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Abstract

Given a vector F = (F1, . . . , Fm) of Poisson functionals F1, . . . , Fm, we establish

quantitative bounds for the proximity between F and an m-dimensional centered

Gaussian random vector NΣ with covariance matrix Σ ∈ Rm×m. We derive results

for the d2- and d3-distances based on smooth test functions as well as for the

dconvex-distance and the dH`
-distance given by

dH`
(F,NΣ) := sup

h∈H`

|Eh(F )− Eh(NΣ)|,

a multi-dimensional generalization of the Kolmogorov distance, where ` ∈ N and H`

is the set of indicator functions of intersections of ` closed half-spaces in Rm. The

bounds are multivariate counterparts of the second order Poincaré inequalities of

[15] and, as such, are expressed in terms of integrated moments of first and second

order difference operators. The derived second order Poincaré inequalities for non-

smooth test functions, which are of the same order as for smooth test functions, are

made possible by new bounds on the derivatives of solutions to the Stein equation

for the multivariate normal distribution, which might be of independent interest.

We present applications to the multivariate normal approximation of first order

Wiener-Itô integrals and of statistics of Boolean models.
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1 Introduction and main results

1.1 Overview

Roughly speaking, a first order Poincaré inequality for a random variable F measures

the closeness of F to its mean. A second order Poincaré inequality [5] measures the

closeness of F to a Gaussian random variable, where distance is given by some specified

metric on the space of distribution functions. The paper [15] establishes second order

Poincaré inequalities for Poisson functionals F , with bounds given in terms of integrated

moments of first and second order difference operators, which are an outcome of the

research on the Malliavin-Stein method for Poisson functionals in the recent years; see,

for example, [7, 22, 30] and the book [21]. The bounds from [15] can be usefully applied

to yield presumably optimal rates of normal convergence for many functionals of Poisson

processes, including those represented as a sum of stabilizing score functions [14].

The goal of this paper is to establish second order Poincaré inequalities for Poisson

functionals in the multivariate setting, providing multivariate counterparts to the univari-

ate results of [15]. The proofs combine Malliavin calculus on Poisson spaces with Stein’s

method of multivariate normal approximation. Presumably optimal rates of normal con-

vergence depend on good bounds on the right-hand sides of smoothing lemmas. A main

contribution of this paper is to provide such bounds via new estimates on derivatives of

the solutions to the Stein equation for the multivariate normal distribution, which could

be helpful for the multivariate normal approximation of other types of random vectors

as well and, thus, might be of independent interest.

We start by making our terms precise and recalling the univariate set-up. Let η be a

Poisson process over a measurable space (X,F) with a σ-finite intensity measure λ (see

e.g. [16] for more details on Poisson processes). One can think of η as a random element

in the space N of all σ-finite counting measures equipped with the σ-field generated by

the mappings ν 7→ ν(A), A ∈ F . We call a random variable F a Poisson functional if

there is a measurable map f : N→ R such that F = f(η) almost surely. The map f is

called a representative of F . For such a Poisson functional F the difference operator is

given by

DxF := f(η + δx)− f(η), x ∈ X, (1.1)

where δx denotes the Dirac measure of x. We say that F belongs to the domain of the

difference operator, i.e., F ∈ domD, if EF 2 <∞ and∫
X
E (DxF )2 λ(dx) <∞. (1.2)

Iterating the definition of the difference operator one obtains

D2
x1,x2

F := Dx1(Dx2F ) = f(η + δx1 + δx2)− f(η + δx1)− f(η + δx2) + f(η), x1, x2 ∈ X.

2



Often one is interested in how close the distribution of F is to that of a standard Gaussian

random variable N . To compare two random variables Y and Z or, more precisely, their

distributions, one can use the Kolmogorov distance

dK(Y, Z) := sup
u∈R
|P(Y ≤ u)− P(Z ≤ u)|, (1.3)

which is the supremum norm of the difference of the distribution functions of Y and Z,

or the Wasserstein distance

dW (Y, Z) := sup
h∈Lip(1)

|Eh(Y )− Eh(Z)|,

where Lip(1) stands for the set of functions h : R → R with Lipschitz constant at

most one. Note that the dK-distance is always defined, while the dW -distance requires

finiteness of E |Y | and E |Z|.
When F ∈ domD, EF = 0, and VarF = 1, the main results of [15] establish the

inequalities

dW (F,N) ≤ τ1 + τ2 + τ3 (1.4)

and

dK(F,N) ≤ τ1 + τ2 + τ3 + τ4 + τ5 + τ6, (1.5)

where τ1, . . . , τ6 are integrals over moments involving only DF and D2F (see Subsection

1.2 in [15] for exact formulas). The authors of [15] call (1.4) and (1.5), whose proofs rely

on previous Malliavin-Stein bounds in [22] and [7, 30], respectively, second order Poincaré

inequalities. The reason for this name is that the ‘first order’ Poincaré inequality

VarF ≤
∫
X
E (DxF )2 λ(dx)

for F ∈ domD bounds the variance in terms of the first difference operator, whereas the

first and the second difference operator control the closeness to Gaussianity in (1.4) and

(1.5). The term second order Poincaré inequality was coined in [5] in a similar Gaussian

framework, where one has the first two derivatives instead of the first two difference

operators.

For many Poisson functionals F the second order Poincaré inequalities (1.4) and (1.5)

may be evaluated since the first two difference operators have a clear interpretation via

the operation of adding additional points. This is the advantage of these findings over

some other Malliavin-Stein bounds for normal approximation of Poisson functionals (see,

for example, [7, 11, 22, 30]), which require the knowledge of the whole chaos expansion

of F .
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The second order Poincaré inequality (1.5) yields rates of normal approximation for

some classic problems in stochastic geometry and some non-linear functionals of Poisson-

shot-noise processes [15], as well as for functionals of convex hulls of random samples in

a smooth convex body, statistics of nearest neighbors graphs, the number of maximal

points in a random sample, and estimators of surface area and volume arising in set

approximation [14]. The rates of convergence for these examples are of the same order

as in the classical central limit theorem and, thus, presumably optimal.

Often one is not only interested in the behavior of a single Poisson functional but in

that of a vector F = (F1, . . . , Fm) of Poisson functionals F1, . . . , Fm with m ∈ N. In this

situation, one can compare F with an m-dimensional centered Gaussian random vector

NΣ with covariance matrix Σ ∈ Rm×m. We are not only interested in weak convergence

results for a vector of Poisson functionals with NΣ as limiting distribution, which can

be deduced from the univariate case by the Cramer-Wold technique, but in quantitative

bounds for the closeness between F and NΣ. In other words, we seek the multivariate

counterparts of (1.4) and (1.5).

In this paper F and NΣ are compared with respect to several distances based on

smooth and non-smooth test functions. One of the main achievements of this paper is to

show bounds for both cases that are of the same (presumably optimal) order. In general,

it is more intricate to deal with non-smooth test functions when one uses Stein’s method

for multivariate normal approximation. For some bounds for smooth test functions

having the same order as in the univariate case we refer to [6, Chapter 12] and the

references therein. For non-smooth test functions, even obtaining the rate n−1/2 in the

classical central limit theorem for sums of n i.i.d. random vectors via Stein’s method is

challenging [1, 10]. The abstract multivariate normal approximation results in terms of

the dependence structure in [27] and [6, Chapter 12] and in terms of exchangeable pairs in

[26] contain additional logarithmic factors compared to what one would expect from the

case of smooth test functions or from the univariate case. Recently, these logarithms were

removed in [8] and [9], using the dependence structure and Stein couplings, respectively.

However, it seems that none of these findings can be applied to systematically achieve

the normal approximation bounds for Poisson functionals given by our main results.

1.2 Statement of main results

Let us now give a precise formulation of our results. We start with distances defined in

terms of smooth test functions, namely the d2- and the d3-distances. Let H(2)
m be the set

of all C2-functions h : Rm → R such that

|h(x)− h(y)| ≤ ‖x− y‖, x, y ∈ Rm, and sup
x∈Rm

‖Hessh(x)‖op ≤ 1,
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where Hessh denotes the Hessian matrix of h and ‖ · ‖op stands for the operator norm

of a matrix. By H(3)
m we denote the class of all C3-functions h : Rm → R such that the

absolute values of the second and third partial derivatives are bounded by one. Using

this notation, we define, for m-dimensional random vectors Y and Z,

d2(Y, Z) := sup
h∈H(2)

m

|Eh(Y )− Eh(Z)|

if E ‖Y ‖,E ‖Z‖ <∞ and

d3(Y, Z) := sup
h∈H(3)

m

|Eh(Y )− Eh(Z)|

if E ‖Y ‖2,E ‖Z‖2 <∞.

The paper [22] was the first to combine Stein’s method and the Malliavin calculus to

obtain normal approximation of Poisson functionals. In [23], the univariate main result

of [22] for the dW -distance is extended to vectors of Poisson functionals and the d2- and

the d3-distances are considered. Evaluating these multivariate Malliavin-Stein bounds in

the same way one evaluates in [15] the univariate bounds from [22] and [7, 30] to derive

(1.4) and (1.5), one obtains the following multivariate second order Poincaré inequalities.

Theorem 1.1. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals

F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m}. Define

γ1 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
)1/2(E (Dx1Fj)

2(Dx2Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ2 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
)1/2(E (D2

x1,x3
Fj)

2(D2
x2,x3

Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ3 :=
m∑
i=1

∫
X
E |DxFi|3 λ(dx)

and let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive semi-definite. Then,

d3(F,NΣ) ≤ m

2

m∑
i,j=1

|σij − Cov(Fi, Fj)|+mγ1 +
m

2
γ2 +

m2

4
γ3. (1.6)

If, additionally, Σ is positive definite, then

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2
op

m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 2‖Σ−1‖op‖Σ‖1/2
op γ1

+ ‖Σ−1‖op‖Σ‖1/2
op γ2 +

√
2πm2

8
‖Σ−1‖3/2

op ‖Σ‖opγ3.

(1.7)
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Note that γ1, γ2, and γ3 have a structure similar to that of τ1, τ2, and τ3 in (1.4) and

(1.5) and coincide with them up to some constant factors for m = 1.

Let us now compare Theorem 1.1 with related results in the literature. The bounds

in the underlying paper [23] are formulated in terms of the difference operator D and

the inverse Ornstein-Uhlenbeck generator L−1 and do not, in general, readily lend them-

selves to off-the-shelf use. In contrast, the bounds (1.6) and(1.7) involving only difference

operators are often tractable, as seen in our applications section and also in the com-

panion paper [31]. Theorem 8.1 of [11] provides a bound on d3(F,NΣ), which relies on

the findings of [23], though this bound requires knowledge of the entire Wiener-Itô chaos

expansion for each of the components of F and consequently may also be less useful

than (1.6). When the components of F belong to a special class of Poisson U -statistics,

which admit a finite chaos expansion with explicitly known kernels, the paper [17] uses

the results of [23] to establish Berry-Esseen bounds for the d3-distance between F and

a Gaussian random vector. In [3], the findings from [23] are generalized by comparing a

vector of Poisson functionals with a random vector composed of Gaussian and Poisson

random variables.

In [13] multivariate second order Poincaré inequalities for functionals of Rademacher

sequences are derived. The considered d4-distance is based on test functions such that

the sup-norms of the first four partial derivatives are bounded by one.

To some extent (1.6) and (1.7) can be seen as multivariate counterparts of (1.4).

Indeed, as is the case with dW , the distances d2 and d3 are based on continuous test

functions, although the exact definitions involving C2- and C3-functions are distinct

from the multivariate Wasserstein distance obtained by using test functions h : Rm → R
having Lipschitz constants at most one.

The Kolmogorov distance (1.3) is arguably more interesting than the Wasserstein

distance (and the d2- and the d3-distances for m = 1), as it has a clearer interpretation as

the supremum norm of the difference of the distribution functions of the involved random

variables, though it is often harder to deal with because the underlying test functions

are discontinuous. The straightforward multivariate analog to the univariate Kolmogorov

distance for two m-dimensional random vectors Y = (Y1, . . . , Ym) and Z = (Z1, . . . , Zm)

would be

dK(Y, Z) := sup
u1,...,um∈R

|P(Y1 ≤ u1, . . . , Ym ≤ um)− P(Z1 ≤ u1, . . . , Zm ≤ um)|, (1.8)

which is again the supremum norm of the difference of the distribution functions of Y

and Z. In (1.8) one only takes into account rectangular solids aligned with coordinate

planes, so that for a rotation A ∈ Rm×m the distance between AY and AZ could be

different from the distance between Y and Z. Although convergence in the distance
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given in (1.8) still implies weak convergence, one would like to have invariance under

rotation. To resolve this issue, we define for ` ∈ N and two m-dimensional random

vectors Y and Z,

dH`
(Y, Z) := sup

h∈H`

|Eh(Y )− Eh(Z)|,

where H` is the set of indicator functions of intersections of ` closed half-spaces in Rm.

For m = ` = 1 this is the same as the univariate Kolmogorov distance and for ` = m

it dominates the distance in (1.8), whence dH`
may be viewed as a multi-dimensional

generalization of the Kolmogorov distance. By the Cramer-Wold device, convergence in

dH`
for ` = 1 (and, thus, for any ` ∈ N) implies weak convergence.

For a vector F = (F1, . . . , Fm), m ∈ N, of Poisson functionals F1, . . . , Fm ∈ domD

with EFi = 0, i ∈ {1, . . . ,m}, we use the abbreviations DxF := (DxF1, . . . , DxFm) for

x ∈ X, D2
x,yF := (D2

x,yF1, . . . , D
2
x,yFm) for x, y ∈ X, and

γ4 :=

( m∑
j,k=1

∫
X
E (DxFj)

4 λ(dx) + 6

∫
X2

(
E (D2

x,yFj)
4
)1/2(E (DxFk)

4
)1/2

λ2(d(x, y))

+ 3

∫
X2

(
E (D2

x,yFj)
4
)1/2(E (D2

x,yFk)
4
)1/2

λ2(d(x, y))

)1/2

γ5 :=

( m∑
i,j,k=1

∫
X
E (DxFi)

6 λ(dx)

+ 8

∫
X2

(
E1{D2

x,yF 6= 0}|DxFiDxFj|3
)2/3(E (DxFk)

6
)1/3

λ2(d(x, y))

+ 42

∫
X2

(
E |D2

x,yFi|6
)1/3 (E |DxFj|6

)1/3 (E (DxFk)
6
)1/3

λ2(d(x, y))

+ 42

∫
X2

(
E |D2

x,yFi|6
)1/3 (E |D2

x,yFj|6
)1/3 (E (DxFk)

6
)1/3

λ2(d(x, y))

+ 14

∫
X2

(
E |D2

x,yFi|6
)1/3 (E |D2

x,yFj|6
)1/3 (E (D2

x,yFk)
6
)1/3

λ2(d(x, y))

)1/2

,

where 0 stands for the origin in Rm.

The following multivariate second order Poincaré inequality shows that bounds in

the dH`
-distance closely resemble those for the d2 and d3-distances at (1.6) and (1.7).

