ,R) to be the length of the minimal spanning tree on X ∩R.
Given a finite set X and a rectangle R := R1∪R2, let Ti denote the minimal spanning
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tree on X ∩Ri, 1 ≤ i ≤ 2. Tie together the two spanning trees T1 and T2 with an
edge having a length bounded by the sum of the diameters of the rectangles R1 and
R2. Performing this operation generates a feasible spanning tree on X at a total cost
bounded by MST(X ,R1) + MST(X ,R2) + diam(R). Putting p = 1, (1.11) follows
by minimality. We may similarly show that the TSP (1.3), minimal matching (1.5),
and nearest neighbour functionals (1.6) satisfy geometric subadditivity (1.11) with
p = 1.

Super-additive functionals

Were geometric functionals Hξ to simultaneously satisfy a super-additive relation
analogous to (1.11), then the resulting ‘near additivity’ of Hξ would lead directly
to laws of large numbers. This is too much to hope for. On the other hand, many
geometric functionals Hξ (·,R) admit a ‘dual’ version - one which essentially treats
the boundary of the rectangle R as a single point, that is to say edges on the boundary
∂ R have zero length or ‘zero cost’. This boundary version, introduced in [48] and
used in [49] and [50] and here denoted Hξ

B (·,R), closely approximates Hξ (·,R) in a
sense to be made precise (see (1.17) below) and is super-additive without any error
term. More exactly, the boundary version Hξ

B (·,R) satisfies

Hξ
B (X ,R)≥ Hξ

B (X ∩R1,R1)+Hξ
B (X ∩R2,R2). (1.12)

By way of illustration we define the boundary minimal spanning tree functional.
For all rectangles R ∈R and finite sets X ⊂ R put

MSTB(X ,R) := min

(
MST (X ,R), inf∑

i
MST (Xi∪ai)

)
,

Fig. 1.1 The boundary MST graph; edges on boundary have zero cost.
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where the infimum ranges over all partitions (Xi)i≥1 ofX and all sequences of points
(ai)i≥1 belonging to ∂R. When MSTB(X ,R) 6= MST(X ,R) the graph realizing the
boundary functional MSTB(X ,R) may be thought of as a collection of small trees
connected via the boundary ∂R into a single large tree, where the connections on
∂R incur no cost. See Figure 1.1. It is a simple matter to see that the boundary
MST functional satisfies sub-additivity (1.11) with p = 1 and is also super-additive
(1.12). Later we will see that the boundary MST functional closely approximates
the standard MST functional.

The traveling salesman (shortest tour) graph, minimal matching graph, and near-
est neighbour graph all satisfy (1.11) and have boundary versions which are super-
additive (1.12); see [70] for details.

Sub-additive and super-additive Euclidean functionals

Recall that ξ (·, ·) := ξp(·, ·). The following conditions endow the functional Hξ (·, ·)
with a Euclidean structure:

Hξ (X ,R) = Hξ (X + y,R+ y) (1.13)

for all y ∈ Rd , R ∈R, X ⊂ R and

Hξ (αX ,αR) = α pHξ (X ,R) (1.14)

for all α > 0, R ∈ R and X ⊂ R. By αB we understand the set {αx, x ∈ B} and by
y+X we mean {y+x : x∈X}. Conditions (1.13) and (1.14) express the translation
invariance and homogeneity of order p of Hξ , respectively. Homogeneity (1.14) is
satisfied whenever the interaction ξ is itself homogeneous of order p, that is to say
whenever

ξ (αx,αX ) = α pξ (x,X ), α > 0. (1.15)

Functionals satisfying translation invariance and homogeneity of order 1 include
the total edge length of graphs, including those defined at (1.3)-(1.9).

If a functional Hξ (X ,R), (X ,R) ∈ N×R, is super-additive over rectangles and
has a Euclidean structure over N×R, where N is the space of locally set of fi-
nite point sets in Rd , then we say that Hξ is a super-additive Euclidean functional,
formally defined as follows:

Definition 1. Let Hξ ( /0,R) = 0 for all R ∈ R and suppose Hξ satisfies (1.13) and
(1.14). If Hξ satisfies

Hξ (X ,R)≥ Hξ (X ∩R1,R1)+Hξ (X ∩R2,R2), (1.16)

whenever R∈R is partitioned into rectangles R1 and R2 then Hξ is a super-additive
Euclidean functional. Sub-additive Euclidean functionals satisfy (1.13), (1.14), and
geometric subadditivity (1.11).
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It may be shown that the functionals TSP, MST and MM are sub-additive Eu-
clidean functionals and that they admit dual boundary versions which are super-
additive Euclidean functionals; see Chapter 2 of [70]. To be useful in establishing
asymptotics, dual boundary functionals must closely approximate the correspond-
ing functional. The following closeness condition is sufficient for these purposes.
Recall that we suppress the dependence of ξ on p, writing ξ (·, ·) := ξp(·, ·).

Definition 2. Say that Hξ and Hξ
B are pointwise close if for all finite subsets X ⊂

[0,1]d we have

|Hξ (X , [0,1]d)−Hξ
B (X , [0,1]d)|= o

(
card(X ))(d−p)/d

)
. (1.17)

The TSP, MST, MM and nearest neighbour functionals all admit respective
boundary versions which are pointwise close in the sense of (1.17); see Lemma
3.7 of [70]. See [70] for description of other functionals having boundary versions
which are pointwise close in the sense of (1.17).

Iteration of geometric subadditivity (1.11) leads to growth bounds on sub-
additive Euclidean functionals Hξ , namely for all p ∈ (0,d) there is a constant
c2 := c2(ξp,d) such that for all rectangles R ∈R and all X ⊂ R, X ∈ N, we have

Hξ (X ,R)≤ c2(diam(R))p(cardX )(d−p)/d . (1.18)

Subadditivity (1.11) and growth bounds (1.18) by themselves do not provide
enough structure to yield the limit theory for Euclidean functionals; one also needs
control on the oscillations of these functionals as points are added or deleted. Some
functionals, such as T SP, clearly increase with increasing argument size, whereas
others, such as MST , may decrease. A useful continuity condition goes as follows.

Definition 3. A Euclidean functional Hξ is smooth of order p if there is a finite
constant c3 := c3(ξp,d) such that for all finite sets X1,X2 ⊂ [0,1]d we have

|Hξ (X1∪X2)−Hξ (X1)| ≤ c3(card(X2))(d−p)/d . (1.19)

Examples of functionals satisfying smoothness (1.19)

1. Let TSP be as in (1.3). For all finite sets X1 and X2 ⊂ [0,1]d we have

T SP(X1)≤ T SP(X1∪X2)≤ T SP(X1)+T SP(X2),

where the first inequality follows by the monotonicity of the TSP functional
and the second by subadditivity (1.11). Since by (1.18) we have TSP(X2) ≤
c2
√

d(cardX2)(d−1)/d , it follows that the TSP is smooth of order 1.
2. Let MST be as in (1.4). Subadditivity (1.11) and the growth bounds (1.18) imply

that for all sets X1,X2 ⊂ [0,1]d we have MST(X1∪X2)≤ MST(X1)+(c1
√

d +
c2
√

d(cardX2)(d−1)/d ≤ MST(X1)+ c(cardX2)(d−1)/d . It follows that the MST
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is smooth of order 1 once we show the reverse inequality

MST (X1∪X2)≥MST (X )− c(cardX2)(d−1)/d . (1.20)

To show (1.20) let T denote the graph of the minimal spanning tree on X1 ∪
X2. Remove the edges in T which contain a vertex in X2. Since each vertex
has bounded degree, say D, this generates a subgraph T1 \T which has at most
D · cardX2 components. Choose one vertex from each component and form the
minimal spanning tree T2 on these vertices. Since the union of the trees T1 and
T2 is a feasible spanning tree on X1, it follows that

MST (X1)≤ ∑
e∈T1∪T2

|e| ≤MST (X1∪X2)+ c(D · cardX2)(d−1)/d

by the growth bounds (1.18). Thus smoothness (1.19) holds for the MST func-
tional.

We may similarly show that the minimal matching functional MM defined at
(1.5) is smooth of order 1 (Chapter 3.3 of [70]). Likewise, the semi-matching, near-
est neighbour, and k-TSP functionals are smooth of order 1, as shown in Sections
8.2, 8.3 and 8.4 of [70]), respectively. A modification of the Steiner functional (1.7)
is smooth of order 1 (see Ch. 10 of [70]). We thus see that the functionals TSP,
MST and MM defined at (1.3)-(1.5) are all smooth sub-additive Euclidean function-
als which are pointwise close to a canonical boundary functional. The functionals
(1.6)-(1.9) satisfy the same properties. Now we give some limit theorems for such
functionals.

