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Abstract

Consider the random sequential packing model with infinite input and in any dimension.

When the input consists of non-zero volume convex solids we show that the total number of

solids accepted over cubes of volume λ is asymptotically normal as λ →∞. We provide a rate of

approximation to the normal and show that the finite dimensional distributions of the packing

measures converge to those of a mean zero generalized Gaussian field. The method of proof

involves showing that the collection of accepted solids satisfies the weak spatial dependence

condition known as stabilization.

1 Main results

Given d ∈ N and λ ≥ 1, let U1,λ, U2,λ, . . . be a sequence of independent random d-vectors uniformly

distributed on the cube Qλ := [0, λ1/d)d. Let S be a fixed bounded closed convex set in Rd with

non-empty interior (i.e., a ‘solid’) with centroid at the origin 0 of Rd (for example, the unit ball),

and for i ∈ N, let Si,λ be the translate of S with centroid at Ui,λ. So Sλ := (Si,λ)i≥1 is an infinite

sequence of solids arriving at uniform random positions in Qλ (the centroids lie in Qλ but the

solids themselves need not lie wholly inside Qλ).

Let the first solid S1,λ be packed, and recursively for i = 2, 3, . . ., let the i-th solid Si,λ be packed

if it does not overlap any solid in {S1,λ, . . . , Si−1,λ} which has already been packed. If not packed,
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the i-th solid is discarded; we sometimes use accepted as a synonym for ‘packed’. This process,

known as random sequential adsorption (RSA) with infinite input, is irreversible and terminates

when it is not possible to accept additional solids. At termination, we say that the sequence of

solids Sλ jams Qλ or saturates Qλ. The jamming number Nλ := Nλ(Sλ) denotes the number of

solids accepted in Qλ at termination. We use the words ‘jamming’ and ‘saturation’ interchangeably

in this paper.

Jamming numbers Nλ arise naturally in the physical, chemical, and biological sciences. They

are considered in the description of the irreversible deposition of colloidal particles on a substrate

(see the survey [1] and the special volume [20]), hard sphere interactions in point processes (see

[26] and [7], Section 4.8), adsorption modelling (see [4] and the surveys [9, 25]) and also in the

modelling of communication and reservation protocols (see [5, 6]).

The extensive body of experimental results related to the large scale behavior of packing num-

bers stands in sharp contrast with the limited collection of rigorous mathematical results, especially

in d ≥ 2. The main obstacle to a rigorous mathematical treatment of the packing process is that

the short range interactions of arriving particles create long range spatial dependence, thus turning

Nλ into a sum of spatially correlated random variables. Equilibrium systems (where particles are

allowed to depart as well as arrive) present a different set of mathematical challenges and are not

considered here.

In the case where d = 1 and S = [−1/2, 1/2], a famous result of Rényi [21] shows that jamming

limit, defined as limλ→∞ λ−1ENλ, exists as an integral which evaluates to roughly 0.748; also in

this case, Mackenzie [11] shows that limλ→∞ λ−1VarNλ exists as an integral which evaluates to

roughly 0.03815. Dvoretzky and Robbins [8] show that the jamming numbers Nλ are asymptotically

normal as λ →∞, but their techniques do not address the case d > 1.

The above results were established in the 1960s and progress in extending them rigorously to

higher dimensions has been slow until recently. Penrose [12] establishes the existence of a jamming

limit for any d ≥ 1 and any choice of S, and also [13] obtains a CLT for a related model (monolayer

ballistic deposition with a rolling mechanism) but comments in [13] that ‘Except in the case d = 1

... a CLT for infinite-input continuum RSA remains elusive.’

In the present work we show for any d and any S that λ−1VarNλ converges to a positive limit

and that Nλ satisfies a central limit theorem, i.e., the fluctuations of the random variable Nλ are

indeed Gaussian in the large λ limit. This puts the recent experimental results and Monte Carlo

simulations of Quintanilla and Torquato [22] and Torquato (ch. 11.4 of [26]) on rigorous footing.
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We also provide a bound on the rate of convergence to the normal, and on the rate of convergence

of λ−1ENλ to the jamming limit.