Theorem 1.2. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals

F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m}, and let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m

be positive definite. Then, for any ` ∈ N,

dH`
(F,NΣ) ≤ 718m47/24`‖Σ−1‖op max

{ m∑
i,j=1

|σij − Cov(Fi, Fj)|, γ1, γ2, γ4,

√
`
√
γ5

‖Σ−1‖1/4
op

}
(1.9)

with γ1 and γ2 as in Theorem 1.1 and γ4 and γ5 as defined above.
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To the best of our knowledge the dH`
-distance has never been used before. Instead,

the standard multivariate counterpart to the univariate Kolmogorov distance (1.3) is the

dconvex-distance, defined for two m-dimensional random vectors Y and Z as

dconvex(Y, Z) := sup
h∈Im

|Eh(Y )− Eh(Z)|,

where Im is the set of all indicator functions of closed convex sets in Rm. Under the addi-

tional assumption that the difference operators of the components of F are almost surely

bounded, we may establish the following multivariate second order Poincaré inequality

for dconvex, a counterpart to (1.6), (1.7), and (1.9).

Theorem 1.3. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals

F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m}. Assume that there is a constant

% ∈ (0,∞) such that

max
i∈{1,...,m}

|DxFi| ≤ % P-a.s., λ-a.e. x ∈ X, (1.10)

and let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive definite. Then, for any A ∈ F with

0 < λ(A) <∞,

dconvex(F,NΣ) ≤ 2304m3‖Σ−1‖opγ (1.11)

with

γ := max

{ m∑
i,j=1

|σij − Cov(Fi, Fj)|, γ1, γ2, γ4,
8
√

6

3
m2‖Σ−1‖1/2

op %
3λ(A),

m3/2
√
%4λ(A)

‖Σ−1‖1/4
op

,
1

m‖Σ−1‖opλ(A)

∫
X\A

P(DxF 6= 0)λ(dx)

}
and γ1, γ2, and γ4 as in Theorem 1.1 and Theorem 1.2.

Note that dconvex is stronger than dH`
in the sense that dconvex is always at least dH`

since H` ⊂ Im for any ` ∈ N. Although any closed convex set in Rm is the intersection

of at most countably many closed half-spaces, dH`
and dconvex are not equivalent since

dH`
considers only intersections of up to ` closed half-spaces. So the relation between

Theorem 1.2 and Theorem 1.3 is that the latter concerns a stronger distance, but requires

a more restrictive boundedness assumption on the difference operators. The proofs of

Theorems 1.2 and 1.3 rely on two innovations, one of which involves bounding second

moments instead of sup-norms of solutions to the multivariate Stein equation, whereas

the other, in the setting of Theorem 1.2, allows us to remove the boundedness assumption

(1.10) needed in Theorem 1.3 by using the particular structure of the test functions from

H`.
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The condition (1.10) in Theorem 1.3 concurs with existing multivariate results for

the dconvex-distance or generalizations of it in [6, 8, 9, 26, 27] which all require some

boundedness assumptions comparable to almost surely bounded difference operators.

The Malliavin-Stein method is used in [19] to establish for the multivariate normal

approximation of functionals of Gaussian processes bounds in the dW -distance. In [12], a

similar bound with an additional logarithm is derived for the dconvex-distance. Compared

to Theorem 1.3, the latter result does not require any boundedness assumptions, but

this might stem from the fact that the Malliavin-Stein approach in the Gaussian case

involves less terms than in the Poisson case and, in particular, not the one requiring the

boundedness assumption (1.10) in our approach. Moreover, we expect that one can use

our proof technique to remove the logarithm from the result in [12]. For a subclass of

functionals of Gaussian processes, namely multiple Wiener-Itô integrals, one may even

establish rates of multivariate normal approximation with respect to the total variation

distance [20]. This bound also involves additional logarithmic factors and its proof relies

on controlling the relative entropy, an approach which differs from Stein’s method.

Clearly, if the random vector NΣ is replaced by a normal random vector whose covari-

ance matrix consists of entries Cov(Fi, Fj), then the term
∑m

i,j=1 |σij−Cov(Fi, Fj)| in the

multivariate bounds of our main theorems disappears. In Theorem 1.2 and Theorem 1.3

we require that the covariance matrix Σ of the approximating Gaussian random vector

NΣ is positive definite. Otherwise, NΣ would be concentrated on some lower-dimensional

linear subspace of Rm. If now F belongs to any given lower dimensional subspace of Rm

with probability zero, then we have dH`
(F,NΣ) ≥ 1/2 and dconvex(F,NΣ) ≥ 1/2. In such

situations, one could have weak convergence without convergence in dH`
or dconvex.

1.3 Examples and applications

At first sight, the bounds in our general results appear unwieldy. However for many

functionals of interest, we may readily bound the integrated moments of difference op-

erators and the terms γ1, ..., γ5 remarkably simplify. We illustrate this by four examples,

which indicate that our bounds yield presumably optimal rates of convergence.

We start with the following analog to the classical central limit theorem for sums

of i.i.d. random vectors, where we consider the sum of a Poisson distributed number of

i.i.d. random vectors.

Corollary 1.4. Given a Poisson distributed random variable Y with mean s > 0 and a

sequence of i.i.d. centered random vectors (Xn)n∈N in Rm, which are independent of Y ,

define

Zs :=
1√
s

Y∑
n=1

Xn and Σ := (Cov(X
(i)
1 , X

(j)
1 ))i,j∈{1,...,m}.
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(a) It is the case that

d3(Zs, NΣ) ≤ m2

4

m∑
i=1

E |X(i)
1 |3

1√
s
.

(b) If Σ is positive definite,

d2(Zs, NΣ) ≤
√

2πm2

8
‖Σ−1‖3/2

op ‖Σ‖op
m∑
i=1

E |X(i)
1 |3

1√
s
.

(c) If Σ is positive definite, for any ` ∈ N,

dH`
(Zs, NΣ) ≤ 718m59/24`3/2 max{‖Σ−1‖op, ‖Σ−1‖3/4

op }

max

{( m∑
i=1

E (X
(i)
1 )4

)1/2

,

( m∑
i=1

E (X
(i)
1 )6

)1/4}
1√
s
.

(d) If there is a constant a ∈ (0,∞) such that |X(i)
1 | ≤ a P-a.s. for all i ∈ {1, . . . ,m}

and if Σ is positive definite,

dconvex(Zs, NΣ) ≤ 15050m5 max{‖Σ−1‖3/4
op , ‖Σ−1‖3/2

op }max{a2, a3} 1√
s
.

Here, as well as in Theorems 1.1-1.3, we implicitly assume that the normal approxi-

mation bounds all involve finite quantities, as otherwise there is nothing to prove.

Since one can rewrite Zs as a sum of a fixed number of i.i.d. random vectors, one can

also apply the classical multivariate central limit theorem. In [1, 10, 28] corresponding

Berry-Esseen inequalities for the dconvex-distance are derived, which provide in the case

of Corollary 1.4 rates of convergence of the order 1/
√
s as well. These findings are even

stronger since they require for the dconvex-distance only finite third moments, while we

require bounded summands for the dconvex-distance and finite sixth moments for the dH`
-

distance. The stricter assumptions in Corollary 1.4 might come from the fact that the

proofs of the underlying results for more general Poisson functionals are not optimized

for the considered special case.

Since Zs is a vector of first order Wiener-Itô integrals, Corollary 1.4 follows from a

more general theorem in Subsection 4.1, which is obtained by applying our main results

to first order Wiener-Itô integrals.

As a second example we consider the case that one has for some m ∈ N a family of

vectors Fs = (F1,s, . . . , Fm,s), s > 0, of square integrable Poisson functionals F1,s, . . . , Fm,s

with underlying Poisson processes ηs, s > 0, having intensity measures µs, s > 0, of the

form µs = sµ with a fixed finite measure µ, e.g., homogenous Poisson processes on the

d-dimensional unit cube [0, 1]d with increasing intensity. Moreover, we denote by Σs
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the covariance matrix of Fs and assume that (Σs)s>0 converges to a matrix Σ ∈ Rm×m.

Under some additional assumptions on the difference operators our main results imply

the following bounds.

Corollary 1.5. Let Fs, s > 0, be as above and assume that Σ is positive definite and

that there are constants a, b ∈ (0,∞) such that, for i ∈ {1, . . . ,m} and s > 0,

|DxFi,s| ≤
a√
s
, µ-a.e. x ∈ X, and |D2

x1,x2
Fi,s| ≤

a√
s
, µ2-a.e. (x1, x2) ∈ X2, (1.12)

and

s

∫
X
P(D2

x,yFi,s 6= 0)1/4 µ(dy) ≤ b, µ-a.e. x ∈ X. (1.13)

Let ` ∈ N. Then, there exist constants s0, C3, C2, CH`
, Cconvex ∈ (0,∞) depending on a,

b, µ(X), Σ, (Σs)s>0 (and ` in case of CH`
) such that

d3(Fs, NΣs) ≤
C3√
s
, d2(Fs, NΣs) ≤

C2√
s
, dH`

(Fs, NΣs) ≤
CH`√
s
, dconvex(Fs, NΣs) ≤

Cconvex√
s

for s ≥ s0.

We observe that the obtained rates of convergence in Corollary 1.5 are of the order

s−1/2 for all distances. The situation of Corollary 1.5 that one rescales by the square

root of the intensity parameter and that the unrescaled difference operators are bounded

occurs, for example, in some problems in stochastic geometry such as degree counts

or component counts in nearest neighbors graphs (see Subsection 3.1 in [25] as well as

Chapter 12.4 of [6] for a colored version arising in multivariate statistics for equality of

distributions and Subsection 6.2 in [24], respectively).

The third example is the situation where, before centering, the components of F

have representations s−1/2
∑

x∈ηsg∩Ai
ξ

(i)
s (x, ηsg), i ∈ {1, . . . ,m}, with s ∈ [1,∞), where

ηsg is a Poisson process in Rd whose intensity measure has density sg with respect

to the Lebesgue measure, Ai, i ∈ {1, . . . ,m}, are bounded subsets of Rd, and ξ
(i)
s ,

i ∈ {1, . . . ,m}, are stabilizing score functions. Then the companion paper [31], which

can be seen as a multivariate counterpart to some of the findings in [14], shows that the

right-hand sides of (1.6), (1.7), (1.9), and (1.11) reduce to O(
∑m

i,j=1 |σij−Cov(Fi, Fj)|)+

O(s−1/2) under some assumptions on (ξ
(i)
s )s≥1, i ∈ {1, . . . ,m}, Ai, i ∈ {1, . . . ,m}, and g.

This means that the approximation error consists of a term taking the difference of the

covariances into account and a rate of order s−1/2, which also occurs in the univariate

case (see [14]). In Section 3 of [31], these findings are applied to obtain quantitative mul-

tivariate central limit theorems for statistics of k-nearest neighbors graphs and random

geometric graphs as well as statistics arising in topological data analysis and entropy

estimation.
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As a fourth example we mention the intrinsic volumes of Boolean models, a prominent

problem from stochastic geometry. Here, our main results lead to the convergence rate

Vol(W )−1/2, where Vol(W ) is the volume of the compact convex observation window

W , if one compares the vector of intrinsic volumes of the Boolean model in W with a

centered Gaussian random vector having exactly the same covariance matrix and if one

increases the inradius of W ; see Subsection 4.2.

In the last three examples the rates of convergence s−1/2 and Vol(W )−1/2, respectively,

are comparable to n−1/2 in the uni- and multivariate central limit theorems for the i.i.d.

case and, thus, presumably optimal.

Among these examples, we will consider the first order Wiener-Itô integrals gener-

alizing the situation of Corollary 1.4 and the intrinsic volumes of Boolean models in

more detail in Subsections 4.1 and 4.2, while Corollary 1.5 is a consequence of a theorem

derived in Subsection 4.3.

1.4 Proof techniques

Let us now informally comment on the method of proof. Assume we aim to compare

an m-dimensional random vector Y = (Y1, . . . , Ym) with an m-dimensional centered

Gaussian random vector NI with the identity matrix I ∈ Rm×m as covariance matrix

(we assume Σ = I for simplicity) in terms of a measurable test function h : Rm → R.

The idea of Stein’s method for multivariate normal approximation (see e.g. [6, 10]) is

now to use the identity

Eh(Y )− Eh(NI) = E
m∑
i=1

Yi
∂fh
∂yi

(Y )− ∂2fh
∂y2

i

(Y ),

where fh : Rm → R is a solution of the multivariate Stein equation

m∑
i=1

yi
∂f

∂yi
(y)− ∂2f

∂y2
i

(y) = h(y)− Eh(NI), y ∈ Rm. (1.14)

Under some smoothness assumptions on h one can give formulas for fh (see, for example,

Lemma 2.6 in [6]). However for non-smooth h such as indicator functions it appears

unclear how to deal with fh. This problem is resolved by considering instead of h some

smoothed C∞ version ht,I of h, which depends on some smoothing parameter t ∈ (0, 1).

Of course one makes some error by replacing the test functions defining the dH`
- and

dconvex-distances by their smoothed versions, but smoothing lemmas allow us to bound

this error by some constant multiple of
√
t.

Thus it remains to find upper bounds for |Eht,I(Y ) − Eht,I(NI)| as a function of

t ∈ (0, 1). We sketch how this goes as follows. Given h : Rm → R measurable and

12



bounded and t ∈ (0, 1) we introduce the smoothed function

ht,I(y) :=

∫
Rm

h(
√
tz +

√
1− ty)ϕI(z) dz, y ∈ Rm, (1.15)

where ϕI denotes the density of NI . The function ft,h,I : Rm → R given by

ft,h,I(y) := −1

2

∫ 1

t

1

1− s

∫
Rm

(h(
√
sz +

√
1− sy)− h(z))ϕI(z) dz ds, y ∈ Rm, (1.16)

is a solution of the Stein equation (1.14) with h replaced by ht,I ; see [10, p. 726] and [6,

p. 337]. Moreover, when ‖h‖∞ := supx∈Rm |h(x)| ≤ 1, it follows (see e.g. the first display

on p. 1498 in [23]) that, for a vector F = (F1, . . . , Fm), m ∈ N, of Poisson functionals

F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m},

|Eht,I(F )−Eht,I(NI)| =
∣∣∣∣ m∑
i=1

E
∂2ft,h,I
∂y2

i

(F )−
m∑
k=1

E
∫
X
Dx

∂ft,h,I
∂yk

(F )(−DxL
−1Fk)λ(dx)

∣∣∣∣,
where Dx is the difference operator given in (1.1) and L−1 is the inverse Ornstein-

Uhlenbeck generator defined in the Appendix.