Laws of large numbers

We state a basic law of large numbers for Euclidean functionals on i.i.d. uniform
random variables η1, ...,ηn in [0,1]d . Recall that a sequence of random variables
ζn converges completely, here denoted c.c., to a limit random variable ζ , if for all
ε > 0, we have ∑∞

n=1 P(|ζn−ζ |> ε) < ∞.

Theorem 1. Let p∈ [1,d). If Hξ
B := Hξp

B is a smooth super-additive Euclidean func-
tional of order p on Rd , then

lim
n→∞

n(p−d)/dHξ
B (η1, ...,ηn) = α(Hξ

B ,d) c.c., (1.21)

where α(Hξ
B ,d) is a positive constant. If Hξ is a Euclidean functional which is

pointwise close to Hξ
B as in (1.17), then

lim
n→∞

n(p−d)/dHξ (η1, ...,ηn) = α(Hξ
B ,d) c.c. (1.22)

Remarks.
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1. Theorem 1 gives c.c. laws of large numbers for the functionals (1.3)-(1.9); see
[70] for details.

2. Smooth sub-additive Euclidean functionals which are point-wise close to smooth
super-additive Euclidean functionals are ‘nearly additive’ and consequently sat-
isfy Donsker-Varadhan-style large deviation principles, as shown in [64].

3. The papers [25] and [30] provide further accounts of the limit theory for subad-
ditive Euclidean functionals.

Rates of convergence of Euclidean functionals

If a sub-additive Euclidean functional Hξ is close in mean (cf. Definition 3.9 in
[70]) to the associated super-additive Euclidean functional Hξ

B , namely if

|E[Hξ (η1, ...,ηn)]−E[Hξ
B (η1, ...,ηn)]|= o(n(d−p)/d), (1.23)

where we recall that ηi are i.i.d. uniform on [0,1]d , then we may upper bound
|E[Hξ (η1, ...,ηn)]−α(Hξ

B ,d)n(d−p)/d |, thus yielding rates of convergence of

E[n(p−d)/dHξ (η1, ...,ηn)]

to its mean. Since the TSP, MST, and MM functionals satisfy closeness in mean
(p 6= d−1, d≥ 3) the following theorem immediately provides rates of convergence
for our prototypical examples.

Theorem 2. (Rates of convergence of means) Let Hξ and Hξ
B be sub-additive and

super-additive Euclidean functionals, respectively, satisfying the close in mean ap-
proximation (1.23). If Hξ is smooth of order p ∈ [1,d) as defined at (1.19), then for
d ≥ 2 and for α(Hξ

B ,d) as at (1.21), we have

|E[Hξ (η1, ...,ηn)]−α(Hξ
B ,d)n(d−p)/d | ≤ c

(
n(d−p)/2d ∨n(d−p−1)/d

)
. (1.24)

Koo and Lee [30] give conditions under which Theorem 2 can be improved.

General umbrella theorem for Euclidean functionals

Here is the main result of this section. Let X1, ...,Xn be i.i.d. random variables with
values in [0,1]d , d ≥ 2 and put Xn := {Xi}n

i=1.

Theorem 3. (Umbrella theorem for Euclidean functionals) Let Hξ and Hξ
B be sub-

additive and super-additive Euclidean functionals, respectively, both smooth of or-
der p ∈ [1,d). Assume that Hξ and Hξ

B are close in mean (1.23). Then

lim
n→∞

n(p−d)/dHξ (Xn) = α(Hξ
B ,d)

∫

[0,1]d
κ(x)(d−p)/d dx c.c., (1.25)
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where κ is the density of the absolutely continuous part of the law of η1.

Remarks.

1. There exists an umbrella type of theorem for Euclidean functionals satisfying
monotonicity and other assumptions not pertaining to boundary functionals, see
e.g. Theorem 2 of [65]. Theorem 3 has its origins in [48] and [49].

2. Theorem 3 is used by Baltz et al. [3] to analyze asymptotics for the multiple vehi-
cle routing problem; Costa and Hero [18] show asymptotics similar to Theorem
3 for the MST on suitably regular Riemannian manifolds and they apply their
results to estimation of Rényi entropy and manifold dimension. Costa and Hero
[19], using the theory of sub-additive and superadditive Euclidean functionals,
called by them ‘entropic graphs’, obtain asymptotics for the total edge length of
k-nearest neighbour graphs on manifolds. The paper [25] provides further appli-
cations of entropic graphs to imaging and clustering.

3. The TSP functional satisfies the conditions of Theorem 3 and we thus recover as
a corollary the Beardwood-Halton-Hammersley theorem [8]. It can likewise be
shown that Theorem 3 also establishes the limit theory for total edge length of
the functionals defined at (1.4)-(1.9); see [70] for details.

4. If the Xi fail to have a density then the right-hand side of (1.25) vanishes. On the
other hand, Hölder’s inequality shows that the right-hand side of (1.25) is largest
when κ is uniform on [0,1]d .

5. See Chapter 7 of [70] for extensions of Theorem 3 to functionals of random
variables on unbounded domains.

Proof. (Sketch of proof of Theorem 3) The proof of Theorem 3 is simplified by
using the Azuma-Hoeffding concentration inequality to show that it is enough to
prove convergence of means in (1.25). Smoothness then shows that it is enough to
prove convergence of E[Hξ (Xn)/n(d−p)/d ] for the so-called blocked distributions,
i.e. those whose absolutely continuous part is a linear combination of indicators
over congruent sub-cubes forming a partition of [0,1]d . To establish convergence
for the blocked distributions, one combines Theorem 1 with the sub-additive and
superadditive relations. These methods are standard and we refer to [70] for com-
plete details.

The limit (1.25) exhibits the asymptotic dependency of the total edge length of
graphs on the underlying point density κ . Still, (1.25) is unsatisfying in that we don’t
have a closed form expression for the constant α(Hξ

B ,d). Stabilization methods,
described below, are used to explicitly identify α(Hξ

B ,d).

1.3 Stabilization

Sub-additive methods yield a.s. limit theory for the functionals Hξ defined at (1.2)
but they do not express the macroscopic behaviour of Hξ in terms of the local inter-
actions described by ξ . Stabilization methods overcome this limitation, they yield
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second order and distributional results, and they also provide limit results for the
empirical measures

∑
x∈X

ξ (x,X )δx, (1.26)

where δx is the point mass at x. The empirical measure (1.26) has total mass given
by Hξ .

We will often assume that the interaction or ‘score’ function ξ , defined on pairs
(x,X ), with X locally finite in Rd , is translation invariant, i.e. ξ (x + y,X + y) =
ξ (x,X ), y ∈ Rd .

When X is random the range of spatial dependence of ξ at x ∈ X is random and
the purpose of stabilization is to quantify this range in a way useful for asymptotic
analysis. There are several notions of stabilization, with the simplest being that of
stabilization of ξ with respect to a rate τ homogeneous Poisson point process Πτ on
Rd , defined as follows. Let Br(x) denote the Euclidean ball centered at x with radius
r and let 0 denote a point at the origin of Rd .

Homogeneous stabilization

We say that a translation invariant ξ is homogeneously stabilizing if for all τ > 0
there exists an almost surely finite random variable R := R(Πτ) such that

ξ (0,(Πτ ∩BR(0))∪A) = ξ (0,Πτ ∩BR(0)) (1.27)

for all locally finite A ⊂ Rd \ BR(0). Thus the value of ξ at 0 is unaffected by
changes in the configuration outside BR(0). The random range of dependency given
by R depends on the realization of Πτ .

Examples.

1. Nearest neighbour distances. Recalling (1.6), consider the nearest neighbour
graph GN(1,X ) on the point set X and let ξ (x,X ) denote one half the sum of
the lengths of edges in GN(1,X ) which are incident to x. Thus Hξ (X ) is the sum
of edge lengths in GN(1,X ). Partition R2 with six congruent cones with apex at
the origin of R2 and put Ri to be the distance between the origin and the nearest
point in Πτ ∩Ki, 1 ≤ i ≤ 6. It is easy to see that R := max1≤i≤6 Ri is a radius of
stabilization, i.e,. points in Bc

R(0) do not change the value of ξ (0,Πτ). Indeed,
any point w in Bc

R(0) is closer to a point in Πτ ∩BR(0) than it is to the origin and
so edges incident to w will not affect the value of ξ (0,Πτ).

2. Let V (X ) be the graph of the Voronoi tessellation of X and let ξ (x,X ) be one
half the sum of the lengths of the edges in the Voronoi cell C(x) around x. The
Voronoi flower around x, or fundamental region, is the union of those balls having
as center a vertex of C(x) and exactly two points of X on their boundary and no
points of X inside. Then it may be shown (see Zuyev [73]) that the geometry of
C(x) is completely determined by the Voronoi flower and thus the radius of a ball
centered at x containing the Voronoi flower qualifies as a stabilization radius.
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3. Minimal spanning trees. Recall from (1.4) that MST(X ) is the total edge length
of the minimal spanning tree on X ; let ξ (x,X ) be one half the sum of the lengths
of the edges in the MST which are incident to x. Then ξ is homogeneously sta-
bilizing, which follows from arguments involving the uniqueness of the infinite
component in continuum percolation [44].