Throughout N (0, 1) denotes a mean zero normal random variable with variance one.

Theorem 1.1 Let Sλ be as above and put Nλ := Nλ(Sλ). There are constants µ := µ(S, d) ∈
(0,∞) and σ2 := σ2(S, d) ∈ (0,∞) such that as λ →∞ we have

|λ−1ENλ − µ| = O(λ−1/d) (1.1)

and λ−1VarNλ → σ2 with

sup
t∈R

∣∣∣∣P
[

Nλ − ENλ

(VarNλ)1/2
≤ t

]
− P [N (0, 1) ≤ t]

∣∣∣∣ = O((log λ)3dλ−1/2). (1.2)

The process of accepted solids in Qλ induces a natural random point measure νλ on [0, 1]d given

by

νλ :=
∞∑

i=1

δλ−1/dUi,λ
1{Si,λis accepted} (1.3)

where δx stands for the unit point mass at x. It also induces a natural random volume measure

ν′λ on Rd, normalized to have the same total measure as νλ, defined for all Borel A ⊆ Rd by

ν′λ(A) :=
λ

|S|
∣∣∣A ∩

(⋃
[λ−1/dSi,λ : i ≥ 1, Si,λ is accepted]

)∣∣∣ (1.4)

where | · | denotes Lebesgue measure and λ−1/dA := {λ−1/dx : x ∈ A}. The measure ν′λ is not

necessarily supported by Q1 due to boundary effects, but for sufficiently large λ it is supported by

Q+
1 , where we set Q+

1 := [−1, 2)d (a fattened version of Q1).

Let ν̄λ := νλ − E[νλ] and ν̄′λ := ν′λ − E[ν′λ]. Let R(Q+
1 ) denote the class of bounded, almost

everywhere continuous functions on Q+
1 . For f ∈ R(Q+

1 ) and µ a signed measure on Rd with finite

total mass, let 〈f, µ〉 :=
∫
R fdµ. The following theorem provides the limit theory (law of large

numbers and central limit theorems) for the integrals of test functions f ∈ R(Q+
1 ) against the

random point measure νλ and the random volume measure ν′λ induced by the packing process. In

particular, it shows that the finite dimensional distributions of the centered packing point measures

(ν̄λ)λ converge to those of a certain mean zero generalized Gaussian field, namely white noise on

Q1 with variance σ2 per unit volume, and likewise for the centered packing volume measures (ν̄′λ)λ.

Theorem 1.2 Let µ and σ2 be as in Theorem 1.1. Then for any f, g in R(Q+
1 ),

lim
λ→∞

λ−1E [〈f, νλ〉] = µ

∫

[0,1]d
f(x)dx
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and

lim
λ→∞

λ−1Cov(〈f, νλ〉, 〈g, νλ〉) = σ2

∫

[0,1]d
f(x)g(x)dx.

Also, the finite-dimensional distributions of the random field (λ−1/2〈f, ν̄λ〉, f ∈ R(Q+
1 )) converge

as λ →∞ to those of a mean zero generalized Gaussian field with covariance kernel

(f, g) 7→ σ2

∫

[0,1]d
f(x)g(x)dx, f, g ∈ R(Q+

1 ).

Moreover, the same conclusions hold with νλ and ν̄λ replaced by ν′λ and ν̄′λ respectively.

The remainder of this paper is organized as follows. Section 2 provides the general limit theory

(weak law of large numbers and a central limit theorem) for spatial measures which satisfy a

weak dependency condition termed stabilization and which are defined in terms of point sets in

Rd×R+. Section 3 shows that the correlations of packing status of solids decay exponentially with

the distance between them, thus showing that the packing measures νλ satisfy the stabilization

criteria of the general results in Section 2. Finally, Section 4 shows that the convexity hypothesis

implies a non-zero limiting variance σ2.

Remarks.