A main idea behind the proofs of Theorems 1.2 and 1.3 is to show for the right-hand

side of the above a bound involving

√∑m
i,j=1 E

(
∂2ft,h,I
∂yi∂yj

(F )

)2

and then to use

sup
h∈H`

E
m∑

i,j=1

(
∂2ft,h,I
∂yi∂yj

(F )

)2

≤M2(log t)2dH2`
(F,NI) + 444m23/6 (1.17)

for all t ∈ (0, 1), i, j ∈ {1, . . . ,m}, and ` ∈ N with M2 ≤ m2 as well as a similar bound for

h ∈ Im (cf. Proposition 2.4). By choosing t appropriately we may deduce the bounds

of Theorems 1.2 and 1.3. In the case of Theorem 1.2, one needs a second technique,

which makes use of the special form of the constituent test functions defining dH`
, to

remove the boundedness assumption (1.10) on DxFi, i ∈ {1, . . . ,m}, in Theorem 1.3.

The inequality (1.17) is not restricted to a vector F of Poisson functionals, but holds for

arbitrary random vectors Y in Rm. Thus, we expect that it might be helpful for other

applications of Stein’s method for multivariate normal approximation as well.

In all our main results we provide explicit constants, which are sometimes very large.

In part, this is caused by some generous estimates in our proofs, in order to obtain

relatively short bounds valid for all choices of m and ` and to simplify the proofs. We

expect that one can obtain better constants for many instances if one goes back to our

proofs and uses the particular stucture of the functionals and the choices of m and `.
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1.5 Structure of the paper

This paper is organized as follows. The next section establishes some smoothing lemmas

and bounds on solutions of the multivariate Stein equation, including the afore-mentioned

key Proposition 2.4. Section 3, which draws on the auxiliary results of Section 2, is

devoted to the proofs of our main results. Section 4 deals with the application of our

findings to first order Wiener-Itô integrals and intrinsic volumes of Boolean models.

Moreover, we further evaluate our results for the case of marked Poisson processes - a

result which will be used in the companion paper [31]. In the Appendix we recall the

definitions of the Malliavin operators as well as some results from Malliavin calculus on

the Poisson space that are used in Section 3.

2 Smoothing and the multivariate Stein equation

2.1 Smoothing lemmas for the dconvex- and the dH`
-distance

Let m ∈ N be fixed in the sequel. Let ϕΣ denote the density of an m-dimensional

centered Gaussian random vector NΣ with a positive definite covariance matrix Σ =

(σij)i,j∈{1,...,m} ∈ Rm×m. Given measurable and bounded h : Rm → R, positive definite

Σ ∈ Rm×m, and t ∈ (0, 1) we introduce the smoothed version

ht,Σ(y) :=

∫
Rm

h(
√
tz +

√
1− ty)ϕΣ(z) dz = Eh(

√
tNΣ +

√
1− ty), y ∈ Rm,

of h, extending (1.15) to general Σ. The following so-called smoothing lemma (see

Lemma 2.11 in [10], Lemma 11.4 in [2] or Lemma 12.1 of [6]) allows one to bound the

dconvex-distance to the m-dimensional standard Gaussian random vector NI in terms of

smooth test functions.

Lemma 2.1. For an m-dimensional random vector Y and t ∈ (0, 1),

dconvex(Y,NI) ≤
4

3
sup
h∈Im

|Eht,I(Y )− Eht,I(NI)|+
20√
π
m2

√
t

1− t
.

Proof. This is the statement of [10, Lemma 2.11] with ε =
√
t, ∆ = 2

√
2/πm3/2 (which

can be deduced from [28, Lemma 1]) and am ≤ 2
√

2m (which follows from Markov’s

inequality) there.

Lemma 2.1 is the starting point for proving the asserted bound (1.11). Lemma 2.1

in fact holds for any m-dimensional centered Gaussian random vector NΣ with positive

definite covariance matrix Σ ∈ Rm×m as implied by the following result.
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Lemma 2.2. For any regular Θ ∈ Rm×m, ` ∈ N, positive definite Σ ∈ Rm×m, and

m-dimensional random vectors Y and Z,

dH`
(Y, Z) = dH`

(ΘY,ΘZ), dconvex(Y, Z) = dconvex(ΘY,ΘZ),

and

sup
h∈G
|Eht,Σ(ΘY )− Eht,Σ(ΘZ)| = sup

h∈G
|Eht,Θ−1Σ(Θ−1)T (Y )− Eht,Θ−1Σ(Θ−1)T (Z)|

for t ∈ (0, 1) and G = H` or G = Im.

Proof. For any h ∈ H` (resp. h ∈ Im) the functions hΘ : Rm 3 x 7→ h(Θx) and

hΘ−1 : Rm 3 x 7→ h(Θ−1x) also belong to H` (resp. Im) and

ht,Σ(Θx) = Eh(
√
tNΣ +

√
1− tΘx) = EhΘ(

√
tΘ−1NΣ +

√
1− tx) = (hΘ)t,Θ−1Σ(Θ−1)T (x),

which yields the desired conclusions.

One of the assumptions behind Lemma 2.1 is that, for any ε > 0, the class Im
is closed under the supremum and infimum operations sending h ∈ Im to h+

ε (x) :=

supy∈Bm(0,ε) h(x + y), x ∈ Rm, and h−ε (x) := infy∈Bm(0,ε) h(x + y), x ∈ Rm, respectively.

Here and elsewhere Bm(x, r) denotes the closed Euclidean ball centered at x ∈ Rm and

having radius r. The class H`, ` ≥ 2, is not closed under these operations, and therefore

we may not replace Im with H`, ` ≥ 2, in Lemma 2.1. To proceed for the dH`
-distance

similarly as for the dconvex-distance, we establish an analogous smoothing lemma, whose

proof goes along the lines of the proof of Lemma 11.4 in [2].

Lemma 2.3. For ` ∈ N, Σ ∈ Rm×m positive definite, an m-dimensional random vector

Z, and t ∈ (0, 1),

dH`
(Z,NΣ) ≤ 2 sup

h∈H`

|Eht,Σ(Z)− Eht,Σ(NΣ)|+ 24`
√
m√
π

√
t.

Proof. By definition any h ∈ H` can be written as

h(x) = 1{〈x, ui〉 ≤ zi, i ∈ {1, . . . , `}}, x ∈ Rm,

with u1, . . . , u` ∈ Sm−1 and z1, . . . , z` ∈ R, and where Sm−1 is the boundary of Bm(0, 1).

By Lemma 2.2, we can assume without loss of generality that Σ is the identity matrix

I ∈ Rm×m. For v ∈ R and h ∈ H` as given above, we define h(v) : Rm 3 x 7→ 1{〈x, ui〉 ≤
zi + v, i ∈ {1, . . . , `}}, which is also in H`. Note that, for x, y ∈ Rm with ‖x‖ ≤ |v|,

h(−|v|)(x+ y) ≤ h(y) ≤ h(|v|)(x+ y) (2.1)
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and that, for x, y ∈ Rm,

|h(v)(x+ y)− h(y)| ≤
∑̀
i=1

1{zi − ‖x‖ − |v| ≤ 〈ui, y〉 ≤ zi + ‖x‖+ |v|}. (2.2)

A straightforward computation shows that, for all w ∈ R,

sup
u∈Sm−1,z∈R

P(−w ≤ 〈u,NI〉 − z ≤ w) ≤
√

2√
π
w. (2.3)

Let N ′I denote an independent copy of NI . Without loss of generality we can assume

that Z, NI , and N ′I are defined on the same probability space and are independent. Note

that

P(N ′I ∈ Bm(0, 2
√
m)) = 1− P(‖N ′I‖ ≥ 2

√
m) ≥ 1− E ‖N ′I‖2

4m
=

3

4
. (2.4)

Let h ∈ H` and assume that Eh(
√

1− tZ)− Eh(
√

1− tNI) ≥ 0. Then, it follows from

the definition of ht,I and (2.1) that

E (h(2
√
mt))t,I(Z)− E (h(2

√
mt))t,I(NI)

= E
[
h(2
√
mt)(
√
tN ′I +

√
1− tZ)− h(2

√
mt)(
√
tN ′I +

√
1− tNI)

]
≥ E

[
1{N ′I ∈ Bm(0, 2

√
m)}

(
h(
√

1− tZ)− h(
√

1− tNI)

− (h(2
√
mt)(
√
tN ′I +

√
1− tNI)− h(

√
1− tNI))

)]
+ E

[
1{N ′I /∈ Bm(0, 2

√
m)}

(
h(
√
tN ′I +

√
1− tZ)− h(

√
tN ′I +

√
1− tNI)

− (h(2
√
mt)(
√
tN ′I +

√
1− tNI)− h(

√
tN ′I +

√
1− tNI))

)]
.

By independence and (2.4) we have that

E
[
1{N ′I ∈ Bm(0, 2

√
m)}

(
h(
√

1− tZ)−h(
√

1− tNI)
)]
≥ 3

4
E
[
h(
√

1− tZ)−h(
√

1− tNI)
]
.

The observation that, for h ∈ H`, p ∈ R, and z ∈ Rm, Rm 3 x 7→ h(px+ z) also belongs

to H` and (2.4) yield

E
[
1{N ′I /∈ Bm(0, 2

√
m)}

(
h(
√
tN ′I +

√
1− tZ)−h(

√
tN ′I +

√
1− tNI)

)]
≥ −1

4
dH`

(Z,NI).

From (2.2) and (2.3) we obtain

E
[
1{N ′I ∈ Bm(0, 2

√
m)}

(
h(2
√
mt)(
√
tN ′I +

√
1− tNI)− h(

√
1− tNI)

)]
≤
∑̀
i=1

P(zi − 4
√
mt ≤ 〈ui,

√
1− tNI〉 ≤ zi + 4

√
mt) ≤ 4

√
2√
π
`
√
m

√
t√

1− t
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and that

E
[
1{N ′I /∈ Bm(0, 2

√
m)}(h(2

√
mt)(
√
tN ′I +

√
1− tNI)− h(

√
tN ′I +

√
1− tNI))

]
≤
∑̀
i=1

P(zi − 〈ui,
√
tN ′I〉 − 2

√
mt ≤ 〈ui,

√
1− tNI〉 ≤ zi − 〈ui,

√
tN ′I〉+ 2

√
mt)

≤ 2
√

2√
π
`
√
m

√
t√

1− t
.

For t ∈ (0, 1) let us use the abbreviation

dH`,t(Z,NI) := sup
h∈H`

|Eht,I(Z)− Eht,I(NI)|.

The previous estimates may be combined to give

3

4

∣∣Eh(
√

1− tZ)− Eh(
√

1− tNI)
∣∣

≤ dH`,t(Z,NI) +
1

4
dH`

(Z,NI) +
6
√

2√
π
`
√
m

√
t√

1− t
.

(2.5)

On the other hand, if Eh(
√

1− tZ) − Eh(
√

1− tNI) < 0, we obtain by arguments

similar to those above that

E (h(−2
√
mt))t,I(NI)− E (h(−2

√
mt))t,I(Z)

= E
[
h(−2

√
mt)(
√
tN ′I +

√
1− tNI)− h(−2

√
mt)(
√
tN ′I +

√
1− tZ)

]
≥ E

[
1{N ′I ∈ Bm(0, 2

√
m)}

(
h(
√

1− tNI)− h(
√

1− tZ)

− (h(
√

1− tNI)− h(−2
√
mt)(
√
tN ′I +

√
1− tNI))

)]
+ E

[
1{N ′I /∈ Bm(0, 2

√
m)}

(
h(
√
tN ′I +

√
1− tNI)− h(

√
tN ′I +

√
1− tZ)

− (h(
√
tN ′I +

√
1− tNI)− h(−2

√
mt)(
√
tN ′I +

√
1− tNI))

)]
≥ 3

4

(
Eh(
√

1− tNI)− Eh(
√

1− tZ)
)
− 1

4
dH`

(Z,NI)−
6
√

2√
π
`
√
m

√
t√

1− t
.

This implies that (2.5) is still true. Taking the supremum over h ∈ H` in (2.5), we obtain

dH`
(Z,NI) ≤ 2dH`,t(Z,NI) +

12
√

2√
π
`
√
m

√
t√

1− t
.

Since the left-hand side is at most one, we may replace
√
t/
√

1− t by
√

2t, which com-

pletes the proof.

2.2 Bounds on the derivatives of solutions to Stein’s equation

for multivariate normal approximation

We extend the definition of ft,h,I given at (1.16) to include indices with general covariance

matrix Σ. This goes as follows. For h : Rm → R measurable and bounded, Σ =
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(σij)i,j∈{1,...,m} ∈ Rm×m positive definite, and t ∈ (0, 1), the function ft,h,Σ : Rm → R
given by

ft,h,Σ(y) :=
1

2

∫ 1

t

1

1− s

∫
Rm

(h(
√
sz +

√
1− sy)− h(z))ϕΣ(z) dz ds, y ∈ Rm,

is a solution of the Stein equation

ht,Σ(y)− Eht,Σ(NΣ) =
m∑
i=1

yi
∂f

∂yi
(y)−

m∑
i,j=1

σij
∂2f

∂yi∂yj
(y), y ∈ Rm,

see [10, p. 726] and [6, p. 337] for Σ = I as well as [18, Lemma 1] and [19, Lemma 3.3]

for general Σ. Some calculations show that, for i, j, k ∈ {1, . . . ,m} and y ∈ Rm,

∂ft,h,Σ
∂yi

(y) = −1

2

∫ 1

t

1
√
s
√

1− s

∫
Rm

h(
√
sz +

√
1− sy)

∂ϕΣ

∂yi
(z) dz ds,

∂2ft,h,Σ
∂yi∂yj

(y) =
1

2

∫ 1

t

1

s

∫
Rm

h(
√
sz +

√
1− sy)

∂2ϕΣ

∂yi∂yj
(z) dz ds, (2.6)

and

∂3ft,h,Σ
∂yi∂yj∂yk

(y) = −1

2

∫ 1

t

√
1− s
s3/2

∫
Rm

h(
√
sz +

√
1− sy)

∂3ϕΣ

∂yi∂yj∂yk
(z) dz ds. (2.7)

Let Σ1/2 be the positive definite matrix in Rm×m such that Σ1/2Σ1/2 = Σ and let Σ−1/2 :=

(Σ1/2)−1. By h ◦ Σ1/2 we denote the function Rm 3 y 7→ h(Σ1/2y). It follows from the

definition of ft,h,Σ that, for y ∈ Rm,

ft,h,Σ(y) =
1

2

∫ 1

t

1

1− s
E [h(

√
sNΣ +

√
1− sy)− h(NΣ)] ds

=
1

2

∫ 1

t

1

1− s
E [h ◦ Σ1/2(

√
sNI +

√
1− sΣ−1/2y)− h ◦ Σ1/2(NI)] ds

= ft,h◦Σ1/2,I(Σ
−1/2y).