Given X ⊂ Rd , a > 0 and y ∈ Rd , recall that aX := {ax : x ∈ X}. For all λ > 0
define the λ re-scaled version of ξ by

ξλ (x,X ) := ξ (λ 1/dx,λ 1/dX ). (1.28)

Re-scaling is natural when considering point sets in compact sets K having cardi-
nality roughly λ ; dilation by λ 1/d means that unit volume subsets of λ 1/dK host on
the average one point. When x ∈ Rd \X , we abbreviate notation and write ξ (x,X )
instead of ξ (x,X ∪{x}).

It is useful to consider point processes onRd more general than the homogeneous
Poisson point processes. Let κ be a probability density function on Rd with support
K ⊆ Rd . For all λ > 0, let Πλκ denote a Poisson point process in Rd with intensity
measure λκ(x)dx. We shall assume throughout that κ is bounded with supremum
denoted ‖κ‖∞.

Homogeneous stabilization is an example of ‘point stabilization’ [56] in that ξ
is required to stabilize around a given point x ∈ Rd with respect to homogeneously
distributed Poisson points Πτ . A related ‘point stabilization’ requires that ξ stabilize
around x, but now with respect to Πλκ uniformly in λ ∈ [1,∞).

Stabilization with respect to κ

ξ is stabilizing with respect to κ and K if for all λ ∈ [1,∞) and all x∈K, there exists
an almost surely finite random variable R := R(x,λ ) (a radius of stabilization for ξλ
at x) such that for all finite A⊂ (Rd \Bλ−1/dR(x)), we have

ξλ
(
x, [Πλκ ∩Bλ−1/dR(x)]∪A)

= ξλ
(
x,Πλκ ∩Bλ−1/dR(x)

)
. (1.29)

If the tail probability τ(t) defined for t > 0 by τ(t) := supλ≥1, x∈K P(R(x,λ ) > t)
satisfies limsupt→∞ t−1 logτ(t) < 0 then we say that ξ is exponentially stabilizing
with respect to κ and K.

Roughly speaking, R := R(x,λ ) is a radius of stabilization if for all λ ∈ [1,∞),
the value of ξλ (x,Πλκ) is unaffected by changes to the points outside Bλ−1/dR(x). In
most examples of interest, methods showing that functionals homogeneously stabi-
lize are easily modified to show stabilization with respect to densities κ .

Returning to our examples 1-3, it may be shown that the interaction function
ξ from examples 1 and 2 stabilizes exponentially fast when κ is bounded away
from zero on its support whereas the interaction ξ from example 3 is not known to
stabilize exponentially fast.
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We may weaken homogeneous stabilization by requiring that the point sets A in
(1.27) belong to the homogeneous Poisson point process Πτ . This weaker version
of stabilization, called localization, is used in [13] and [59] to establish variance
asymptotics and central limit theorems for functionals of convex hulls of random
samples in the unit ball. Given r > 0, let ξ r(x,X ) := ξ (x,X ∩Br(x)).

Localization

Say that R̂ := R̂(x,Πτ) is a radius of localization for ξ at x with respect to Πτ if
ξ (x,Πτ) = ξ R̂(x,Πτ) and for all s > R̂ we have ξ s(x,Πτ) = ξ R̂(x,Πτ).

Benefits of Stabilization

Recall that Πλκ is the Poisson point process on Rd with intensity measure λκ(x)dx.
It is easy to show that λ 1/d(Πλκ −x0) converges to Πκ(x0) as λ →∞, where conver-
gence is in the sense of weak convergence of point processes. If ξ (·, ·) is a functional
defined on Rd ×N, where we recall that N is the space of locally finite point sets
in Rd , one might hope that ξ is continuous on the pairs (0,λ 1/d(Πλκ − x0)) in the
sense that ξ (0,λ 1/d(Πλκ −x0)) converges in distribution to ξ (0,Πκ(x0)) as λ →∞.
This turns out to be the case whenever ξ is homogeneously stabilizing as in (1.27).
This is the content of the next lemma; for a complete proof see [37]. Recall that
almost every x ∈Rd is a Lebesgue point of κ , that is to say for almost all x ∈Rd we
have that ε−d ∫

Bε (x) |κ(y)−κ(x)|dy tends to zero as ε tends to zero.

Lemma 1. Let x0 be a Lebesgue point for κ . If ξ is homogeneously stabilizing as in
(1.27), then as λ → ∞

ξλ (x0,Πλκ) d−→ ξ (0,Πκ(x0)). (1.30)

Proof. (Sketch of the proof) By translation invariance of ξ , we have ξλ (x0,Πλκ) =
ξ (0,λ 1/d(Πλκ − x0)). By the stabilization of ξ , it may be shown that (0,Πκ(x0))
is a continuity point for ξ with respect to the product topology on Rd ×N, where
the space of locally finite point sets N in Rd is equipped with metric d(X1,X2) :=
(max{k ∈ N : X1 ∩Bk(0) = X2 ∩Bk(0)})−1 [37]. The result follows by the weak

convergence λ 1/d(Πλκ − x0)
d−→ Πκ(x0) and the continuous mapping theorem (The-

orem 5.5. of [10]).

Recall that η1, ...,ηn are i.i.d. with density κ and put Xn := {ηi}n
i=1. Limit the-

orems for the sums ∑x∈Πλκ
ξλ (x,Πλκ) as well as for the associated random point

measures

µλ := µξ
λ := ∑

x∈Πλκ

ξλ (x,Πλκ)δx and ρn := ρξ
n :=

n

∑
i=1

ξn(ηi,Xn)δηi (1.31)
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naturally require moment conditions on the summands, thus motivating the next
definition.

Definition 4. ξ has a moment of order p > 0 (with respect to κ and K) if

sup
λ≥1, x∈K,A∈K

E[|ξλ (x,Πλκ ∪A)|p] < ∞, (1.32)

where A ranges over all finite subsets of K.

Let B(K) denote the class of all bounded f : K → R and for all measures µ on
Rd let 〈 f ,µ〉 :=

∫
f dµ . Put µ̄ := µ−Eµ . For all f ∈ B(K) we have by Campbell’s

theorem that
E[〈 f ,µλ 〉] = λ

∫

K
f (x)E[ξλ (x,Πλκ)]κ(x)dx. (1.33)

If (1.32) holds for some p > 1, then uniform integrability and Lemma 1 show that
for all Lebesgue points x of κ one has E[ξλ (x,Πλκ)]→ E[ξ (0,Πκ(x))] as λ → ∞.
The set of points failing to be Lebesgue points has measure zero and by the bounded
convergence theorem it follows that

lim
λ→∞

λ−1E[〈 f ,µλ 〉] =
∫

K
f (x)E[ξ (0,Πκ(x))]κ(x)dx.

This simple convergence of means E[〈 f ,µλ 〉] is now upgraded to one providing
convergence in Lq, q = 1 or 2.

Theorem 4. (WLLN [37, 44]) Put q = 1 or 2. Let ξ be a homogeneously stabilizing
(1.27) translation invariant functional satisfying the moment condition (1.32) for
some p > q. Then for all f ∈ B(K) we have

lim
n→∞

n−1〈 f ,ρn〉= lim
λ→∞

λ−1〈 f ,µλ 〉=
∫

K
f (x)E[ξ (0,Πκ(x))]κ(x)dx in Lq. (1.34)

If ξ is homogeneous of order p as defined at (1.15), then for all α ∈ (0,∞) and

τ ∈ (0,∞) we have Πατ
d= α−1/dΠτ ; see e.g. the mapping theorem on p. 18 of

[29]. Consequently, if ξ is homogeneous of order p, it follows that E[ξ (0,Πκ(x))] =
κ(x)−p/dE[ξ (0,Π1)], whence the following weak law of large numbers.

Corollary 1. Put q = 1 or 2. Let ξ be a homogeneously stabilizing (1.27) translation
invariant functional satisfying the moment condition (1.32) for some p > q. If ξ is
homogeneous of order p as at (1.15), then for all f ∈ B(K) we have

lim
n→∞

n−1〈 f ,ρn〉= lim
λ→∞

λ−1〈 f ,µλ 〉= E[ξ (0,Π1)]
∫

K
f (x)κ(d−p)/d(x)dx in Lq.

(1.35)

Remarks.