1. Finite input. Let τ ∈ (0,∞) and let dxe denote the smallest integer greater than or equal

to x. Inputting only the first dλτe solids of the sequence Sλ yields RSA packing of the cube

Qλ with finite input. The finite-input packing number, i.e., the total number of solids accepted

from S1,λ, S2,λ, ..., Sdτλe,λ, is asymptotically normal as λ → ∞ with τ fixed. This is proved in

[17], and extended in [3] to the case where the spatial coordinates come from a non-homogeneous

point process. Packing measures induced by RSA packing with finite input have finite dimensional

distributions converging to those of a mean zero generalized Gaussian field with a covariance

structure depending upon the underlying density of points [2], [3].

2. Stabilization. One might expect that the restriction of the packing measure νλ or ν′λ to

a localized region of space depends only on incoming particles with ‘nearby’ spatial locations, in

some well-defined sense. This local dependency property is denoted stabilization; when the region

of spatial dependency has a diameter with an exponentially decaying tail, it is called exponential

stabilization. These notions are spelt out in general terms in Section 2. Theorem 2.1 provides a

general spatial limit theory for exponentially stabilizing measures; this is an infinite-input analog

to known results [3, 14, 15, 16] for the finite-input setting, and is of independent interest.
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A form of stabilization for infinite input RSA was proved in [12], but without any tail bounds.

Exponential stabilization in the infinite input setting is perhaps not surprising, but it has been

challenging to rigorously establish this key localization feature. In Section 3, we show that infinite-

input packing measures stabilize exponentially, so that the general results of Section 2 are applicable

to these measures.

3. Related models in the literature (see e.g. [17]) include cooperative sequential adsorption,

RSA with solids of random size or shape, ballistic deposition with a rolling mechanism, and spatial

birth-growth models. For all of these, limit theorems in the finite-input setting are discussed in

[13]. It seems likely that these can be extended to the infinite-input setting using the methods of

this paper, although we do not discuss any of them in detail. Nor do we consider non-homogeneous

point processes as input.

4. Rates of convergence. Even in d = 1, the rate given by Theorem 1.1 is new. Quintanilla

and Torquato [22] use Monte Carlo simulations to predict convergence of the distribution function

for Nλ to that of a normal, but they do not obtain rates. Penrose and Yukich [19] obtain rates of

approximation to the normal for RSA packing with finite (Poisson) input.

5. Numerical values. We do not provide any new analytical methods for computing numerical

values of µ and σ2 when d ≥ 1. For 1 ≤ d ≤ 6, Torquato et al. [27] employ numerical and theoretical

methods to estimate µ and other structural characteristics for infinite input RSA packing.

6. Jamming variability. A significant amount of work is needed (see Section 4) to show that

the limiting variance σ2 in Theorems 1.1 and 1.2 is non-zero, and we prove this using the following

notions.

Given L > 0, we shall us say that a point set η ⊂ Rd \ [0, L]d is admissible if the translates

of S centered at the points of η are non-overlapping. Given such an η, let N [[0, L]d|η] denote the

(random) number of solids from the sequence SLd which are packed in [0, L]d given the pre-packed

configuration η. In other words, N [[0, L]d|η] arises as the number of solids packed in [0, L]d in the

course of the usual infinite input packing process subject to the additional rule that an incoming

solid is discarded should it overlap any solid centered at a point of η. Say that the convex body S

has jamming variability if there exists a L > 0 such that infη VarN [[0, L]d|η] > 0 with the infimum

taken over admissible point sets η ⊂ Rd \ [0, L]d.

In Proposition 4.1 we shall show that each bounded convex body S ⊂ Rd with non-empty

interior has jamming variability; here we use the assumed convexity of S.
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2 Terminology, auxiliary results

Let R+ := [0,∞). Given a point (x1, . . . , xd, t) = (x, t) ∈ Rd × R+, the first d coordinates of the

point will be interpreted as spatial components with the (d + 1)-st regarded as a time mark. We

shall need to consider point sets which are finite in the spatial directions and locally finite in the

time direction, formally defined as follows.

Definition 2.1 A point set X ⊂ Rd × R+ is temporally locally finite (or TLF for short) if X ∩
(Rd × [0, t]) is finite for all t > 0.