(2.8)

Since ϕΣ(z) = ϕI(Σ
−1/2z)/

√
det(Σ) for z ∈ Rm, we have that, for i, j, k ∈ {1, . . . ,m}

and z ∈ Rm,

∂3ϕΣ

∂yi∂yj∂yk
(z) =

1√
det(Σ)

m∑
u,v,w=1

(Σ−1/2)ui(Σ
−1/2)vj(Σ

−1/2)wk
∂3ϕI

∂yu∂yv∂yw
(Σ−1/2z),

which yields together with a short computation

m∑
i,j,k=1

(
∂3ϕΣ

∂yi∂yj∂yk
(z)

)2

≤
‖Σ−1‖3

op

det(Σ)

m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(Σ−1/2z)

)2

. (2.9)
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From the above formulas for the derivatives of ft,h,Σ one can deduce that

sup
y∈Rm

∣∣∣∣∂2ft,h,Σ(y)

∂yi∂yj

∣∣∣∣ ≤ m2‖Σ−1‖op‖h‖∞| log t|, t ∈ (0, 1),

and

sup
y∈Rm

∣∣∣∣ ∂3ft,h,Σ
∂yi∂yj∂yk

(y)

∣∣∣∣ ≤ 6m3‖Σ−1‖3/2
op ‖h‖∞

1√
t
, t ∈ (0, 1). (2.10)

These sup norm bounds on the derivatives of ft,h,Σ go hand-in-hand with the following

more useful second moment bounds. They are the key to the proofs of our main results,

as they will be used to bound the right-hand sides of the smoothing inequalities in Lemma

2.1 and Lemma 2.3.

Proposition 2.4. Let Y be an m-dimensional random vector, let Σ ∈ Rm×m be positive

definite, and define

M2 :=
1

4

m∑
i,j=1

(∫
Rm

∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣ dz)2

≤ m2. (2.11)

Then,

sup
h∈H`

E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(Y )

)2

≤ ‖Σ−1‖2
op(M2(log t)2dH2`

(Y,NΣ) + 444m23/6)

for all t ∈ (0, 1) and ` ∈ N and

sup
h∈Im

E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(Y )

)2

≤ ‖Σ−1‖2
op(M2(log t)2dconvex(Y,NΣ) + 444m23/6)

for all t ∈ (0, 1).

We prepare the proof of Proposition 2.4 with the following lemmas. For x ∈ Rm and

a Borel set B ⊆ Rm we define d(x,B) := infy∈B ‖x− y‖.

Lemma 2.5. For any α ∈ (0, 1),

sup
A⊆Rm convex

E
1

d(NI , ∂A)α
≤ 1 + 2

√
2

π
m3/2 α

1− α
.

Proof. It is shown in [28, Lemma 1] that for, all convex A ⊆ Rm and r > 0,

P(d(NI , ∂A) ≤ r) ≤ 2

√
2

π
m3/2r. (2.12)
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This implies for any convex A ⊆ Rm that

E
1

d(NI , ∂A)α
=

∫ ∞
0

P(d(NI , ∂A)−α ≥ u) du =

∫ ∞
0

P(d(NI , ∂A) ≤ u−1/α) du

≤ 1 +

∫ ∞
1

P(d(NI , ∂A) ≤ u−1/α) du

≤ 1 + 2

√
2

π
m3/2

∫ ∞
1

u−1/α du = 1 + 2

√
2

π
m3/2 α

1− α
,

which completes the proof.

Lemma 2.6. For any positive definite Σ ∈ Rm×m and i, j ∈ {1, . . . ,m},∫
Rm

∂2ϕΣ

∂yi∂yj
(z) dz = 0.

Proof. As noted at display (12.72) of [6] we have that the integral of the mixed derivative
∂2ϕΣ

∂yi∂yj
(z) is the mixed derivative of x 7→

∫
Rm ϕΣ(z+x) dz evaluated at x = 0. The integral

is one, so the derivative vanishes.

Lemma 2.7. For all h ∈ Im and t ∈ (0, 1),

max
i,j∈{1,...,m}

E
(
∂2ft,h,I
∂yi∂yj

(NI)

)2

≤ 444m11/6.

Proof. We can assume that h = 1{· ∈ A} for some closed convex set A ⊆ Rm. Then, for

i, j ∈ {1, . . . ,m} and y ∈ Rm, it follows from (2.6) that

∂2ft,h,I
∂yi∂yj

(y) =
1

2

∫ 1

t

1

s

∫
Rm

1{
√
sz +

√
1− sy ∈ A} ∂

2ϕI
∂yi∂yj

(z) dz ds

=
1

2

∫ 1

t

1

s

∫
Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz ds.

For s ∈ (0, 1) and y ∈ Rm let rs,y := d(0, ∂
(

1√
s
(A−

√
1− sy)

)
) = 1√

s
d(
√

1− sy, ∂A). If

0 /∈ 1√
s
(A−

√
1− sy), we have∣∣∣∣ ∫

Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣ ≤ ∫
Rm\Bm(0,rs,y)

∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣ dz.
If 0 ∈ 1√

s
(A−

√
1− sy), Lemma 2.6 implies that∣∣∣∣ ∫

Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣
=

∣∣∣∣ ∫
Rm

1{z /∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣ ≤ ∫
Rm\Bm(0,rs,y)

∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣ dz.
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Since for the density φ of a standard Gaussian random variable and a ∈ R it holds that

|φ′(a)| = 1√
2π
|a|e−a2/2 ≤ 1√

2π
|ae−a2/4|︸ ︷︷ ︸
≤1

e−a
2/4 ≤

√
2√

4π
e−a

2/4

and

|φ′′(a)| = 1√
2π
|a2 − 1|e−a2/2 ≤ 1√

2π
|(a2 − 1)e−a

2/4|︸ ︷︷ ︸
≤2

e−a
2/4 ≤ 23/2

√
4π
e−a

2/4,

we obtain that ∣∣∣∣ ∂2ϕI
∂yi∂yj

(z)

∣∣∣∣ ≤ 23/2ϕIi,j(z), z ∈ Rm,

where Ii,j is the identity matrix I where the i-th and the j-th diagonal element are

replaced by 2. Consequently, we have∣∣∣∣ ∫
Rm

1{z ∈ 1√
s

(A−
√

1− sy)} ∂
2ϕI

∂yi∂yj
(z) dz

∣∣∣∣ ≤ 23/2P(‖NIi,j‖ ≥ rs,y).

The Markov inequality yields

P(‖NIi,j‖ ≥ rs,y) ≤
E ‖NIi,j‖1/3

r
1/3
s,y

≤
s1/6(E ‖NIi,j‖2)1/6

d(
√

1− sy, ∂A)1/3
≤ 21/6m1/6s1/6

(1− s)1/6d(y, ∂A/
√

1− s)1/3
.

Hence, we obtain∣∣∣∣∂2ft,h,I
∂yi∂yj

(y)

∣∣∣∣ ≤ 22/3m1/6

∫ 1

t

1

s5/6(1− s)1/6

1

d(y, ∂A/
√

1− s)1/3
ds, y ∈ Rm.

Now the Cauchy-Schwarz inequality leads to(
∂2ft,h,I
∂yi∂yj

(y)

)2

≤ 24/3m1/3

∫ 1

t

1

s5/6(1− s)1/3
ds

∫ 1

t

1

s5/6

1

d(y, ∂A/
√

1− s)2/3
ds, y ∈ Rm.

Numerical integration shows that the first integral may be generously bounded by 7 so

that we obtain, together with Lemma 2.5,

E
(
∂2ft,h,I
∂yi∂yj

(NI)

)2

≤ 7 · 24/3m1/3

∫ 1

t

1

s5/6
E

1

d(NI , ∂A/
√

1− s)2/3
ds

≤ 7 · 24/3m1/3

∫ 1

t

1

s5/6
ds sup

A′⊆Rm convex
E

1

d(NI , ∂A′)2/3

≤ 42 · 24/3m1/3(1 + 4
√

2/πm3/2)

≤ 444m11/6,

which completes the proof.
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Proof of Proposition 2.4. First we prove the assertion for the special case Σ = I. For

i, j ∈ {1, . . . ,m} we have that

E
(
∂2ϕI
∂yi∂yj

(Y )

)2

= E
(

1

2

∫ 1

t

1

s

∫
Rm

h(
√
sz +

√
1− sY )

∂2ϕI
∂yi∂yj

(z) dz ds

)2

=
1

4

∫ 1

t

∫ 1

t

1

s1s2

∫
Rm

∫
Rm

Eh(
√
s1z1 +

√
1− s1Y )h(

√
s2z2 +

√
1− s2Y )

∂2ϕI
∂yi∂yj

(z1)
∂2ϕI
∂yi∂yj

(z2) dz2 dz1 ds2 ds1

=
1

4

∫ 1

t

∫ 1

t

1

s1s2

∫
Rm

∫
Rm

Eh(
√
s1z1 +

√
1− s1NI)h(

√
s2z2 +

√
1− s2NI)

∂2ϕI
∂yi∂yj

(z1)
∂2ϕI
∂yi∂yj

(z2) dz2 dz1 ds2 ds1

+
1

4

∫ 1

t

∫ 1

t

1

s1s2

∫
Rm

∫
Rm

(
Eh(
√
s1z1 +

√
1− s1Y )h(

√
s2z2 +

√
1− s2Y )

− Eh(
√
s1z1 +

√
1− s1NI)h(

√
s2z2 +

√
1− s2NI)

)
∂2ϕI
∂yi∂yj

(z1)
∂2ϕI
∂yi∂yj

(z2) dz2 dz1 ds2 ds1

= E
(
∂2ϕI
∂yi∂yj

(NI)

)2

+Rij,

where Rij denotes the second four-fold integral in the penultimate equation. It follows

from Lemma 2.7 that

E
m∑

i,j=1

(
∂2ϕI
∂yi∂yj

(NI)

)2

≤ 444m23/6.

For h ∈ H`, z1, z2 ∈ Rm, and s1, s2 ∈ (0, 1) we have that

hz1,z2,s1,s2 : Rm 3 y 7→ h(
√
s1z1 +

√
1− s1y)h(

√
s2z2 +

√
1− s2y)

is the indicator function of the intersection of 2` closed half-spaces and, thus, an element

of H2`. This yields that

|Ehz1,z2,s1,s2(Y )− Ehz1,z2,s1,s2(NI)| ≤ dH2`
(Y,NI)

and, consequently, recalling the definition of M2 at (2.11),

m∑
i,j=1

|Rij| ≤M2(log t)2dH2`
(Y,NI).
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For h ∈ Im we have that hz1,z2,s1,s2 ∈ Im, whence

m∑
i,j=1

|Rij| ≤M2(log t)2dconvex(Y,NI).

Combining the previous estimates completes the proof of Proposition 2.4 for the special

case Σ = I.

For a positive definite Σ ∈ Rm×m it follows from (2.8) that, for y ∈ Rm,

Hess ft,h,Σ(y) = Σ−1/2 Hess ft,h◦Σ1/2,I(Σ
−1/2y)Σ−1/2.

Using the Hilbert-Schmidt norm ‖A‖H.S. :=
√∑m

i,j=1 a
2
ij of a matrix A = (aij)i,j∈{1,...,m} ∈

Rm×m and the relation that ‖AB‖H.S. ≤ ‖A‖op‖B‖H.S for A,B ∈ Rm×m, we obtain that

E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(Y )

)2

= E ‖Hess ft,h,Σ(Y )‖2
H.S.

= E ‖Σ−1/2 Hess ft,h◦Σ1/2,I(Σ
−1/2Y )Σ−1/2‖2

H.S.

≤ ‖Σ−1/2‖4
opE ‖Hess ft,h◦Σ1/2,I(Σ

−1/2Y )‖2
H.S.

= ‖Σ−1‖2
opE

m∑
i,j=1

(
∂2ft,h◦Σ1/2,I

∂yi∂yj
(Σ−1/2Y )

)2

.

Now the special case proven above (for Σ = I) and the observation that, by Lemma 2.2,

dH`
(Σ−1/2Y,NI) = dH`

(Y,NΣ) and dconvex(Σ
−1/2Y,NI) = dconvex(Y,NΣ), respectively,

complete the proof.

3 Proofs of the main results

Throughout this section we assume that the reader is familiar with Malliavin calculus

on the Poisson space. The Appendix provides the essential definitions and properties of

Malliavin operators needed in the sequel.

3.1 Proof of Theorem 1.1

The starting point for the proofs for the d3- and the d2-distance are the following quan-

titative bounds for the normal approximation of Poisson functionals, which were derived

in [23, Theorem 4.2] and [23, Theorem 3.3] by a combination of Malliavin calculus with

the interpolation method and Stein’s method, respectively (see also [4, Section 6]). For

a definition of the inverse Ornstein-Uhlenbeck generator L−1 we refer to [15, 23] or the

Appendix.
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Proposition 3.1. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals

F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m}, let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be

positive semi-definite, and put

β1 :=

√√√√ m∑
i,j=1

E
(
σij −

∫
X
DxFi(−DxL−1Fj)λ(dx)

)2

β2 :=

∫
X
E
( m∑

i=1

|DxFi|
)2 m∑

j=1

|DxL
−1Fj|λ(dx).

Then,

d3(F,NΣ) ≤ m

2
β1 +

1

4
β2.

If, additionally, Σ is positive definite, then

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2
op β1 +

√
2π

8
‖Σ−1‖3/2

op ‖Σ‖opβ2.

The main difficulty in evaluating these bounds is to control the behavior of the terms

involving the inverse Ornstein-Uhlenbeck generator L−1, which will be done in the same

way as in [15]. The following proposition collects two estimates from [15, Lemma 3.4

and Proposition 4.1], which will play a crucial role in the sequel.

Proposition 3.2. (a) For a square integrable Poisson functional F and p ≥ 1,

E |DxL
−1F |p ≤ E |DxF |p, λ-a.e. x ∈ X

and

E |D2
x,yL

−1F |p ≤ E |D2
x,yF |p, λ2-a.e. (x, y) ∈ X2.

(b) For F,G ∈ domD with EF = EG = 0,

E
(

Cov(F,G)−
∫
X
DxF (−DxL

−1G)λ(dx)

)2

≤ 3

∫
X3

[
E (D2

x1,x3
F )2(D2

x2,x3
F )2
]1/2[E (Dx1G)2(Dx2G)2

]1/2
λ3(d(x1, x2, x3))

+

∫
X3

[
E (Dx1F )2(Dx2F )2

]1/2[E (D2
x1,x3

G)2(D2
x2,x3

G)2
]1/2

λ3(d(x1, x2, x3))

+

∫
X3

[
E (D2

x1,x3
F )2(D2

x2,x3
F )2
]1/2[E (D2

x1,x3
G)2(D2

x2,x3
G)2
]1/2

λ3(d(x1, x2, x3)).

Combining Proposition 3.1 and Proposition 3.2 yields the proof of Theorem 1.1, which

goes as follows.
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Proof of Theorem 1.1. From the triangle inequality we obtain that

β1 ≤
m∑

i,j=1

|σij − Cov(Fi, Fj)|+

√√√√ m∑
i,j=1

E
(

Cov(Fi, Fj)−
∫
X
DxFi(−DxL−1Fj)λ(dx)

)2

.