1. The closed form limit (1.35) explicitly links the macroscopic limit behaviour of
the point measures ρn and µλ with (i) the local interaction of ξ at a point at the
origin inserted into the point process Π1 and (ii) the underlying point density κ .
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2. Going back to the minimal spanning tree treated at (1.4), we see that the limiting
constant α(MSTB,d) can be found by putting ξ in (1.35) to be ξMST , letting
f ≡ 1 in (1.35), and consequently deducing that α(MSTB,d) = E[ξMST (0,Π1)],
where ξMST (x,X ) is one half the sum of the lengths of the edges in the minimal
spanning tree graph on {x} ∪X incident to x.

3. Donsker-Varadhan-style large deviation principles for stabilizing functionals are
proved in [60] whereas moderate deviations for bounded stabilizing functionals
are proved in [5].

Asymptotic distribution results for 〈 f ,µλ 〉 and 〈 f ,ρn〉, f ∈ B(K), as λ and n tend
to infinity respectively, require additional notation. For all τ > 0, put

V ξ (τ) := E[ξ (0,Πτ)2]+

τ
∫

Rd
{E[ξ (0,Πτ ∪{z})ξ (z,Πτ ∪0)]− (E[ξ (0,Πτ)])2}dz (1.36)

and

∆ ξ (τ) := E[ξ (0,Πτ)]+ τ
∫

Rd
{E[ξ (0,Πτ ∪{z})−E[ξ (0,Πτ)]}dz. (1.37)

The scalars V ξ (τ) should be interpreted as mean pair correlation functions for
the functional ξ on homogenous Poisson points Πτ . On the other hand, since the
translation invariance of ξ gives E

[
∑x∈Πτ∪{z} ξ (x,Πτ ∪{z})−∑x∈Πτ ξ (x,Πτ)

]
=

∆ ξ (τ), we may view ∆ ξ (τ) as an expected ‘add-one cost’.
By extending Lemma 1 to an analogous result giving the weak convergence of

the joint distribution of ξλ (x,Πλκ) and ξλ (x + λ−1/dz,Πλκ) for all pairs of points
x and z in Rd , we may show for exponentially stabilizing ξ and for bounded K
that λ−1var[〈 f ,µλ 〉] converges as λ → ∞ to a weighted average of the mean pair
correlation functions.

Furthermore, recalling that µλ := µλ −E[µλ ], and by using either Stein’s method
[39, 45] or the cumulant method [6], we may establish variance asymptotics and
asymptotic normality of 〈 f ,λ−1/2µλ 〉, f ∈ B(K), as shown by:

Theorem 5. (Variance asymptotics and CLT for Poisson input) Assume that κ is
Lebesgue-almost everywhere continuous. Let ξ be a homogeneously stabilizing
(1.27) translation invariant functional satisfying the moment condition (1.32) for
some p > 2. Suppose further that K is bounded and that ξ is exponentially stabiliz-
ing with respect to κ and K as in (1.29). Then for all f ∈ B(K) we have

lim
λ→∞

λ−1var[〈 f ,µλ 〉] = σ2( f ) :=
∫

K
f 2(x)V ξ (κ(x))κ(x)dx (1.38)

as well as convergence of the finite-dimensional distributions

(〈 f1,λ−1/2µλ 〉, . . . ,〈 fk,λ−1/2µλ 〉),

f1, . . . , fk ∈ B(K), to a Gaussian field with covariance kernel
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( f ,g) 7→
∫

K
f (x)g(x)V ξ (κ(x))κ(x)dx. (1.39)

Remarks

1. Theorem 5 is proved in [6, 39, 45]. In [39], it is shown the moment condition
(1.32) can be weakened to one requiring only that A range over subsets of K
having at most one element.

2. Extensions of Theorem 5. For an extension of Theorem 5 to manifolds, see [46];
for extensions to functionals of Gibbs point processes, see [60]. Theorem 5 also
easily extends to treat functionals of marked point sets [6, 39], provided the
marks are i.i.d.

3. Rates of convergence. Suppose ‖κ‖∞ < ∞. Suppose that ξ is exponentially sta-
bilizing and satisfies the moments condition (1.32) for some p > 3. If σ2( f ) > 0
for f ∈ B(K), then there exists a finite constant c depending on d,ξ , κ , p and f ,
such that for all λ ≥ 2,

sup
t∈R

∣∣∣∣∣P
[
〈 f ,µλ 〉−E[〈 f ,µλ 〉]√

var[〈 f ,µλ 〉]
≤ t

]
−P(N(0,1)≤ t)

∣∣∣∣∣≤ c(logλ )3dλ−1/2. (1.40)

For details, see Corollary 2.1 in [45]. For rates of convergence in the multivariate
central limit theorem, see [40].

4. Translation invariance. For ease of exposition, Theorems and 4 and 5 assume
translation invariance of ξ . This assumption may be removed (see [6, 39, 37]),
provided that we put ξλ (x,X ) := ξ (x,x + λ 1/d(−x +X )) and provided that we
replace V ξ (τ) and ∆ ξ (τ) defined at (1.36) and (1.37) respectively, by

V ξ (x,τ) := E[ξ (x,Πτ)2]

+ τ
∫

Rd
{E[ξ (x,Πτ ∪{z})ξ (x,−z+(Πτ ∪0))]− (E[ξ (x,Πτ)])2}dz (1.41)

and

∆ ξ (x,τ) := E[ξ (x,Πτ)]+ τ
∫

Rd
{E[ξ (x,Πτ ∪{z})−E[ξ (x,Πτ)]}dz. (1.42)

We now consider the proof of Theorem 5. The proof of (1.38) depends in part on
the following generalization of Lemma 1, a proof of which appears in [39]. Let Π̃τ
represent an independent copy of Πτ .

Lemma 2. Let x0 and x1 be distinct Lebesgue points for κ . If ξ is homogeneously
stabilizing as in (1.27), then as λ → ∞

(ξλ (x0,Πλκ),ξλ (x1,Πλκ)) d−→ (ξ (0,Πκ(x0)),ξ (0,Π̃κ(x1))). (1.43)

Given Lemma 2 we sketch a proof of the variance convergence (1.38)). For sim-
plicity we assume that f is a.e. continuous. By Campbell’s theorem we have
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λ−1var[〈 f ,µλ 〉]
= λ

∫

K

∫

K
f (x) f (y){E[ξλ (x,Πλκ ∪{y})ξλ (y,Πλκ ∪{x})]

−E[ξλ (x,Πλκ)]E[ξλ (y,Πλκ)]}κ(x)κ(y)dxdy

+
∫

K
f 2(x)E[ξ 2

λ (x,Πλκ)]κ(x)dx. (1.44)

Putting y = x+λ−1/dz in the right-hand side in (1.44) reduces the double integral
to

=
∫

K

∫

−λ 1/dx+λ 1/dK
f (x) f (x+λ−1/dz){...}κ(x)κ(x+λ−1/dz)dzdx (1.45)

where

{...} := {E[ξλ (x,Πλκ ∪{x+λ−1/dz})ξλ (x+λ−1/dz,Πλκ ∪{x})]

−E[ξλ (x,Πλκ)]E[ξλ (x+λ−1/dz,Πλκ)]}
is the two point correlation function for ξλ .

The moment condition and Lemma 2 imply that for all Lebesgue points x ∈ K
that the two point correlation function for ξλ converges to the two point correlation
function for ξ . Moreover, by exponential stabilization, the integrand in (1.45) is
dominated by an integrable function of z over Rd (see Lemma 4.2 of [39]). The
double integral in (1.44) thus converges to

∫

K

∫

Rd
f 2(x) ·E[ξ (Πκ(x)∪{z})ξ (−z+(Πκ(x)∪0))]

− (E[ξ (Πκ(x))])
2κ2(x)dzdx (1.46)

by dominated convergence, the continuity of f , and the assumed moment bounds.
By Theorem 4, the assumed moment bounds, and dominated convergence, the

single integral in (1.44) converges to
∫

K
f 2(x)E[ξ 2(0,Πκ(x))]κ(x)dx. (1.47)

Combining (1.46) and (1.47) and using the definition of V ξ , we obtain the variance
asymptotics (1.38) for continuous test functions f . To show convergence for general
f ∈ B(K) we refer to [39].

Now we sketch a proof of the central limit theorem part of Theorem 5. There are
three distinct approaches to proving the central limit theorem:

1. Stein’s method, in particular consequences of Stein’s method for dependency
graphs of random variables, as given by [17]. This approach, spelled out in [45],
gives the rates of convergence to the normal in (1.40).
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2. Methods based on martingale differences are applicable when κ is the uniform
density and when the functional Hξ satisfies a stabilization criteria involving the
insertion of single point into the sample; see [41] and [30] for details.