In this section we adapt the general results and terminology from [3, 15, 16, 19] on limit theory

for stabilizing spatial measures defined in terms of finite point sets in Rd, to the setting of spatial

measures defined in terms of TLF point sets in Rd×R+ (typically obtained as Poisson processes).

In subsequent sections, we show that these general results can be applied to obtain the limit

theorems for RSA described in Section 1.

For x ∈ Rd and r > 0, let Br(x) denote the Euclidean ball centered at x of radius r. We

abbreviate Br(0) by Br. Given X ⊂ Rd × R+, a > 0 and y ∈ Rd, we let y + aX := {(y + ax, t) :

(x, t) ∈ X}; in other words, scalar multiplication and translation on Rd × R+ act only on the

spatial components. For A ⊂ Rd we write y + aA for {y + ax : x ∈ A}; also, we write ∂A for the

boundary of A, and write A+ for A× R+. Let | · | denote the Euclidean norm, and for nonempty

subsets A,A′ of Rd, set D2(A,A′) := inf{|x− y| : x ∈ A, y ∈ A′}.
Let ξ(X , A) be an R+-valued function defined for all pairs (X , A), where X is a TLF subset of

Rd×R+ and A is a Borel subset of Rd. Assume throughout this section that ξ satisfies the following

criteria:

1. ξ(·, A) is measurable for each Borel A,

2. ξ(X , ·) is a finite measure on Rd for each TLF X ⊂ Rd × R+,

3. ξ is translation invariant, that is ξ(i+X , i+A) = ξ(X , A) for all i ∈ Zd, all TLF X ⊂ Rd×R+,

and all Borel A ⊆ Rd,

4. ξ is uniformly locally bounded (or just bounded for short) in the sense that there is a finite

constant ||ξ||∞ such that for all TLF X ⊂ Rd × R+ we have

ξ(X , [0, 1]d) ≤ ||ξ||∞. (2.1)
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5. ξ is locally supported, i.e. there exists a constant ρ such that ξ(X , A) = 0 whenever

D2(X , A) > ρ.

Note that if ξ(X , ·) is a point measure supported by the points of X , then ξ is locally supported

(in fact, in this case we can set ρ = 0).

For all λ > 0, let Pλ denote a homogeneous Poisson point process in Rd × R+ with intensity

measure λdx × ds, with dx denoting Lebesgue measure on Rd and ds Lebesgue measure on R+.

We put P := P1. Here and henceforth we shall assume that the point processes, random fields,

and random variables considered in this paper are all defined on a common underlying probability

space (Ω,F , P ).

Thermodynamic limits and central limit theorems for functionals in geometric probability are

often proved by showing that the functionals satisfy a type of local spatial dependence known as

stabilization [3, 14, 15, 16, 17, 18, 24] and that will be our goal here as well. First, we adapt the

definitions in [3, 14, 15] to the context of measures defined in terms of TLF point sets in Rd. Recall

that Qλ denotes the cube [0, λ1/d)d.

Definition 2.2 We say ξ is homogeneously stabilizing if there exists an almost surely finite ran-

dom variable R′ (a radius of homogeneous stabilization for ξ) such that for all TLF X ⊂ (Rd\BR′)+

we have

ξ((P ∩ (BR′)+) ∪ X , Q1) = ξ(P ∩ (BR′)+, Q1). (2.2)

We say ξ is exponentially stabilizing if (i) it is homogeneously stabilizing and R′ can be chosen

so that lim supL→∞ L−1 log P [R′ > L] < 0, and (ii) for all λ ≥ 1 and all i ∈ Zd, there exists a

random variable R := Rξ(i, λ) (a radius of stabilization for ξ at i with respect to P in (Qλ)+) such

that for all TLF X ⊂ [Qλ \BR(i)]+, and all Borel A ⊆ Q1, we have

ξ ((P ∩ [BR(i) ∩Qλ]+) ∪ X , i + A) = ξ (P ∩ [BR(i) ∩Qλ]+, i + A) (2.3)

and moreover the tail probability τ(L) defined for L > 0 by

τ(L) := sup
λ≥1, i∈Zd

P [Rξ(i, λ) > L] (2.4)

satisfies lim supL→∞ L−1 log τ(L) < 0.