Now an application of Proposition 3.2(b) yields that, for i, j ∈ {1, . . . ,m},

E
(

Cov(Fi, Fj)−
∫
X
DxFi(−DxL

−1Fj)λ(dx)

)2

≤ 3

∫
X3

[
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
]1/2[E (Dx1Fj)

2(Dx2Fj)
2
]1/2

λ3(d(x1, x2, x3))

+

∫
X3

[
E (Dx1Fi)

2(Dx2Fi)
2
]1/2[E (D2

x1,x3
Fj)

2(D2
x2,x3

Fj)
2
]1/2

λ3(d(x1, x2, x3))

+

∫
X3

[
E (D2

x1,x3
Fi)

2(D2
x2,x3

Fi)
2
]1/2[E (D2

x1,x3
Fj)

2(D2
x2,x3

Fj)
2
]1/2

λ3(d(x1, x2, x3))

so that

β1 ≤
m∑

i,j=1

|σij − Cov(Fi, Fj)|+ 2γ1 + γ2. (3.1)

It follows from Hölder’s inequality and Proposition 3.2(a) that

β2 ≤ m

∫
X

m∑
i=1

E
[
|DxFi|3

]2/3 m∑
j=1

E
[
|DxL

−1Fj|3
]1/3

λ(dx)

≤ m

∫
X

m∑
i=1

E
[
|DxFi|3

]2/3 m∑
j=1

E
[
|DxFj|3

]1/3
λ(dx)

≤ m

∫
X
m1/3

( m∑
i=1

E
[
|DxFi|3

])2/3

m2/3

( m∑
j=1

E
[
|DxFj|3

])1/3

λ(dx)

= m2

∫
X

m∑
i=1

E
[
|DxFi|3

]
λ(dx) = m2γ3.

Now Proposition 3.1 completes the proof of Theorem 1.1.

3.2 Proofs of Theorem 1.2 and Theorem 1.3

Throughout this subsection we use several Malliavin operators, namely the already in-

troduced difference operator D, the inverse Ornstein-Uhlenbeck generator L−1 and the

Skorohod integral δ. Recall that we denote the domain of D by domD and we de-

fine dom δ similarly. For definitions we refer, for example, to [15, Section 2] or to the

Appendix.
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Proof of Theorem 1.2. In the following we can assume that γ1, γ2, γ4, γ5 <∞ since oth-

erwise there is nothing to prove. Let h : Rm → R be measurable with ‖h‖∞ ≤ 1. As

noted in Section 1.4, it follows from p. 1498 in [23] that

|Eht,Σ(F )− Eht,Σ(NΣ)|

=

∣∣∣∣ m∑
i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )−
m∑
k=1

E
∫
X
Dx

∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx)

∣∣∣∣.
The fundamental theorem of calculus yields

m∑
k=1

E
∫
X
Dx

∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx)

=
m∑
k=1

E
∫
X

∫ 1

0

m∑
j=1

∂2ft,h,Σ
∂yj∂yk

(F + uDxF )DxFj(−DxL
−1Fk) duλ(dx)

=
m∑

j,k=1

E
∫
X

∂2ft,h,Σ
∂yj∂yk

(F )DxFj(−DxL
−1Fk)λ(dx)

+
m∑

j,k=1

E
∫
X

∫ 1

0

(
∂2ft,h,Σ
∂yj∂yk

(F + uDxF )− ∂2ft,h,Σ
∂yj∂yk

(F )

)
DxFj(−DxL

−1Fk) duλ(dx)

=: J1 + J2.

The idea of the proof is to decompose J2 into J21 and J22 and to show that the terms∣∣∣∣J1 −
∑m

i,j=1 σijE
∂2ft,h,Σ
∂yi∂yj

(F )

∣∣∣∣ and |J21| are each bounded by a product involving√
E
∑m

i,j=1

(∂2ft,h,Σ
∂yi∂yj

(F )
)2

and to then apply Proposition 2.4.

Recalling the definition of β1 in Proposition 3.1 and applying the Cauchy-Schwarz

inequality we obtain∣∣∣∣J1 −
m∑

i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )

∣∣∣∣
≤

√√√√E
m∑

i,j=1

(
σij −

∫
X
DxFj(−DxL−1Fk)λ(dx)

)2
√√√√E

m∑
i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

= β1

√√√√E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

.

(3.2)

From now on we assume that h ∈ H`. Now Proposition 2.4 leads to√√√√E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

≤ ‖Σ−1‖op
(√

M2| log t|
√
dH2`

(F,NΣ) + 22m23/12
)
. (3.3)
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Combining inequalities (3.1)-(3.3) yields∣∣∣∣J1 −
m∑

i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F )

∣∣∣∣
≤ ‖Σ−1‖op

(√
M2| log t|

√
dH2`

(F,NΣ) + 22m23/12
)( m∑

i,j=1

|σij − Cov(Fi, Fj)|+ 2γ1 + γ2

)
.

(3.4)

This concludes the estimation related to J1.

Further applications of the fundamental theorem of calculus yield

J2 =
m∑

j,k=1

E
∫
X

∫ 1

0

(
∂2ft,h,Σ
∂yj∂yk

(F + uDxF )− ∂2ft,h,Σ
∂yj∂yk

(F )

)
DxFj(−DxL

−1Fk) duλ(dx)

=
m∑

i,j,k=1

E
∫
X

∫ 1

0

∫ 1

0

∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )uDxFiDxFj(−DxL
−1Fk) dv duλ(dx)

=
m∑

i,j,k=1

E
∫
X

∫ 1

0

∫ 1

0

∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )uDxFiDxFj(−DxL
−1Fk) dv duλ(dx)

+
m∑

i,j,k=1

E
∫
X

∫ 1

0

∫ 1

0

(
∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )− ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )

)
uDxFiDxFj(−DxL

−1Fk) dv duλ(dx)

=
1

2

m∑
j,k=1

E
∫
X

(
∂2ft,h,Σ
∂yj∂yk

(F +DxF )− ∂2ft,h,Σ
∂yj∂yk

(F )

)
DxFj(−DxL

−1Fk)λ(dx)

+
m∑

i,j,k=1

E
∫
X

∫ 1

0

∫ 1

0

(
∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )− ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )

)
uDxFiDxFj(−DxL

−1Fk) dv duλ(dx)

=: J2,1 + J2,2.

We can rewrite J2,1 as

J2,1 =
1

2

m∑
j,k=1

E
∫
X
Dx

∂2ft,h,Σ
∂yj∂yk

(F )DxFj(−DxL
−1Fk)λ(dx).

All third partial derivatives of ft,h,Σ are bounded by some constant (recall (2.10)), and

thus
∂2ft,h,Σ
∂yj∂yk

(F ) ∈ domD, j, k ∈ {1, . . . ,m}.

From Lemma A.3 and the computation for E δ(DFj(−DL−1Fk))
2 below, one deduces

that DFj(−DL−1Fk) ∈ dom δ. It follows from integration by parts (see Lemma A.2)
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and the Cauchy-Schwarz inequality that

|J2,1| =
1

2

∣∣∣∣ m∑
j,k=1

E
∂2ft,h,Σ
∂yj∂yk

(F )δ(DFj(−DL−1Fk))λ(dx)

∣∣∣∣
≤ 1

2

(
E

m∑
j,k=1

(
∂2ft,h,Σ
∂yj∂yk

(F )

)2)1/2( m∑
j,k=1

E δ(DFj(−DL−1Fk))
2

)1/2

.

Concerning the first factor Proposition 2.4 implies that(
E

m∑
j,k=1

(
∂2ft,h,Σ
∂yj∂yk

(F )

)2)1/2

≤ ‖Σ−1‖op
(√

M2| log t|
√
dH2`

(F,NΣ) + 22m23/12
)
.

For the summands in the second factor it follows from Lemma A.3 that

E δ(DFj(−DL−1Fk))
2

≤
∫
X
E (DxFj)

2(−DxL
−1Fk)

2 λ(dx) +

∫
X2

E
(
Dy(DxFj(−DxL

−1Fk))
)2
λ2(d(x, y))

≤ 1

2

∫
X
E (DxFj)

4 + E (−DxL
−1Fk)

4 λ(dx)

+ 3

∫
X2

E (D2
x,yFj)

2(−DxL
−1Fk)

2 + E (DxFj)
2(−D2

x,yL
−1Fk)

2

+ E (D2
x,yFj)

2(−D2
x,yL

−1Fk)
2 λ2(d(x, y)),

where we used the arithmetic geometric mean inequality a1a2 ≤ 1
2
(a2

1 + a2
2) for a1, a2 ∈

(0,∞) as well as Lemma A.1 and Jensen’s inequality. It follows from Proposition 3.2 (a)

and the Cauchy-Schwarz inequality that

E δ(DFj(−DL−1Fk))
2

≤ 1

2

∫
X
E (DxFj)

4 + E (DxFk)
4 λ(dx)

+ 3

∫
X2

(
E (D2

x,yFj)
4
)1/2(E (DxFk)

4
)1/2

+
(
E (DxFj)

4
)1/2(E (D2

x,yFk)
4
)1/2

+
(
E (D2

x,yFj)
4
)1/2(E (D2

x,yFk)
4
)1/2

λ2(d(x, y)).

Since γ4 < ∞, the right-hand side is finite, which implies that assumptions (A.2) and

(A.3) are satisfied and, thus, justifies the previous applications of Lemma A.2 and Lemma

A.3. Combining the previous estimates yields

|J2,1| ≤
1

2
‖Σ−1‖op(

√
M2| log t|

√
dH2`

(F,NΣ) + 22m23/12)γ4. (3.5)

The bound for |J2,2| is a bit more involved and goes as follows. First, note that the
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triangle inequality and (2.7) imply that

|J2,2| ≤
m∑

i,j,k=1

E
∫
X

∫ 1

0

∫ 1

0

∣∣∣∣ ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vuDxF )− ∂3ft,h,Σ
∂yi∂yj∂yk

(F + vDxF )

∣∣∣∣
u|DxFiDxFj DxL

−1Fk| dv duλ(dx)

≤
m∑

i,j,k=1

E
∫
X

∫ 1

0

∫ 1

0

1

2

∫ 1

t

∫
Rm

√
1− s
s3/2∣∣h(

√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣∣∣∣∣ ∂3ϕΣ

∂yi∂yj∂yk
(z)

∣∣∣∣u|DxFiDxFj DxL
−1Fk| dz ds dv duλ(dx).

Using the abbreviation

Uijk := sup
z∈Rm,

s,u,v∈[0,1]

E
∫
X

∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
|DxFiDxFj DxL

−1Fk|λ(dx).

for i, j, k ∈ {1, . . . ,m} and the Cauchy-Schwarz inequality, we obtain that

|J2,2| ≤
1

2
√
t

m∑
i,j,k=1

∫
Rm

∣∣∣∣ ∂3ϕΣ

∂yi∂yj∂yk
(z)

∣∣∣∣ dz Uijk
≤ 1

2
√
t

∫
Rm

( m∑
i,j,k=1

(
∂3ϕΣ

∂yi∂yj∂yk
(z)

)2)1/2

dz

( m∑
i,j,k=1

U2
ijk

)1/2

.

We have by (2.9) and substitution that∫
Rm

( m∑
i,j,k=1

(
∂3ϕΣ

∂yi∂yj∂yk
(z)

)2)1/2

dz

≤ ‖Σ
−1‖3/2

op√
det(Σ)

∫
Rm

( m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(Σ−1/2z)

)2)1/2

dz = M3‖Σ−1‖3/2
op

with

M3 :=

∫
Rm

( m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(z)

)2)1/2

dz

so that

|J2,2| ≤M3‖Σ−1‖3/2
op

1

2
√
t

( m∑
i,j,k=1

U2
ijk

)1/2

. (3.6)
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The Cauchy-Schwarz inequality yields that

M3 =

∫
Rm

( m∑
i,j,k=1

(
∂3ϕI

∂yi∂yj∂yk
(z)

1

ϕI(z)

)2)1/2

ϕI(z) dz

≤
( m∑
i,j,k=1

∫
Rm

(
∂3ϕI

∂yi∂yj∂yk
(z)

1

ϕI(z)

)2

ϕI(z) dz

)1/2

.

Together with the observation that, for a standard Gaussian random variable N with

density φ,

E [(φ′(N)/φ(N))2] = E [N2] = 1

E [(φ′′(N)/φ(N))2] = E [(N2 − 1)2] = E [N4 − 2N2 + 1] = 2

E [(φ′′′(N)/φ(N))2] = E [(N3 − 3N)2] = E [N6 − 6N4 + 9N2] = 6

this implies that

M3 ≤
√

6m3/2. (3.7)

Next we bound Uijk for fixed i, j, k ∈ {1, . . . ,m}. Since h ∈ H`, it can be written as

h(x) = 1{x ∈
⋂̀
n=1

Hn}, x ∈ Rm,

with some closed half-spaces H1, . . . , H` in Rm. With s and z fixed, notice that the

convexity of Hn and Hc
n, n ∈ {1, . . . , `}, yields for all u, v ∈ [0, 1],∣∣h(

√
sz +

√
1− s(F + uvDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
≤
∑̀
n=1

|1{
√
sz +

√
1− s(F + uvDxF ) ∈ Hn} − 1{

√
sz +

√
1− s(F + vDxF ) ∈ Hn}|

≤
∑̀
n=1

|1{
√
sz +

√
1− s(F +DxF ) ∈ Hn} − 1{

√
sz +

√
1− sF ∈ Hn}|

=
∑̀
n=1

|Dx1{
√
sz +

√
1− sF ∈ Hn}|.

Denoting by u1, . . . , u` ∈ Sd−1 the outward pointing unit normal vectors of H1, . . . , H`,

we see that, for n ∈ {1, . . . , `},

|Dx1{
√
sz +

√
1− sF ∈ Hn}| = |Dx1{

√
sz +

√
1− sF ∈ Hn}|1{〈un, DxF 〉 ≤ 0}

+ |Dx1{
√
sz +

√
1− sF ∈ Hn}|1{〈un, DxF 〉 > 0}

= Dx1{
√
sz +

√
1− sF ∈ Hn}1{〈un, DxF 〉 ≤ 0}

−Dx1{
√
sz +

√
1− sF ∈ Hn}1{〈un, DxF 〉 > 0}

= Dx1{
√
sz +

√
1− sF ∈ Hn}(21{〈un, DxF 〉 ≤ 0} − 1).
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Let g(x) := |DxFiDxFj DxL
−1Fk| for x ∈ X. Combining the previous estimates with

the integration by parts formula in Lemma A.4 (whose assumptions (A.2) and (A.3) are

discussed before (3.8) below) and the Cauchy-Schwarz-inequality, we see that

E
∫
X

∣∣h(
√
sz +

√
1− s(F + uvDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣ g(x)λ(dx)

≤
∑̀
n=1

E
∫
X
Dx1{

√
sz +

√
1− sF ∈ Hn} (21{〈un, DxF 〉 ≤ 0} − 1) g(x)λ(dx)

=
∑̀
n=1

E1{
√
sz +

√
1− sF ∈ Hn} δ((21{〈un, DF 〉 ≤ 0} − 1) g)

≤
∑̀
n=1

(
E δ((21{〈un, DF 〉 ≤ 0} − 1) g)2)1/2.