3. The method of cumulants may be used [6] to show that the k-th order cumulants
ck

λ of λ−1/2〈 f ,µλ 〉, k ≥ 3, vanish in the limit as λ → ∞. We make use of the
standard fact that if the cumulants ck of a random variable ζ vanish for all k≥ 3,
then ζ has a normal distribution. This method assumes additionally that ξ has
moments of all orders, i.e. (1.32) holds for all p≥ 1.

Here we describe the third method, which, when suitably modified yields moder-
ate deviation principles [5] as well as limit theory for functionals over Gibbs point
processes [60].

To show vanishing of cumulants of order three and higher, we follow the proof of
Theorem 2.4 in section five of [6] and take the opportunity to correct a mistake in the
exposition, which also carried over to [5], and which was first noticed by Mathew
Penrose. We assume the test functions f belong to the class C(K) of continuous
functions on K.

Method of cumulants

We will use the method of cumulants to show for all continuous test functions f on
K, that

〈 f ,λ−1/2µλ 〉 d−→ N(0,σ2( f )), (1.48)

where σ2( f ) is at (1.38). The convergence of the finite-dimensional distributions
(1.39) follows by standard methods involving the Cramér-Wold device.

We first recall the formal definition of cumulants. Put K := [0,1]d for simplicity.
Write

Eexp
(

λ−1/2〈− f ,µλ 〉
)

= exp
(

λ−1/2〈 f ,Eµλ 〉
)

Eexp
(

λ−1/2〈− f ,µλ 〉
)

(1.49)

= exp
(

λ−1/2〈 f ,Eµλ 〉
)[

1+
∞

∑
k=1

λ−k/2

k!
〈(− f )k,Mk

λ 〉
]

,

where f k : Rdk → R, k = 1,2, ... is given by f k(v1, . . . ,vk) = f (v1) · · · f (vk), and
vi ∈ K, 1 ≤ i ≤ k. Mk

λ := Mk
λκ is a measure on Rdk, the k-th moment measure (p.

130 of [21]), and has the property that

〈 f k,Mk
λ 〉=

∫

Kk
E

[
k

∏
i=1

ξ (xi,Πλκ)

]
k

∏
i=1

f (xi)κ(xi)d(λxi).
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In general Mk
λ is not continuous with respect to Lebesgue measure on Kk, but rather

it is continuous with respect to sums of Lebesgue measures on the diagonal sub-
spaces of Kk, where two or more coordinates coincide.

In Section 5 of [6], the moment and cumulant measures considered there are with
respect to the centered functional ξ , whereas they should be with respect to the non-
centered functional ξ . This requires corrections to the notation, which we provide
here, but, since higher order cumulants for centered and non-centered measures co-
incide, it does not change the arguments of [6], which we include for completeness
and which go as follows.

We have

dMk
λ (v1, ...,vk) = mλ (v1, ...,vk)

k

∏
i=1

κ(vi)d(λ 1/dvi),

where the Radon-Nikodym derivative mλ (v1, ...,vk) of Mk
λ with respect to ∏k

i=1 µλ
is given by mixed moment

mλ (v1, ...,vk) := E

[
k

∏
i=1

ξλ (vi;Πλκ ∪{v j}k
j=1)

]
. (1.50)

Due to the behaviour of Mk
λ on the diagonal subspaces we make the standing

assumption that if the differential d(λ 1/d
1 v1) · · ·d(λ 1/d

1 vk) involves repetition of cer-
tain coordinates, then it collapses into the corresponding lower order differential
in which each coordinate occurs only once. For each k ∈ N, by the assumed mo-
ment bounds (1.32), the mixed moment on the right hand side of (1.50) is bounded
uniformly in λ by a constant c(ξ ,k). Likewise, the k-th summand in (1.49) is finite.

For all i = 1,2, ... we let Ki denote the i-th copy of K. For any subset T of the
positive integers, we let

KT := ∏
i∈T

Ki.

If |T | = l, then for all λ ≥ 1, by MT
λ we mean a copy of the l-th moment measure

on the l-fold product space KT
λ . MT

λ is equal to Ml
λ as defined above.

When the series (1.49) is convergent, the logarithm of the Laplace functional
gives

log

[
1+

∞

∑
k=1

1
k!

λ−k/2〈(− f )k,Mk
λ 〉

]
=

∞

∑
l=1

1
l!

λ−l/2〈(− f )l ,cl
λ 〉; (1.51)

the signed measures cl
λ are cumulant measures. Regardless of the validity of (1.49),

the existence of all cumulants cl
λ , l = 1,2, ... follows from the existence of all mo-

ments in view of the representation

cl
λ = ∑

T1,...,Tp

(−1)p−1(p−1)!MT1
λ · · ·MTp

λ ,
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where T1, ...,Tp ranges over all unordered partitions of the set 1, ..., l (see p. 30 of
[33]). The first cumulant measure coincides with the expectation measure and the
second cumulant measure coincides with the variance measure.

We follow the proof of Theorem 2.4 of [6], with these small changes: (i) replace
the centered functional ξ with the non-centered ξ (ii) correspondingly, let all cumu-
lants cl

λ , l = 1,2, ... be the cumulant measures for the non-centered moment mea-
sures Mk

λ , k = 1,2, .... Since c1
λ coincides with the expectation measure, Theorem 4

gives for all f ∈C(K)

lim
λ→∞

λ−1〈 f ,c1
λ 〉= lim

λ→∞
λ−1E[〈 f ,µξ

λ 〉] =
∫

K
f (x)E[ξ (0,Πκ(x))]κ(x)dx.

We already know from the variance convergence that

lim
λ→∞

λ−1〈 f 2,c2
λ 〉= lim

λ→∞
λ−1var[〈 f ,µξ

λκ〉] =
∫

K
f 2(x)V ξ (κ(x))κ(x)dx.

Thus, to prove (1.48), it will be enough to show for all k ≥ 3 and all f ∈C(K) that
λ−k/2〈 f k,ck

λ 〉 → 0 as λ → ∞. This will be done in Lemma 4 below, but first we
recall some terminology from [6].

A cluster measure US,T
λ on KS×KT for non-empty S,T ⊂ {1,2, ...} is defined by

US,T
λ (B×D) = MS∪T

λ (B×D)−MS
λ (B)MT

λ (D)

for all Borel B and D in KS and KT , respectively.
Let S1,S2 be a partition of S and let T1,T2 be a partition of T . A product of a

cluster measure US1,T1
λ on KS1 ×KT1 with products of moment measures M|S2| and

M|T2| on KS2 ×KT2 will be called a (S,T ) semi-cluster measure.
For each non-trivial partition (S,T ) of {1, ...,k} the k-th cumulant ck is repre-

sented as
ck = ∑

(S1,T1),(S2,T2)
α((S1,T1),(S2,T2))US1,T1M|S2|M|T2|, (1.52)

where the sum ranges over partitions of {1, ...,k} consisting of pairings (S1,T1),
(S2,T2), where S1,S2 ⊂ S and T1,T2 ⊂ T , and where α((S1,T1),(S2,T2)) are integer
valued pre-factors. In other words, for any non-trivial partition (S,T ) of {1, ...,k},
ck is a linear combination of (S,T ) semi-cluster measures; see Lemma 5.1 of [6].

The following bound is critical for showing that λ−k/2〈 f ,ck
λ 〉 → 0 for k ≥ 3 as

λ → ∞.

Lemma 3. If ξ is exponentially stabilizing as in (1.29), then the functions mλ cluster
exponentially, that is there are positive constants a j,l and c j,l such that uniformly

|mλ (x1, ...x j,y1, ...,yl)−mλ (x1, ...,x j)mλ (y1, ...,yl)| ≤ a j,l exp(−c j,lδλ 1/d),

where δ := min1≤i≤ j,1≤p≤l |xi− yp| is the separation between the sets {xi} j
i=1 and

{yp}l
p=1 of points in K.
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The constants a j,l , while independent of λ , may grow quickly in j and l, but
this will not affect the decay of the cumulant measures in the scale parameter λ .
The next lemma provides the desired decay of the cumulant measures; we provide
a proof which is slightly different from that given for Lemma 5.3 of [6].

Lemma 4. For all f ∈C(K) and k = 2,3, ... we have λ−1〈 f k,ck
λ 〉= O

(|| f ||k∞
)
.

Proof. We need to estimate
∫

Kk
f (v1)... f (vk)dck

λ (v1, ...,vk).