For n ∈ {1, . . . , `} Lemma A.3 leads to

Tn := E δ((21{〈un, DF 〉 ≤ 0} − 1) g)2

≤ E
∫
X
(21{〈un, DxF 〉 ≤ 0} − 1)2 g(x)2 λ(dx)

+ E
∫
X2

(
Dy

(
(21{〈un, DxF 〉 ≤ 0} − 1) g(x)

))2
λ2(d(x, y)).

By the product formula in Lemma A.1 and the fact that |DyG+G| ≤ 1, y ∈ X, for any

Poisson functional G with values in {−1, 1}, we have∣∣Dy

(
(21{〈un, DxF 〉 ≤ 0} − 1) g(x)

)∣∣
=
∣∣Dy(21{〈un, DxF 〉 ≤ 0} − 1) g(x)

+
(
Dy(21{〈un, DxF 〉 ≤ 0} − 1) + 21{〈un, DxF 〉 ≤ 0} − 1

)
Dyg(x)

∣∣
≤ 2|Dy1{〈un, DxF 〉 ≤ 0}| g(x) +

∣∣Dyg(x)
∣∣.

Since

|Dy1{〈un, DxF 〉 ≤ 0}| ≤ 1{D2
x,yF 6= 0}, x, y ∈ X,

and

|Dyg(x)| ≤ |Dy(DxFiDxFj DxL
−1Fk)|, x, y ∈ X,

we obtain that

Tn ≤ E
∫
X
(DxFi)

2(DxFj)
2(DxL

−1Fk)
2 λ(dx)

+ 8E
∫
X2

1{D2
x,yF 6= 0}(DxFiDxFj DxL

−1Fk)
2 λ2(d(x, y))

+ 2E
∫
X2

(Dy(DxFiDxFj DxL
−1Fk))

2 λ2(d(x, y))

=: S1 + S2 + S3.
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The arithmetic mean geometric mean inequality and Proposition 3.2 (a) yield

S1 ≤
1

3

∫
X
E (DxFi)

6 + E (DxFj)
6 + E (DxL

−1Fk)
6 λ(dx)

≤ 1

3

∫
X
E (DxFi)

6 + E (DxFj)
6 + E (DxFk)

6 λ(dx).

It follows from Hölder’s inequality and Proposition 3.2 (a) that

S2 ≤ 8

∫
X2

(
E1{D2

x,yF 6= 0}|DxFiDxFj|3
)2/3(E (DxL

−1Fk)
6
)1/3

λ2(d(x, y))

≤ 8

∫
X2

(
E1{D2

x,yF 6= 0}|DxFiDxFj|3
)2/3(E (DxFk)

6
)1/3

λ2(d(x, y)).

Using the iterated version of the product formula for Dx at Lemma A.1 (iterated since

we have the product of three factors), we obtain

S3 ≤ 14

∫
X2

E (D2
x,yFiDxFj DxL

−1Fk)
2 + E (DxFiD

2
x,yFj DxL

−1Fk)
2

+ E (DxFiDxFj D
2
x,yL

−1Fk)
2 + E (D2

x,yFiD
2
x,yFj DxL

−1Fk)
2

+ E (D2
x,yFiDxFj D

2
x,yL

−1Fk)
2 + E (DxFiD

2
x,yFj D

2
x,yL

−1Fk)
2

+ E (D2
x,yFiD

2
x,yFj D

2
x,yL

−1Fk)
2 λ2(d(x, y)).

Separating the factors involving L−1 by Hölder’s inequality and applying Proposition 3.2

(a) to them, we have

S3 ≤ 14

∫
X2

(
E |D2

x,yFiDxFj|3
)2/3 (E (DxFk)

6
)1/3

+
(
E |DxFiD

2
x,yFj|3

)2/3(EDxFk)
6
)1/3

+
(
E |DxFiDxFj|3

)2/3(E (D2
x,yFk)

6
)1/3

+
(
E |D2

x,yFiD
2
x,yFj|3

)2/3(E (DxFk)
6
)1/3

+
(
E |D2

x,yFiDxFj|3
)2/3(E (D2

x,yFk)
6
)1/3

+
(
E |DxFiD

2
x,yFj|3

)2/3(ED2
x,yFk)

6
)1/3

+
(
E |D2

x,yFiD
2
x,yFj|3

)2/3(E (D2
x,yFk)

6
)1/3

λ2(d(x, y)).

Note that γ5 < ∞ (otherwise there is nothing to prove) implies that (A.2) and (A.3)

are satisfied for X 3 x 7→ (21{〈un, DxF 〉 ≤ 0} − 1) g(x) and justifies the applications of

Lemma A.4 and Lemma A.3. From (3.6) and the estimates for S1, S2, and S3, we obtain

|J2,2| ≤M3‖Σ−1‖3/2
op `

1

2
√
t
γ5. (3.8)

Combining (3.4), (3.5), and (3.8) yields

|Eht,Σ(F )− Eht,Σ(NΣ)| ≤ ‖Σ−1‖op(
√
M2| log t|

√
dH2`

(F,NΣ) + 22m23/12)

×
( m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 2γ1 + γ2 +
1

2
γ4

)
+M3‖Σ−1‖3/2

op `
1

2
√
t
γ5.
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From Lemma 2.3 as well as (2.11) and (3.7) we obtain

dH`
(F,NΣ) ≤ 2‖Σ−1‖op(

√
M2| log t|

√
dH2`

(F,NΣ) + 22m23/12)

×
( m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 2γ1 + γ2 +
1

2
γ4

)
+M3‖Σ−1‖3/2

op `
1√
t
γ5 +

24`
√
m√
π

√
t

≤ m

(
9(| log t|

√
dH2`

(F,NΣ) + 22m11/12)γ̃` +
√

6
√
m‖Σ−1‖3/2

op

`γ5√
t

)
+

24`
√
m√
π

√
t

with

γ̃` := ‖Σ−1‖op max

{ m∑
i,j=1

|σij − Cov(Fi, Fj)|, γ1, γ2, γ4,

√
`
√
γ5

‖Σ−1‖1/4
op

}
.

We can assume that γ̃` ∈ (0, 1) since otherwise the desired inequality (1.9) is obviously

true. Choosing
√
t = γ̃` and using `‖Σ−1‖3/2

op γ5/γ̃` ≤
√
`‖Σ−1‖3/4

op
√
γ5 ≤ γ̃`, we obtain

dH`
(F,NΣ) ≤ m

(
9(2| log γ̃`|

√
dH2`

(F,NΣ)+22m11/12)γ̃`+
√

6
√
mγ̃`

)
+

24`
√
m√
π

γ̃`. (3.9)

The elementary bound dH2`
(F,NΣ) ≤ 1 implies

dH`
(F,NΣ) ≤ m

(
9(2| log γ̃`|+ 22m11/12)γ̃` +

√
6
√
mγ̃`

)
+

24`
√
m√
π

γ̃`

≤ m23/12`γ̃`(214 + 18| log γ̃`|).

Together with γ̃` ≤ γ̃2` ≤
√

2γ̃`, supu∈[0,∞) u
2 exp(−u) ≤ 1 and supu∈[0,∞) u

3 exp(−u) ≤
3/2 this implies that

| log γ̃`|
√
dH2`

(F,NΣ) ≤ | log γ̃`|
√
m23/12(2`)γ̃2`(214 + 18| log γ̃2`|)

≤ | log γ̃`|
√

23/2m23/12`γ̃`(214 + 18 + 18| log γ̃`|)

≤ 23/4
√
m23/12` sup

u∈[0,∞)

√
u2 exp(−u)(232 + 18u)

≤ 28m23/24
√
`.

Putting this in (3.9) yields dH`
(F,NΣ) ≤ 718m47/24`γ`, completing the proof.

Proof of Theorem 1.3. The only part of the proof of Theorem 1.2 that does not apply to

h ∈ Im are the upper bounds for Uijk, i, j, k ∈ {1, . . . ,m}, which rely on the assumption

h ∈ H`. The inequalities (3.4) and (3.5) still hold if the dH2`
-distance is replaced by
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the dconvex-distance. In the following we derive an upper bound for Uijk with fixed

i, j, k ∈ {1, . . . ,m}, in the case that h ∈ Im.

By assumption we have |DxFi|, |DxFj| ≤ % P-a.s. for λ-a.e. x ∈ X. Next we prove

|DxL
−1Fk| ≤ % P-a.s. for λ-a.e. x ∈ X. By Proposition 3.2(a) and (1.10), for λ-a.e. x ∈ X

the inequality

E |DxL
−1Fk|p ≤ E |DxFk|p ≤ %p (3.10)

is true for all p ∈ N. If for such an x ∈ X, |DxL
−1Fk| ≤ % P-a.s. does not hold, there is

an ε > 0 such that q := P(|DxL
−1Fk| ≥ %+ ε) > 0. This implies that, for any p ∈ N,

E |DxL
−1Fk|p ≥ q(%+ ε)p,

which contradicts (3.10) for p sufficiently large.

Now assume that h = 1{· ∈ K} with K ⊆ Rm closed and convex and let s, u, v ∈ [0, 1]

and z ∈ Rm be fixed. Then, we have that∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
=
∣∣1{√sz +

√
1− s(F + vuDxF ) ∈ K} − 1{

√
sz +

√
1− s(F + vDxF ) ∈ K}

∣∣
=
∣∣1{F + vuDxF ∈ (K −

√
sz)/
√

1− s} − 1{F + vDxF ∈ (K −
√
sz)/
√

1− s}
∣∣.

Let Ks,z := (K −
√
sz)/
√

1− s. Together with (1.10) we see that, for λ-a.e. x ∈ X,

P-a.s., ∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
≤ 1{d(F,Ks,z) ≤

√
m%} − 1{F ∈ Ks,z, d(F, ∂Ks,z) ≥

√
m%}.

Note that Rm 3 v 7→ 1{d(v,Ks,z) ≤
√
m%} and Rm 3 v 7→ 1{v ∈ Ks,z, d(v, ∂Ks,z) ≥√

m%} are both indicator functions of closed convex sets. This implies that, for λ-a.e.

x ∈ X,

E
∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
≤ E

[
1{d(NΣ, Ks,z) ≤

√
m%} − 1{NΣ ∈ Ks,z, d(NΣ, ∂Ks,z) ≥

√
m%}

]
+ 2dconvex(F,NΣ).

It follows from (2.12) that, for u ≥ 0,

sup
B⊆Rm convex

E
[
1{d(NΣ, B) ≤ u} − 1{NΣ ∈ B, d(NΣ, ∂B) ≥ u}

]
= sup

B⊆Rm convex
P(d(NΣ, ∂B) ≤ u) = sup

B⊆Rm convex
P(d(NI , ∂B) ≤ u)

≤ 2

√
2

π
m3/2u.
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This implies that, for λ-a.e. x ∈ X,

E
∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣
≤ 2

√
2

π
m2%+ 2dconvex(F,NΣ).

On the other hand, we have that

E
∣∣h(
√
sz +

√
1− s(F + vuDxF ))− h(

√
sz +

√
1− s(F + vDxF ))

∣∣ ≤ P(DxF 6= 0)

for x ∈ X. Altogether, we obtain that

Uijk ≤
((

2dconvex(F,NΣ) + 2

√
2

π
m2%

)
λ(A) +

∫
X\A

P(DxF 6= 0)λ(dx)

)
%3.

Thus, it follows from (3.6) that

|J2,2| ≤M3‖Σ−1‖3/2
op

m3/2

2
√
t

((
2dconvex(F,NΣ)+2

√
2

π
m2%

)
λ(A)+

∫
X\A

P(DxF 6= 0)λ(dx)

)
%3.

(3.11)

In the sequel we denote the integral in the last inequality by γ6.

In light of Lemma 2.2, we may now substitute the bounds (3.4), (3.5) (with dH2`

replaced by dconvex there), and (3.11) in Lemma 2.1 to obtain

dconvex(F,NΣ) ≤ 4

3

(
‖Σ−1‖op(

√
M2| log t|

√
dconvex(F,NΣ) + 22m23/12)

×
( m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 2γ1 + γ2 +
1

2
γ4

)
+
M3m

3/2‖Σ−1‖3/2
op %3

√
t

((
dconvex(F,NΣ) +

√
2

π
m2%

)
λ(A) +

γ6

2

))
+

20√
π
m2

√
t

1− t
.

Define γ̃ := m‖Σ−1‖opγ with γ as in Theorem 1.3 and use (2.11) and (3.7) so that

dconvex(F,NΣ) ≤ 6(| log t|
√
dconvex(F,NΣ) + 22m11/12)γ̃

+
4
√

6m3‖Σ−1‖3/2
op %3

3
√
t

((
dconvex(F,NΣ) +

√
2

π
m2%

)
λ(A) +

γ6

2

)
+

20√
π
m2

√
t

1− t
.

We can assume that γ̃ ∈ (0, 1/2) as otherwise the desired conclusion (1.11) becomes

trivial. Putting
√
t = γ̃ and noting

4
√

6m3‖Σ−1‖3/2
op %3λ(A)

3γ̃
≤ 1

2
and

4
√

6
√

2
π
m5‖Σ−1‖3/2

op %4λ(A)

3γ̃
≤ 8√

3π
γ̃
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as well as γ̃/(1− γ̃2) ≤ 4γ̃/3 yield

dconvex(F,NΣ) ≤ 6(2| log γ̃|
√
dconvex(F,NΣ) + 22m11/12)γ̃ +

1

2
dconvex(F,NΣ)

+
8√
3π
γ̃ +

γ̃

4
+

80

3
√
π
m2γ̃.

Consequently, we have

dconvex(F,NΣ) ≤ 4 max

{(
132m11/12+

8√
3π

+
1

4
+

80

3
√
π
m2

)
γ̃, 12| log γ̃|

√
dconvex(F,NΣ)γ̃

}
and, thus,

dconvex(F,NΣ) ≤ max

{
600m2γ̃, 2304(log γ̃)2γ̃2

}
.

The observation that supu∈(0,1/2](log u)2u ≤ 1 completes the proof of Theorem 1.3.

4 Applications

4.1 Multivariate normal approximation of first order Wiener-

Itô integrals

In this subsection we apply our main results to first order Wiener-Itô integrals with

respect to the Poisson process η (as considered before). For f ∈ L1(λ) ∩ L2(λ) one can

define the Wiener-Itô integral I1(f) of f as

I1(f) :=

∫
X
f(x) η(dx)−

∫
X
f(x)λ(dx).

If η is a proper Poisson process, i.e., it has almost surely a representation η =
∑

i∈I δXi

with a countable collection (Xi)i∈I of random elements of X, this can be rewritten as

I1(f) =
∑
i∈I

f(Xi)−
∫
X
f(x)λ(dx).

Using approximation arguments in L2(P), one can extend the above definition to inte-

grands f ∈ L2(λ). Note that, for all f, g ∈ L2(λ),

E I1(f) = 0 and E I1(f)I1(g) =

∫
X
f(x)g(x)λ(dx). (4.1)

For an exact definition and more details on first order Wiener-Itô integrals with respect

to Poisson processes we refer to [16, Subsection 12.1].

Corollary 4.1. Let F = (I1(f1), . . . , I1(fm)) with f1, . . . , fm ∈ L2(λ) and m ∈ N and let

Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive semi-definite.
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(a) It is the case that

d3(F,NΣ) ≤ m

2

m∑
i,j=1

∣∣σij − ∫
X
fi(x)fj(x)λ(dx)

∣∣+
m2

4

m∑
i=1

∫
X
|fi(x)|3 λ(dx).

(b) If Σ is positive definite,

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2
op

m∑
i,j=1

∣∣σij − ∫
X
fi(x)fj(x)λ(dx)

∣∣
+

√
2πm2

8
‖Σ−1‖3/2

op ‖Σ‖op
m∑
i=1

∫
X
|fi(x)|3 λ(dx).

(c) If Σ is positive definite, for any ` ∈ N,

dH`
(F,NΣ) ≤ 718m59/24`3/2 max{‖Σ−1‖op, ‖Σ−1‖3/4

op }

max

{ m∑
i,j=1

∣∣σij − ∫
X
fi(x)fj(x)λ(dx)

∣∣,
( m∑

i=1

∫
X
fi(x)4 λ(dx)

)1/2

,

( m∑
i=1

∫
X
fi(x)6 λ(dx)

)1/4}
.

(d) If Σ is positive definite, if there exists a % ∈ (0,∞) with |fi(x)| ≤ % for λ-a.e.

x ∈ X and i ∈ {1, . . . ,m}, and if λ(X) <∞, then

dconvex(F,NΣ) ≤ 15050m5 max{‖Σ−1‖3/4
op , ‖Σ−1‖3/2

op }

max

{ m∑
i,j=1

∣∣σij − ∫
X
fi(x)fj(x)λ(dx)

∣∣, %3λ(X), %2
√
λ(X)

}
.

Proof. It follows from (4.1) that, for i, j ∈ {1, . . . ,m},

Cov(I1(fi), I1(fj)) =

∫
X
fi(x)fj(x)λ(dx).

Moreover, it is well-known (see, for example, Eqn. (2.6) in [15]) that, for f ∈ L2(λ) and

x, x1, x2 ∈ X,

DxI1(f) = f(x) and D2
x1,x2

I1(f) = 0.

This implies that γ1 = γ2 = 0, γ3 =
∑m

i=1

∫
X |fi(x)|3 λ(dx),

γ4 =
√
m

( m∑
i=1

∫
X
fi(x)4 λ(dx)

)1/2

and γ5 = m

( m∑
i=1

∫
X
fi(x)6 λ(dx)

)1/2

.

Now (a) and (b) are immediate consequences of Theorem 1.1, while Theorem 1.2 yields

(c). Part (d) follows from Theorem 1.3 with A = X and γ4 ≤ m%2
√
λ(X).
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The idea of the following proof of Corollary 1.4 is to show that it is only a special

case of Corollary 4.1.

Proof of Corollary 1.4 . Let X = Rd (equipped with its Borel σ-field) and λ(·) = sP(X1 ∈
·), i.e., λ is s times the probability measure of X1. For i ∈ {1, . . . ,m} let us denote by

πi the projection Rm 3 (y1, . . . , ym) 7→ yi. Then we have that

Zs = (I1(π1/
√
s), . . . , I1(πm/

√
s)).

Together with the observation that, for i ∈ {1, . . . ,m}, p ∈ (0,∞), and s > 0,∫
X
|πi(x)/

√
s|p λ(dx) = E |X(i)

1 |ps1−p/2,

we see that conclusions (a) and (b) of Corollary 1.4 follow from conclusions (a) and (b)

of Corollary 4.1, with p = 3, conclusion (c) follows by considering p ∈ {4, 6}, whereas

conclusion (d) follows from its counterpart in Corollary 4.1.

4.2 Multivariate central limit theorems for intrinsic volumes of

Boolean models

In the following, we derive quantitative multivariate central limit theorems for Boolean

models, which extend previous findings in [11] and [16, Chapter 22]. Their proofs rely on

the general bounds from Subsection 1.2 as well as arguments from [11] and [16, Chapter

22].

We denote by Kd the set of compact convex sets in Rd. For a probability measure

Q on Kd such that Q({∅}) = 0 and γ > 0 let η be a Poisson process on Rd × Kd with

intensity measure γλd ⊗ Q, where λd is the Lebesgue measure on Rd. Note that η is a

stationary Poisson process in Rd with independent marks in Kd distributed according

to Q. A random compact convex set Z0 distributed according to Q is called the typical

grain. From η we construct the random closed set

Z :=
⋃

(x,K)∈η

(x+K),

which is called the Boolean model. For more details on Boolean models and further

references we refer to [29].

In the sequel we study the intersection of the Boolean model with a compact convex

observation window W ∈ Kd. Note that Z ∩W almost surely belongs to the convex ring

Rd, i.e., the set of all finite unions of elements from Kd, if EVi(Z0) <∞ for i ∈ {1, . . . , d}.
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Questions of interest include finding the fraction of W covered by Z and the surface area

of Z ∩W . We address both problems simultaneously by considering the behavior of

V(Z ∩W ) := (V0(Z ∩W ), V1(Z ∩W ), . . . , Vd(Z ∩W )),

where V0, V1, . . . , Vd : Rd → R are the intrinsic volumes (see, for example, [29, Section

14.2] for a definition via the Steiner formula and additive extensions). In particular, for

K ∈ Rd, Vd(K) is the volume of K, Vd−1(K) is half the surface area of K (if K is the

closure of its interior), and V0(K) is the Euler characteristic of K.

Let us denote by r(K) the inradius of K ∈ Kd. In [11, Theorem 3.1] it is shown that

there exists a matrix Σ = (σi,j)i,j∈{0,...,d} ∈ R(d+1)×(d+1) such that

Σ(W ) :=
1

Vd(W )
(Cov(Vi(Z ∩W ), Vj(Z ∩W )))i,j∈{0,...,d} → Σ as r(W )→∞

if EVi(Z0)2 < ∞ for i ∈ {1, . . . , d}. If, additionally, P(Vd(Z0) > 0) > 0, the asymptotic

covariance matrix Σ is even positive definite (see [11, Theorem 4.1]). We describe the

asymptotic behavior of V(Z ∩W ) as r(W )→∞ with respect to d3, d2, and dH`
.

Theorem 4.2. (a) If EVi(Z0)3 < ∞ for i ∈ {1, . . . , d}, there exists a constant C1 ∈
(0,∞) depending on d, γ, and Q such that

d3

(
V(Z ∩W )− EV(Z ∩W )√

Vd(W )
, NΣ

)
≤ C1

1

r(W )min{1,d/2}

for all W ∈ Kd with r(W ) ≥ 1.

(b) If EVi(Z0)3 <∞ for i ∈ {1, . . . , d} and P(Vd(Z0) > 0) > 0, there exists a constant

C2 ∈ (0,∞) depending on d, γ, and Q such that

d2

(
V(Z ∩W )− EV(Z ∩W )√

Vd(W )
, NΣ

)
≤ C2

1

r(W )min{1,d/2}

for all W ∈ Kd with r(W ) ≥ 1.

(c) Let ` ∈ N. If EVi(Z0)7 <∞ for i ∈ {1, . . . , d} and P(Vd(Z0) > 0) > 0, there exists

a constant C3,` ∈ (0,∞) depending on `, d, γ, and Q such that

dH`

(
V(Z ∩W )− EV(Z ∩W )√

Vd(W )
, NΣ

)
≤ C3,`

1

r(W )min{1,d/2}

for all W ∈ Kd with r(W ) ≥ 1.

(d) If NΣ is replaced by NΣ(W ), the assertions (a)-(c) hold with the rate 1/
√
Vd(W ).
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Note that Theorem 4.2(a) is a special case of [11, Theorem 9.1], while (b) and (c)

extend it to different distances, in particular, the non-smooth dH`
-distance. The findings

of [11] as well as the univariate results in [16] consider so-called geometric functionals,

which include the intrinsic volumes. Theorem 4.2 could be also generalized to these

functionals, but for the sake of simplicity we consider only the intrinsic volumes. Since

our proof of Theorem 4.2 is based on second order Poincaré inequalities, it does not

require dealing with the whole chaos expansion as in [11]. For previous results on volume

and surface area of Boolean models we refer the reader to [11]. Theorem 4.2 indicates

that the slow convergence of Σ(W ) to W weakens the rate of convergence for d ≥ 3 (see

also [11, Remark 9.5]). The rate of convergence 1/
√
Vd(W ) for the distance to NΣ(W )

is comparable to 1/
√
n in the classical central limit theorem for sums of n i.i.d. random

vectors and, thus, presumably optimal.

We prepare the proof of Theorem 4.2 by two lemmas. In the sequel, we use the

Wills functional V (K) :=
∑d

i=0 κd−iVi(K) for K ∈ Kd, where κd−i is the volume of the

(d − i)-dimensional unit ball. We write the difference operator D with respect to pairs

of points and compact convex sets.

Lemma 4.3. There exists a constant C ∈ (0,∞) only depending on d, γ, and Q such

that, for x, x1, x2 ∈ Rd, K,K1, K2 ∈ Kd, i ∈ {0, . . . , d}, and m ∈ {1, . . . , 6},

E |D(x,K)Vi(Z ∩W )|m ≤ CmV (K ∩W )m

and

E |D(x1,K1),(x2,K2)Vi(Z ∩W )|m ≤ CmV (K1 ∩K2 ∩W )m.

Proof. For m ∈ {2, 3} this is shown in [16] in Proposition 22.4 in connection with (22.30)

and (22.31) (see also [11, Lemma 3.3]), but the proof can be extended to the remaining

m.

Moreover, we will use the following translative integral formula from [16, Proposition

22.5] and [11, Lemma 3.4].

Lemma 4.4. For all K,L ∈ Kd,∫
Rd

V ((x+K) ∩ L) dx ≤ V (K)V (L).

Proof of Theorem 4.2. We deduce Theorem 4.2 from Theorem 1.1 and Theorem 1.2 by

bounding γ1, . . . , γ5 from Subsection 1.2 as follows. We denote by γ̃1, . . . , γ̃5 the corre-

sponding terms without the normalization 1/
√
Vd(W ) of the functionals. Without loss

of generality we can assume that γ = 1. In the sequel let (Zn)n∈N be independent copies

of the typical grain Z0. It follows from the Cauchy-Schwarz inequality, Lemma 4.3, the
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monotonicity and the translation invariance of the Wills functional (i.e., V (K) ≤ V (L)

for K,L ∈ Kd with K ⊆ L and V (K + x) = V (K) for K ∈ Kd and x ∈ Rd) and Lemma

4.4 that

γ̃2
1 = (d+ 1)2C4E

∫
(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z1) ∩ (x3 + Z3) ∩W )

V ((x1 + Z1) ∩W )V ((x2 + Z2) ∩W ) d(x1, x2, x3)

≤ (d+ 1)2C4E
∫

(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )V ((x2 + Z1) ∩ (x3 + Z3) ∩W )

V (Z1)V (Z2) d(x1, x2, x3)

≤ (d+ 1)2C4E
∫
Rd

V (Z1)2V (Z2)2V ((x+ Z3) ∩W )2 dx

≤ (d+ 1)2C4E
∫
Rd

V (Z1)2V (Z2)2V (Z3)V ((x+ Z3) ∩W ) dx

≤ (d+ 1)2C4EV (Z1)2EV (Z2)2EV (Z3)2V (W )

≤ (d+ 1)2C4(EV (Z0)2)3V (W )

and

γ̃2
2 ≤ (d+ 1)2C4E

∫
(Rd)3

V ((x1 + Z1) ∩ (x3 + Z3) ∩W )2V ((x2 + Z2) ∩ (x3 + Z3) ∩W )2

d(x1, x2, x3)

≤ (d+ 1)2C4E
∫

(Rd)3

V (Z1)2V (Z2)2V ((x+ Z3) ∩W )2 dx

≤ (d+ 1)2C4EV (Z1)2V (Z2)2V (Z3)2V (W )

= (d+ 1)2C4(EV (Z0)2)2V (W ).

Hence, we see that γ1 and γ2 are at most of the order
√
V (W )/Vd(W ). From the same

arguments as above we obtain that, for k ∈ N,

E
∫
Rd

V ((x+Z0)∩W )k dx ≤ EV (Z0)k−1

∫
Rd

V ((x+Z0)∩W ) dx ≤ EV (Z0)kV (W ), (4.2)

whence γ3 is at most of order V (W )/Vd(W )3/2. We can also show that

E
∫

(Rd)2

V ((x1 + Z1) ∩ (x2 + Z2) ∩W )2

(
V ((x1 + Z1) ∩ (x2 + Z2) ∩W )2 + V ((x1 + Z1) ∩W )2

)
d(x1, x2)

≤ 2E
∫

(Rd)2

V ((x1 + Z1) ∩ (x2 + Z2) ∩W )V (Z2)V (Z1)2d(x1, x2)

≤ 2EV (Z1)3V (Z2)2V (W )
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so that together with (4.2) γ4 is at most of order
√
V (W )/Vd(W ). Moreover, we have

that

E
∫

(Rd)2

V ((x1 + Z1) ∩ (x2 + Z2) ∩W )2

(
V ((x1 + Z1) ∩ (x2 + Z2) ∩W )4 + V ((x1 + Z1 ∩W ))4

)
d(x1, x2)

≤ 2E
∫

(Rd)2

V ((x1 + Z1) ∩ (x2 + Z2) ∩W )V (Z2)V (Z1)4d(x1, x2)

≤ 2EV (Z1)5V (Z2)2V (W ).

(4.3)

From [11, Lemma 3.2] or [16, Lemma 22.6] it follows that, for i ∈ {0, . . . , d}, x1, x2 ∈ Rd,

and K1, K2 ∈ Kd,

D2
(x1,K1),(x2,K2)Vi(Z∩W ) = Vi(Z∩(x1+K1)∩(x2+K2)∩W )−Vi((x1+K1)∩(x2+K2)∩W ).

Consequently, we have that

1{D2
(x1,K1),(x2,K2)V(Z ∩W ) 6= 0} ≤ 1{(x1 +K1) ∩ (x2 +K2) ∩W 6= ∅}

≤ V ((x1 +K1) ∩ (x2 +K2) ∩W ).