We will modify the arguments in [6], borrowing from [57]. Given v := (v1, ...,vk) ∈
Kk, let Dk(v) := Dk(v1, ...,vk) := maxi≤k(||v1−vi||+ ...+ ||vk−vi||) be the l1 diam-
eter for v. Let Ξ(k) be the collection of all partitions of {1, ...,k} into exactly two
subsets S and T . For all such partitions consider the subset σ(S,T ) of KS×KT hav-
ing the property that v ∈ σ(S,T ) implies d(x(v),y(v)) ≥ Dk(v)/k2, where x(v) and
y(v) are the projections of v onto KS and KT , respectively, and where d(x(v),y(v))
is the minimal Euclidean distance between pairs of points from x(v) and y(v). It is
easy to see that for every v := (v1, ...,vk) ∈ Kk, there is a splitting of v, say x := x(v)
and y := y(v), such that d(x,y) ≥ Dk(v)/k2; if this were not the case then a simple
argument shows that, given v := (v1, ...,vk) the distance between any pair of con-
stituent components must be strictly less than Dk(v)/k, contradicting the definition
of Dk. It follows that Kk is the union of the sets σ(S,T ), (S,T ) ∈ Ξ(k). The key to
the proof of Lemma 4 is to evaluate the cumulant ck

λ over each σ(S,T ) ∈ Ξ(k), that
is to write 〈 f ,ck

λ 〉 as a finite sum of integrals

〈 f ,ck
λ 〉= ∑

σ(S,T )∈Ξ(k)

∫

σ(S,T )
f (v1) · · · f (vk)dck

λ (v1, ...,vk),

then appeal to the representation (1.52) to write the cumulant measure dck
λ (v1, ...,vk)

on each σ(S,T ) as a linear combination of (S,T ) semi-cluster measures, and finally
to appeal to Lemma 3 to control the constituent cluster measures US1,T1 by an expo-
nentially decaying function of λ 1/dDk(v) := λ 1/dDk(v1, ...,vk).

Given σ(S,T ), S1 ⊂ S and T1 ⊂ T , this goes as follows. Let x ∈ KS and y ∈ KT

denote elements of KS and KT , respectively; likewise we let x̃ and ỹ denote elements
of KS1 and KT1 , respectively. Let x̃c denote the complement of x̃ with respect to x and
likewise with ỹc. The integral of f against one of the (S,T ) semi-cluster measures
in (1.52), induced by the partitions (S1,S2) and (T1,T2) of S and T respectively, has
the form ∫

σ(S,T )
f (v1) · · · f (vk)d

(
M|S2|

λ (x̃c)U i+ j
λ (x̃, ỹ)M|T2|

λ (ỹc)
)

.

Letting uλ (x̃, ỹ) := mλ (x̃, ỹ)−mλ (x̃)mλ (ỹ), the above equals

∫

σ(S,T )
f (v1) · · · f (vk)mλ (x̃c)uλ (x̃, ỹ)mλ (ỹc)

k

∏
i=1

κ(vi)d(λ 1/dvi). (1.53)
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We use Lemma 3 to control uλ (x̃, ỹ) := mλ (x̃, ỹ)−mλ (x̃)mλ (ỹ), we bound f and
κ by their respective sup norms, we bound each mixed moment by c(ξ ,k), and we
use σ(S,T )⊂ Kk to show that

∫

σ(S,T )
f (v1) · · · f (vk)d

(
M|S2|

λ (x̃c)U i+ j
λ (x̃, ỹ)M|T2|

λ (ỹc)
)

≤ D(k)c(ξ ,k)2|| f ||k∞||κ||k∞
∫

Kk
exp(−cλ 1/dDk(v)/k2)d(λ 1/dv1) · · ·d(λ 1/dvk).

Letting zi := λ 1/dvi the above bound becomes

λD(k)c(ξ ,k)2|| f ||k∞||κ ||k∞
∫

(λ 1/dK)k
exp(−cDk(z)/k2)dz1 · · ·dzk

≤ λD(k)c(ξ ,k)2|| f ||k∞||κ||k∞
∫

(Rd)k−1
exp(−cDk(0,z1, ...,zk−1)/k2)dz1 · · ·dzk

where we use the translation invariance of Dk(·). Upon a further change of variable
w := z/k we have

∫

σ(S,T )
f (v1) · · · f (vk)d

(
M|S2|

λ (x̃c)U i+ j
λ (x̃, ỹ)M|T2|

λ (ỹc)
)

≤ λ D̃(k)c(ξ ,k)2|| f ||k∞||κ||k∞
∫

(Rd)k−1
exp(−cDk(0,w1, ...,wk−1))dw1 · · ·dwk−1.

Finally, since Dk(0,w1, ...,wk−1)≥ ||w1||+ ...+ ||wk−1|| we obtain
∫

σ(S,T )
f (v1) · · · f (vk)d

(
M|S2|

λ (x̃c)U i+ j
λ (x̃, ỹ)M|T2|

λ (ỹc)
)

≤ λ D̃(k)c(ξ ,k)2|| f ||k∞||κ||k∞
(∫

Rd
exp(−||w||)dw

)k−1

= O(λ )

as desired.

Central limit theorem for functionals over binomial input

To obtain central limit theorems for functionals over binomial input Xn we need
some more definitions. For all functionals ξ and τ ∈ (0,∞), recall the ‘add one cost’
defined at (1.37). For all j = 1,2, ..., let S j be the collection of all subsets of Rd of
cardinality at most j.

Definition 5. Say that ξ has a moment of order p > 0 (with respect to binomial
input Xn) if

sup
n≥1,x∈Rd ,D∈S3

sup
(n/2)≤m≤(3n/2)

E[|ξn(x,Xm∪D)|p] < ∞. (1.54)
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Definition 6. ξ is binomially exponentially stabilizing for κ if for all x∈Rd ,λ ≥ 1,
andD⊂S2 there exists an almost surely finite random variable R := Rλ ,n(x,D) such
that for all finite A⊂ (Rd \Bλ−1/dR(x)), we have

ξλ
(
x,([Xn∪D]∩Bλ−1/dR(x))∪A)

= ξλ
(
x, [Xn∪D]∩Bλ−1/dR(x)

)
, (1.55)

and moreover there is an ε > 0 such that the tail probability τε(t) defined for t > 0
by

τε(t) := sup
λ≥1,n∈N∩((1−ε)λ ,(1+ε)λ )

sup
x∈Rd , D⊂S2

P(Rλ ,n(x,D) > t)

satisfies limsupt→∞ t−1 logτε(t) < 0.

If ξ is homogeneously stabilizing then in most examples of interest, similar meth-
ods can be used to show that ξ is binomially exponentially stabilizing whenever κ
is bounded away from zero.

Theorem 6. (CLT for binomial input) Assume that κ is Lebesgue-almost every-
where continuous. Let ξ be a homogeneously stabilizing (1.27) translation invariant
functional satisfying the moment conditions (1.32) and (1.54) for some p > 2. Sup-
pose further that K is bounded and that ξ is exponentially stabilizing with respect
to κ and K as in (1.29) and binomially exponentially stabilizing with respect to κ
and K as in (1.55). Then for all f ∈ B(K) we have

lim
n→∞

n−1var[〈 f ,ρn〉] = τ2( f ) :=
∫

K
f 2(x)V ξ (κ(x))κ(x)dx−

(∫

K
∆ ξ (κ(x))κ(x)dx

)2

(1.56)
as well as convergence of the finite-dimensional distributions

(〈 f1,n−1/2ρn〉, . . . ,〈 fk,n−1/2ρn〉),

f1, . . . , fk ∈ B(K), to a Gaussian field with covariance kernel

( f ,g) 7→
∫

K
f (x)g(x)V ξ (κ(x))κ(x)dx

−
∫

K
f (x)∆ ξ (κ(x))κ(x)dx

∫

K
g(x)∆ ξ (κ(x))κ(x)dx. (1.57)

Proof. We sketch the proof, borrowing heavily from coupling arguments appearing
in [6, 41, 39]. Fix f ∈ B(K). Put Hn := 〈 f ,ρn〉, H ′

n := 〈 f ,µn〉, where µn is defined at
(1.31) and assume that Πnκ is coupled to Xn by setting Πnκ =

⋃η(n)
i=1 Xi, where η(n)

is an independent Poisson random variable with mean n. Put

α := α( f ) :=
∫

K
f (x)∆ ξ (κ(x))κ(x)dx.

Conditioning on the random variable η := η(n) and using that η is concentrated
around its mean, it can be shown that as n→ ∞ we have
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E[(n−1/2(H ′
n−Hn− (η(n)−n)α))2]→ 0. (1.58)

The arguments are long and technical (cf. Section 5 of [39], Section 4 of [41]).
Let σ 2( f ) be as at (1.38) and let τ2( f ) be as at (1.56), so that τ2( f ) = σ 2( f )−

α2.
By Theorem 5 we have as n→∞ that var[H ′

n]→ σ2( f ) and n−1/2(H ′
n−EH ′

n)
d−→

N(0,σ2( f )). We now deduce Theorem 6, following verbatim by now standard ar-
guments (see e.g. p. 1020 of [41], p. 251 of [6]), included here for sake of complete-
ness.

To prove convergence of n−1var[Hn], we use the identity

n−1/2H ′
n = n−1/2Hn +n−1/2(η(n)−n)α +n−1/2[H ′

n−Hn− (η(n)−n)α]. (1.59)

The variance of the third term on the right-hand side of (1.59) goes to zero by (1.58),
whereas the second term has variance α2 and is independent of the first term. It
follows that with σ2( f ) defined at (1.38), we have

σ2( f ) = lim
n→∞

n−1var[H ′
n] = lim

n→∞
n−1var[Hn]+α2,

so that σ2( f )≥ α2 and n−1var[Hn]→ τ2( f ). This gives (1.56).
Now to prove Theorem 6 we argue as follows. By Theorem 5, we have n−1/2(H ′

n−
EH ′

n)
d−→ N(0,σ2). Together with (1.58), this yields

n−1/2[Hn−EH ′
n +(η(n)−n)α] d−→ N(0,σ2( f )).

However, since n−1/2(η(n)−n)α is independent of Hn and is asymptotically normal
with mean zero and variance α2, it follows by considering characteristic functions
that

n−1/2(Hn−EH ′
n)

d−→ N(0,σ2( f )−α2). (1.60)

By (1.58), the expectation of n−1/2(H ′
n−Hn− (ηn−n)α) tends to zero, so in (1.60)

we can replace EH ′
n by EHn, which gives us

n−1/2(Hn−EHn)
d−→ N(0,τ2( f )).

To obtain convergence of finite-dimensional distributions (1.57) we use the
Cramér-Wold device.

1.4 Applications

Consider a linear statistic Hξ (X ) of a large geometric structure on X . If we are
interested in the limit behavior of Hξ on random point sets, then the results of the
previous section suggest checking whether the interaction function ξ is stabilizing.
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Verifying the stabilization of ξ is sometimes non-trivial and may involve discretiza-
tion methods. Here we describe four non-trivial statistics Hξ for which one may
show stabilization/localization of ξ . Our list is non-exhaustive and primarily fo-
cusses on the problems described in Section 1.1.

Random packing

[55] Given d ∈ N and λ ≥ 1, let η1,λ ,η2,λ , . . . be a sequence of independent ran-
dom d-vectors uniformly distributed on the cube Qλ := [0,λ 1/d)d . Let S be a fixed
bounded closed convex set in Rd with non-empty interior (i.e., a ‘solid’) with cen-
troid at the origin 0 of Rd (for example, the unit ball), and for i ∈ N, let Si,λ be
the translate of S with centroid at ηi,λ . So Sλ := (Si,λ )i≥1 is an infinite sequence of
solids arriving at uniform random positions in Qλ (the centroids lie in Qλ but the
solids themselves need not lie wholly inside Qλ ).

Let the first solid S1,λ be packed (i.e., accepted), and recursively for i = 2,3, . . .,
let the i-th solid Si,λ be packed if it does not overlap any solid in {S1,λ , . . . ,Si−1,λ}
which has already been packed. If not packed, the i-th solid is discarded. This
process, known as random sequential adsorption (RSA) with infinite input, is ir-
reversible and terminates when it is not possible to accept additional solids. At ter-
mination, we say that the sequence of solids Sλ jams Qλ or saturates Qλ . The
number of solids accepted in Qλ at termination is denoted by the jamming number
Nλ := Nλ ,d := Nλ ,d(Sλ ).

There is a large literature of experimental results concerning the jamming num-
bers, but a limited collection of rigorous mathematical results, especially in d ≥ 2.
The short range interactions of arriving particles lead to complicated long range spa-
tial dependence between the status of particles. Dvoretzky and Robbins [23] show
in d = 1 that the jamming numbers Nλ ,1 are asymptotically normal.

By writing the jamming number as a linear statistic involving a stabilizing inter-
action ξ , one may establish [55] that Nλ ,d are asymptotically normal for all d ≥ 1.
This puts the experimental results and Monte Carlo simulations of Quintanilla and
Torquato [47] and Torquato (ch. 11.4 of [67])) on rigorous footing.

Theorem 7. Let Sλ and Nλ := Nλ (Sλ ) be as above. There are constants µ :=
µ(S,d) ∈ (0,∞) and σ2 := σ 2(S,d) ∈ (0,∞) such that as λ → ∞ we have

∣∣λ−1ENλ −µ
∣∣ = O(λ−1/d) (1.61)

and λ−1var[Nλ ]→ σ2 with

sup
t∈R

∣∣∣∣∣

[
Nλ −ENλ√

var[Nλ ]
≤ t

]
−P(N(0,1)≤ t)

∣∣∣∣∣ = O((logλ )3dλ−1/2). (1.62)
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To prove this, one could enumerate the arriving solids in Sλ , by (xi, ti), where
xi ∈ Rd is the spatial coordinate of the i-th solid and ti ∈ [0,∞) is its temporal co-
ordinate, i.e. the arrival time. Furthermore, letting X := {(xi, ti)}∞

i=1 be a marked
point process, one could set ξ ((x, t),X ) to be one or zero depending on whether the
solid with center at x ∈ Sλ is accepted or not; Hξ (X ) is the total number of solids
accepted. Thus ξ is defined on elements of the marked point process X . A natural
way to prove Theorem 7 would then be to show that ξ satisfies the conditions of
Theorem 5. The moment conditions (1.32) are clearly satisfied as ξ is bounded by
1. To show stabilization it turns out that it is easier to discretize as follows.

For any A ⊂ Rd , let A+ := A×R+. Let ξ (X ,A) be the number of solids with
centers in X ∩A which are packed according to the packing rules. Abusing notation,
let Π denote a homogeneous Poisson point process in Rd ×R+ with intensity dx×
ds, with dx denoting Lebesgue measure on Rd and ds denoting Lebesgue measure
on R+. Abusing the terminology at (1.27), ξ is homogeneously stabilizing since it
may be shown that there exists an almost surely finite random variable R (a radius
of homogeneous stabilization for ξ ) such that for all X ⊂ (Rd \BR)+ we have

ξ ((Π ∩ (BR)+)∪X ,Q1) = ξ (Π ∩ (BR)+,Q1). (1.63)

Since ξ is homogeneously stabilizing it follows that the limit

ξ (Π , i+Q1) := lim
r→∞

ξ (Π ∩ (BR(i))+, i+Q1)

exists almost surely for all i ∈ Zd . The random variables (ξ (Π , i + Q1), i ∈ Zd)
form a stationary random field. It may be shown that the tail probability for R decays
exponentially fast.

Given ξ , for all λ > 0, allX ⊂Rd×R+, and all Borel A⊂Rd we let ξλ (X ,A) :=
ξ (λ 1/dX ,λ 1/dA). Let Πλ , λ ≥ 1, denote a homogeneous Poisson point process in
Rd ×R+ with intensity measure λ dx× ds. Define the random measure µξ

λ on Rd

by
µξ

λ ( · ) := ξλ (Πλ ∩Q1, ·) (1.64)

and the centered version µξ
λ := µξ

λ −E[µξ
λ ]. Modification of the stabilization meth-

ods of Section 1.3 then yield Theorem 7; this is spelled out in [55].
For companion results for RSA packing with finite input per unit volume we refer

to [42].

Convex hulls

Let Bd denote the d-dimensional unit ball. Letting Πλ be a Poisson point process
in Rd of intensity λ we let Kλ be the convex hull of Bd ∩Πλ . The random poly-
tope Kλ , together with the analogous polytope Kn obtained by considering n i.i.d.
uniformly distributed points in Bd , are well-studied objects in stochastic geometry,
with a long history originating with the work of Rényi and Sulanke [53]. See the
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surveys of Affentranger [1], Buchta [12], Gruber [24], Schneider [61, 62], and Weil
and Wieacker [69]), together with Chapter 8.2 in Schneider and Weil [63].

Functionals of Kλ of interest include its volume, here denoted V (Kλ ) and the
number of k-dimensional faces of Kλ , here denoted fk(Kλ ), k ∈ {0,1, ...,d− 1}.
Note that f0(Kλ ) is the number of vertices of Kλ . The k-th intrinsic volumes of Kλ
are here denoted by Vk(Kλ ), k ∈ {1, ...,d−1}.

Define the functional ξ (x,X ) to be one or zero, depending on whether x ∈ X is
a vertex in the convex hull of X . By reformulating functionals of convex hulls in
terms of functionals of re-scaled parabolic growth processes in space and time, it
may be shown that ξ is exponentially localizing [13]. The arguments are non-trivial
and we refer to [13] for details. Taking into account the proper scaling in space-time,
a modification of Theorem 5 yields variance asymptotics for V (Kλ ), namely

lim
λ→∞

λ (d+3)/(d+1)var[V (Kλ )] = σ 2
V , (1.65)

where σ 2
V ∈ (0,∞) is a constant. This adds to Reitzner’s central limit theorem (Theo-

rem 1 of [51]), his variance approximation var[V (Kλ )]≈ λ−(d+3)/(d+1) (Theorem 3
and Lemma 1 of [51]), and Hsing [26], which is confined to d = 2. The stabilization
methods of Theorem 5 yield a central limit theorem for V (Kλ ).