Together with similar arguments as above this yields that, for i, j, k ∈ {0, . . . , d},∫
(Kd)2

∫
(Rd)2

(
E1{D2

(x1,K1),(x2,K2)V(Z ∩W ) 6= 0}|D(x1,K1)Vi(Z ∩W )D(x1,K1)Vj(Z ∩W )|3
)2/3

(
E (D(x1,K1)Vk(Z ∩W ))6

)1/3
d(x1, x2)Q2(d(K1, K2))

≤
∫

(Kd)2

∫
(Rd)2

V ((x1 +K1) ∩ (x2 +K2) ∩W )
(
E |D(x1,K1)Vi(Z ∩W )D(x1,K1)Vj(Z ∩W )|3

)2/3

(
E (D(x1,K1)Vk(Z ∩W ))6

)1/3
d(x1, x2)Q2(d(K1, K2))

≤ C6E
∫

(Rd)2

V ((x1 + Z1) ∩ (x2 + Z2) ∩W )V ((x1 + Z1) ∩W )6 d(x1, x2)

≤ C6EV (Z1)7V (Z2)V (W ).

Combining this with (4.2) and (4.3) yields that γ5 is at most of the order
√
V (W )/Vd(W )3/2.

By [11, Lemma 3.7], there exists a dimension dependent constant Cd ∈ (0,∞) such that

V (W )

Vd(W )
≤ Cd for all W ∈ Kd with r(W ) ≥ 1.

This implies that γ1, γ2, γ3, γ4 and
√
γ5 have at most the order 1/

√
Vd(K). It is known

from [11, Theorem 3.1] that there exists a constant CΣ ∈ (0,∞) only depending on d, γ,

and Q such that ∣∣∣∣Cov(Vi(Z ∩W ), Vj(Z ∩W ))

Vd(W )
− σi,j

∣∣∣∣ ≤ CΣ
1

r(W )
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for i, j ∈ {0, . . . , d} and W ∈ Kd with r(W ) ≥ 1. Now Theorem 1.1 and Theorem 1.2

complete the proof.

4.3 Multivariate normal approximation for functionals of

marked Poisson processes

In this subsection we establish a consequence of Theorem 1.1, Theorem 1.2, and Theorem

1.3, which can be seen as a multivariate version of Proposition 1.4 and Theorem 6.1 in

[15]. This result will be used heavily in the companion paper [31], in order to deduce

rates of normal approximation for Poisson functionals which may be expressed as sums

of stabilizing score functions. We work in the context of marked Poisson processes, where

(M,FM, λM) denotes the probability space of marks. Let X̂ := X×M, put F̂ to be the

product σ-field of F and FM, and let λ̂ be the product measure of λ and λM. Here,

(X,F , λ) is as before. For a given point x ∈ X we denote by Mx the corresponding

random mark, which has distribution λM and which is independent of everything else.

Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals F1, . . . , Fm ∈ domD

with EFi = 0, i ∈ {1, . . . ,m}. Define for all c, p ∈ (0,∞),

Γ1(c, p) := c
2

4+p

( m∑
i=1

∫
X

(∫
X
P(D2

(x1,Mx1 ),(x2,Mx2 )Fi 6= 0)
p

16+4p λ(dx2)

)2

λ(dx1)

)1/2

Γ2(c, p) := c
3

4+p

m∑
i=1

∫
X
P(D(x,Mx)Fi 6= 0)

1+p
4+p λ(dx)

Γ3(c, p) := c
2

4+p

( m∑
i=1

9

∫
X2

P(D2
(x1,Mx1 ),(x2,Mx2 )Fi 6= 0)

p
8+2p λ2(d(x1, x2))

+

∫
X
P(D(x,Mx)Fi 6= 0)

p
4+p λ(dx)

)1/2

Γ4(c, p) := c
3

4+p

( m∑
i=1

106

∫
X2

P(D2
(x1,Mx1 ),(x2,Mx2 )Fi 6= 0)

p−2
12+3p λ2(d(x1, x2))

+

∫
X
P(D(x,Mx)Fi 6= 0)

p−2
4+p λ(dx)

)1/2

.

Theorem 4.5. Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals

F1, . . . , Fm ∈ domD with EFi = 0, i ∈ {1, . . . ,m}, and assume that there are con-

stants c, p ∈ (0,∞) such that

E |D(x,Mx)Fi|4+p ≤ c, λ-a.e. x ∈ X, (4.4)

and

E |D2
(x1,Mx1 ),(x2,Mx2 )Fi|4+p ≤ c, λ2-a.e. (x1, x2) ∈ X2, (4.5)
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for all i ∈ {1, . . . ,m}.

(a) For positive semi-definite Σ = (σij)i,j∈{1,...,m} ∈ Rm×m,

d3(F,NΣ) ≤ m

2

m∑
i,j=1

|σij − Cov(Fi, Fj)|+
3m3/2

2
Γ1(c, p) +

m2

4
Γ2(c, p).

(b) For positive definite Σ ∈ Rm×m,

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2
op

m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 3‖Σ−1‖op‖Σ‖op
√
mΓ1(c, p)

+

√
2π

8
‖Σ−1‖3/2

op ‖Σ‖opm2Γ2(c, p).

(c) Let Σ ∈ Rm×m be positive definite and assume that p > 2. For any ` ∈ N,

dH`
(F,NΣ) ≤ 718m65/24`‖Σ−1‖op max

{ ∑
i,j∈{1,...,m}

|σij − Cov(Fi, Fj)|,Γ1(c, p),

Γ3(c, p),

√
`
√

Γ4(c, p)

‖Σ−1‖1/4
op

}
.

(d) Let Σ ∈ Rm×m be positive definite and assume that p > 2 and that there is a

constant % ∈ (0,∞) such that, for i ∈ {1, . . . ,m} and λ̂-a.e. x̂ ∈ X̂, |Dx̂Fi| ≤ %

P-a.s. Then,

dconvex(F,NΣ) ≤2304m5‖Σ−1‖op max

{ ∑
i,j∈{1,...,m}

|σij − Cov(Fi, Fj)|,Γ1(c, p),

Γ3(c, p),
8
√

6

3
‖Σ−1‖1/2

op %
3λ(A),

√
%4λ(A)

‖Σ−1‖1/4
op

,

1

m‖Σ−1‖opλ(A)

∫
X\A

P(D(x,Mx)F 6= 0)λ(dx)

}
for any A ∈ F with 0 < λ(A) <∞.

Proof. Obviously, Theorem 1.1, Theorem 1.2, and Theorem 1.3 can be also applied to

marked Poisson processes. By combining the product form of λ̂ with the Cauchy-Schwarz

inequality we obtain that∫
X̂3

[
E (D2

x̂1,x̂3
Fi)

2(D2
x̂2,x̂3

Fi)
2
]1/2[E (Dx̂1Fj)

2(Dx̂2Fj)
2
]1/2

λ̂3(d(x̂1, x̂2, x̂3))

=

∫
X3

∫
M3

[
E (D2

(x1,m1),(x3,m3)Fi)
2(D2

(x2,m2),(x3,m3)Fi)
2
]1/2[E (D(x1,m1)Fj)

2(D(x2,m2)Fj)
2
]1/2

λ3
M(d(m1,m2,m3))λ3(d(x1, x2, x3))
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≤
∫
X3

[ ∫
M3

E (D2
(x1,m1),(x3,m3)Fi)

2(D2
(x2,m2),(x3,m3)Fi)

2 λ3
M(d(m1,m2,m3))

]1/2

[ ∫
M3

E (D(x1,m1)Fj)
2(D(x2,m2)Fj)

2 λ3
M(d(m1,m2,m3))

]1/2

λ3(d(x1, x2, x3))

=

∫
X3

[
E (D2

(x1,Mx1 ),(x3,Mx3 )Fi)
2(D2

(x2,Mx2 ),(x3,Mx3 )Fi)
2
]1/2[E (D(x1,Mx1 )Fj)

2(D(x2,Mx2 )Fj)
2
]1/2

λ3(d(x1, x2, x3)).

Since we can apply the same arguments to the other terms, we see that the bounds from

Theorem 1.1, Theorem 1.2, and Theorem 1.3 are still valid if we integrate with respect

to λ and always replace xi by (xi,Mxi), where Mxi is an independent random mark. We

denote the corresponding versions of γ1, . . . , γ5 by γ̂1, . . . , γ̂5. For i ∈ {1, . . . ,m} and

q ∈ (0, 4 + p) it follows from (4.4), (4.5), and Hölder’s inequality that

E |D(x,Mx)Fi|q ≤ c
q

4+pP(D(x,Mx)Fi 6= 0)
4+p−q

4+p , λ-a.e. x ∈ X,

and

E |D2
(x1,Mx1 ),(x2,Mx2 )Fi|q ≤ c

q
4+pP(D2

(x1,Mx1 ),(x2,Mx2 )Fi 6= 0)
4+p−q

4+p , λ2-a.e. (x1, x2) ∈ X2.

Moreover, for i, j ∈ {1, . . . ,m}, p > 2, and λ2-a.e. (x, y) ∈ X2,

E1{D2
(x,Mx),(y,My)F 6= 0}|D(x,Mx)FiD(x,Mx)Fj|3 ≤ c

6
4+pP(D2

(x,Mx),(y,My)F 6= 0)
p−2
4+p

≤ c
6

4+p

m∑
u=1

P(D2
(x,Mx),(y,My)Fu 6= 0)

p−2
4+p .

Applying Hölder’s inequality to separate expectations of products and using these in-

equalities, one obtains that

γ̂1 ≤
√
mΓ1(c, p), γ̂2 ≤

√
mΓ1(c, p), γ̂3 ≤ Γ2(c, p), γ̂4 ≤

√
mΓ3(c, p), and γ̂5 ≤ m3/2Γ4(c, p).

Combining these estimates with the marked versions of Theorem 1.1, Theorem 1.2 and

Theorem 1.3 described above completes the proof of Theorem 4.5.

Finally, we remark that we may deduce Corollary 1.5 from Theorem 4.5 as follows.

First we derive a version of Theorem 4.5 for p = ∞. Assume that λ(X) < ∞ and that

there exists a % ∈ (0,∞) with

|D(x,Mx)Fi| ≤ % P-a.s., λ-a.e. x ∈ X,

and

|D2
(x1,Mx1 ),(x2,Mx2 )Fi| ≤ % P-a.s., λ2-a.e. (x1, x2) ∈ X2,
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for i ∈ {1, . . . ,m}. Then, for any p ∈ (0,∞), the assumptions (4.4) and (4.5) of Theorem

4.5 are satisfied with c = %4+p. The dominated convergence theorem yields that, for

j ∈ {1, . . . , 4}, limp→∞ Γj(%
4+p, p) = Γj(%), where Γj(%) is obtained from Γj(c, p) by

replacing c1/(4+p) by % and the exponents of the probabilities by their limits for p →
∞. Consequently, the bounds from Theorem 4.5 hold with Γj(%) instead of Γj(c, p) for

j ∈ {1, . . . , 4}. For % = a/
√
s and λ = sµ and without marks, the assumptions (1.12)

and (1.13) show that Γj(%), j ∈ {1, . . . , 4}, are all of order s−1/2, which together with

Σ = Σs, yields the conclusion of Corollary 1.5.
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A Appendix: Malliavin calculus on the Poisson space

We recall the definitions of the Malliavin operators as well as some of their relations.

For more details we refer to, for example, [15, Section 2].

We start with a pathwise product formula for the difference operator.

Lemma A.1. For Poisson functionals F and G and x ∈ X,

Dx(FG) = (DxF )G+ F (DxG) + (DxF )(DxG) P-a.s.

For n ∈ N let us denote by In(g) the multiple Wiener-Itô integral of g ∈ L2(λn).

Note that for g ∈ L2(λn), n ∈ N, and h ∈ L2(λm), m ∈ N,

E In(g)Im(h) = 1{n = m}n!

∫
Xn

g(x)h(x)λn(dx). (A.1)

Any square integrable Poisson functional F has a so-called Wiener-Itô chaos expansion

F = EF +
∞∑
n=1

In(fn),
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where the functions fn ∈ L2(λn), n ∈ N, are symmetric and λn-a.e. uniquely defined and

the right-hand side converges in L2(P). Together with (A.1) one sees that

VarF =
∞∑
n=1

n!‖fn‖2
n,

where ‖ · ‖n denotes the usual norm in L2(λn) for n ∈ N.

If F ∈ domD (see (1.2)), the difference operator defined in (1.1) satisfies the identity

DxF =
∞∑
n=1

nIn−1(fn(x, ·)) P-a.s.

for λ-a.e. x ∈ X. Here, fn(x, ·) denotes the function in n− 1 variables one obtains after

fixing the first argument to be x. Moreover, F ∈ domD is equivalent to

∞∑
n=1

nn!‖fn‖2
n <∞.

The inverse Ornstein-Uhlenbeck generator of F is given by

L−1F = −
∞∑
n=1

1

n
In(f)

and is the pseudo-inverse of the Ornstein-Uhlenbeck generator L, which we do not need

for our purposes. Next we present the definition of the Skorohod integral δ. We say that

a random function g : X→ R depending only on η such that

E
∫
X
g(x)2 λ(dx) <∞ (A.2)

belongs to dom δ if

g(x) = g0(x) +
∞∑
n=1

In(gn(x, ·))

for λ-a.e. x ∈ X with functions gn ∈ L2(λn+1), n ∈ N ∪ {0}, such that

∞∑
n=0

(n+ 1)!‖g̃n‖2
n+1 <∞.

Here, g̃n ∈ L2(λn+1) denotes the symmetrization

g̃n(x1, . . . , xn+1) =
1

(n+ 1)!

∑
π∈Π(n+1)

gn(xπ(1), . . . , xπ(n+1))

of gn, where Π(n + 1) stands for the set of all permutations of {1, . . . , n + 1}. For

g ∈ dom δ the Skorohod integral δ(g) is defined as

δ(g) =
∞∑
n=0

In+1(g̃n),
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i.e., δ maps a random function to a random variable. The difference operator and the

Skorohod integral are adjoint operators in the sense that they satisfy the following well-

known integration by parts formula.

Lemma A.2. For F ∈ domD and g ∈ dom δ,

E
∫
X
DxFg(x)λ(dx) = EFδ(g).

The following lemma (see [15, Proposition 2.3 and Corollary 2.4]) provides a criterion

for g belonging to dom δ and an upper bound for the second moment of δ(g).

Lemma A.3. Let g be a random function depending only on η and satisfying (A.2) and

E
∫
X2

(Dyg(x))2 λ2(d(x, y)) <∞. (A.3)

Then, g ∈ domD and

E δ(g)2 ≤ E
∫
X
g(x)2 λ(dx) + E

∫
X2

(Dyg(x))2 λ2(d(x, y)).

In addition to Lemma A.2 we also make use of the following integration by parts for-

mula involving indicator functions, which need not belong to domD. It is a consequence

of [15, Lemma 2.2 and Proposition 2.3].

Lemma A.4. Let F be a Poisson functional, let A ⊆ R be measurable, and let g be

a random function depending only on η and satisfying (A.2) and (A.3). Assume that

Dx1{F ∈ A}g(x) ≥ 0 for λ-a.e. x ∈ X. Then, g ∈ dom δ and

E
∫
X
Dx1{F ∈ A}g(x)λ(dx) = E1{F ∈ A}δ(g).
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