Let k ∈ {0,1, ...,d− 1}. Consider the functional ξk(x,X ), defined to be zero if
x is not a vertex in the convex hull of X and otherwise defined to be the product
of (k + 1)−1 and the number of k-dimensional faces containing x. Consideration of
the parabolic growth processes and the stabilization of ξk in the context of such
processes (cf. [13]) yield variance asymptotics and a central limit theorem for the
number of k-dimensional faces of Kλ , yielding for all k ∈ {0,1, ...,d−1}

lim
λ→∞

λ−(d−1)/(d+1)var[ fk(Kλ )] = σ2
fk , (1.66)

where σ2
fk
∈ (0,∞) is given as a closed form expression described in terms of

paraboloid growth processes. For the case k = 0, this is proved in [59], whereas [13]
handles the cases k > 0. This adds to Reitzner (Lemma 2 of [51]), whose break-
through paper showed var[ fk(Kλ )]≈ λ (d−1)/(d+1).

Theorem 5 also yields variance asymptotics for the intrinsic volumes Vk(Kλ ) of
Kλ for all k ∈ {1, ...,d−1}, namely

lim
λ→∞

λ (d+3)/(d+1)var[Vk(Kλ )] = σ2
Vk

, (1.67)

where again σ2
Vk

is explicitly described in terms of paraboloid growth processes. This
adds to Bárányi et al. (Theorem 1 of [4]), which shows var[Vk(Kn)]≈ n−(d+3)/(d+1).
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Intrinsic dimension of high dimensional data sets

Given a finite set of samples taken from a multivariate distribution in Rd , a fun-
damental problem in learning theory involves determining the intrinsic dimension
of the sample [22, 29, 54, 68]. Multidimensional data ostensibly belonging to a
high-dimensional space Rd often are concentrated on a smooth submanifold M or
hypersurface with intrinsic dimension m, where m < d. The problem of determining
the intrinsic dimension of a data set is of fundamental interest in machine learning,
signal processing, and statistics and it can also be handled via analysis of the sums
(1.1).

Discerning the intrinsic dimension m allows one to reduce dimension with min-
imal loss of information and to consequently avoid difficulties associated with the
‘curse of dimensionality’. When the data structure is linear there are several meth-
ods available for dimensionality reduction, including principal component analy-
sis and multidimensional scaling, but for non-linear data structures, mathematically
rigorous dimensionality reduction is more difficult. One approach to dimension es-
timation, inspired by Bickel and Levina [32] uses probabilistic methods involving
the k-nearest neighbour graph GN(k,X ) defined in the paragraph containing (1.6).

For all k = 3,4, ..., the Levina and Bickel estimator of the dimension of a data
cloud X ⊂M, is given by

m̂k(X ) := (card(X ))−1 ∑
y∈X

ξk(y,X ),

where for all y ∈ X we have

ξk(y,X ) := (k−2)

(
k−1

∑
j=1

log
Dk(y)
D j(y)

)−1

,

where D j(y) := D j(y,X ), 1≤ j≤ k, are the distances between y and its j-th nearest
neighbour in X .

Let {ηi}n
i=1 be i.i.d. random variables with values in a submanifoldM; let Xn :=

{ηi}n
i=1. Levina and Bickel [32] argue that m̂k(Xn) estimates the intrinsic dimension

of Xn, i.e., the dimension of M.
Subject to regularity conditions onM and the density κ , the papers [46] and [71]

substantiate this claim and show (i) consistency of the dimension estimator m̂k(Xn)
and (ii) a central limit theorem for m̂k(Xn) together with a rate of convergence. This
goes as follows.

For all τ > 0, recall that Πτ is a homogeneous Poisson point process on Rm.
Recalling the notation of Section 1.3 we put

V ξk(τ,m) := E[ξk(0,Πτ)2] +

+ τ
∫

Rm

[
E[ξk(0,Πτ ∪{u})ξk(u,Πτ ∪0)]− (E[ξk(0,Πτ)])2] du (1.68)
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and

δ ξk(τ,m) := E[ξk(0,Πτ)]+ τ
∫

Rm
E[ξk(0,Πτ ∪{u})−ξk(0,Πτ)]du. (1.69)

We put V ξk(m) := V ξk(1,m) and δ ξk(m) := δ ξk(1,m). Let Πλκ be the collec-
tion {X1, ...,XN(λ )}, where Xi are i.i.d. with density κ and N(λ ) is an independent
Poisson random variable with parameter λ . By extending Theorems 4 and 5 to man-
ifolds, it may be shown [46] that for manifolds M which are regular, we have the
following

Theorem 8. Let κ be bounded away from zero and infinity on M. We have for all
k ≥ 4

lim
λ→∞

m̂k(Πλκ) = lim
n→∞

m̂k(Xn) = m = dim(M), (1.70)

where the convergence holds in L2. If κ is a.e. continuous and k ≥ 5, then

lim
n→∞

n−1var[m̂k(Xn)] = σ 2
k (m) := V ξk(m)− (δ ξk(m))2 (1.71)

and there is a constant c := c(M) ∈ (0,∞) such that for all k ≥ 6 and all λ ≥ 2 we
have

sup
t∈R

∣∣∣∣∣P
[

m̂k(Πλκ)−Em̂k(Πλκ)√
var[m̂k(Πλκ)]

≤ t

]
−Φ(t)

∣∣∣∣∣≤ c(logλ )3mλ−1/2. (1.72)

Finally, for k ≥ 7 we have as n→ ∞,

n−1/2(m̂k(Xn)−Em̂k(Xn))
d−→ N(0,σ2

k (m)). (1.73)

Remark. Theorem 8 adds to Chatterjee [16], who does not provide variance
asymptotics (1.71) and who considers convergence rates with respect to the weaker
Kantorovich-Wasserstein distance. Bickel and Yan (Theorems 1 and 3 of Section 4
of [9]) establish a central limit theorem for m̂k(Xn) for linear M.

Clique counts, Vietoris-Rips complex

A central problem in data analysis involves discerning and counting clusters. Ge-
ometric graphs and the Vietoris-Rips complex play a central role and both are
amenable to asympototic analysis via stabilization techniques. The Vietoris-Rips
complex is studied in connection with the statistical analysis of high-dimensional
data sets [15], manifold reconstruction [20], and it has also received attention
amongst topologists in connection with clustering and connectivity questions of data
sets [14].

If X ⊂ Rd is finite and δ > 0, then the Vietoris-Rips complex Rδ (X ) is the
abstract simplicial complex whose k-simplices (cliques of order k + 1) correspond
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to unordered (k + 1) tuples of points of X which are pairwise within Euclidean
distance δ of each other. Thus, if there is a subset S of X of size k+1 with all points
of S distant at most δ from each other, then S is a k-simplex in the complex.

Given Rδ (X ) and k ∈ N, let Nδ
k (X ) be the cardinality of k-simplices in Rδ (X ).

Let ξk(η ,X ) be the cardinality of k-simplices containing y in Rδ (X ). Since the
value of ξk depends only on points distant at most δ , it follows that δ is a radius
of stabilization for ξk and that ξk is trivially exponentially stabilizing (1.29) and
binomially exponentially stabilizing (1.55).

The next scaling result, which holds for suitably regular manifolds M, links the
large scale behaviour of the clique count with the density κ of the underlying point
set. Let ηi be i.i.d. with density κ on the manifoldM. PutXn := {ηi}n

i=1. Letting Π1
be a homogeneous Poisson point process on Rm, dy the volume measure onM, and
recalling (1.68) and (1.69), it may be shown [46] that a generalization of Theorems
4 and 5 to manifolds yields:

Theorem 9. Let κ be bounded on M; dimM= m. For all k ∈ N and all δ > 0 we
have

lim
n→∞

n−1Nδ
k (n1/mXn) = E[ξk(0,Rδ (Π1))]

∫

M
κk+1(y)dy in L2. (1.74)

If κ is a.e. continuous then

lim
n→∞

n−1var[Nδ
k (n1/mXn)]

= σ2
k (m) := V ξk(m)

∫

M
κ2k+1(y)dy−

(
δ ξk(m)

∫

M
κk+1(y)dy

)2

(1.75)

and, as n→ ∞

n−1/2(Nδ
k (n1/mXn)−E[Nδ

k (n1/mXn)])
d−→ N(0,σ2

k (m)). (1.76)

This result extends Proposition 3.1, Theorem 3.13, and Theorem 3.17 of [37].
For more details, we refer to [46].
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