Loosely speaking, R := Rξ(i, λ) is a radius of stabilization if the ξ-measure on i + Q1 is unaf-

fected by changes to the Poisson points outside BR(i) (but inside Qλ). When ξ is homogeneously

stabilizing, the limit

ξ(P, i + Q1) := lim
r→∞

ξ (P ∩ (Br(i))+, i + Q1)
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exists almost surely for all i ∈ Zd. The random variables (ξ(P, i + Q1), i ∈ Zd) form a stationary

random field.

Given ξ, for all λ > 0, all TLF X ⊂ Rd × R+, and all Borel A ⊂ Rd we let ξλ(X , A) :=

ξ(λ1/dX , λ1/dA). Define the random measure µξ
λ on Rd by

µξ
λ( · ) := ξλ(Pλ ∩Q1, ·) (2.5)

and the centered version µξ
λ := µξ

λ −E [µξ
λ]. By the assumed locally supported property of ξ, µλ is

supported by the fattened cube Q+
1 := [−1, 2)d for large enough λ.

If ξ is stabilizing, define µ(ξ) := E [ξ(P, Q1)] and and if ξ is exponentially stabilizing, define

σ2(ξ) :=
∑

i∈Zd

Cov [ξ(P, Q1), ξ(P, i + Q1)] ,

where the sum can be shown to converge absolutely by exponential stabilization and (2.1). The

following general theorem provides laws of large numbers and normal approximation results for

〈f, µξ
λ〉, suitably scaled and centered, for f ∈ R(Q+

1 ). This set of results for measures determined

by TLF point sets is similar to previously known results for measures determined by finite point

sets (Theorem 2.1 of [18], Theorems 2.1 and 2.3 of [3], and Corollary 2.4 of [19]).

Theorem 2.1 Suppose that ξ is exponentially stabilizing. Then as λ →∞, for f and g in R(Q+
1 )

we have

lim
λ→∞

λ−1E [〈f, µξ
λ〉] = µ(ξ)

∫

[0,1]d
f(x)dx (2.6)

and

lim
λ→∞

λ−1Cov[〈f, µξ
λ〉, 〈g, µξ

λ〉] = σ2(ξ)
∫

[0,1]d
f(x)g(x)dx. (2.7)

Also,

|λ−1E [µξ
λ(Q+

1 )]− µ(ξ)| = O(λ−1/d). (2.8)

Moreover, if σ2(ξ) > 0 then

sup
t∈R

∣∣∣∣∣P
[

µξ
λ(Q+

1 )− E [µξ
λ(Q+

1 )]

(Var[µξ
λ(Q+

1 )])1/2
≤ t

]
− P [N (0, 1) ≤ t]

∣∣∣∣∣ = O((log λ)3dλ−1/2) (2.9)

and the finite-dimensional distributions of the random field (λ−1/2〈f, µ̄ξ
λ〉, f ∈ R(Q+

1 )) converge as

λ →∞ to those of a mean zero generalized Gaussian field with covariance kernel

(f, g) 7→ σ2(ξ)
∫

[0,1]d
f(x)g(x)dx, f, g ∈ R(Q+

1 ).
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We shall use Theorem 2.1 to prove the results on RSA described in Section 1. It seems likely

that Theorem 2.1 can also be applied to obtain similar results for the related models listed in

Remark 3 of Section 1. For some of these, certain generalizations of Theorem 2.1 may be needed;

for example, in some cases one may need to allow for the Poisson points to carry independent

identically distributed random marks, and in others the boundedness condition (2.1) may need to

be relaxed to a moments condition.

By appropriate discretization, the proof of the weak law of large numbers (2.6, 2.8) follows from

a modification of methods in [15] whereas the proof of (2.7, 2.9) follows a discretized version of the

methods in [3], [16], [19]. We refer to the extended version of this paper [23] for complete details.

3 Proof of stabilization for packing

In this section, we show that the random packing measures νλ and ν′λ described in Section 1 can

each be expressed in terms of a suitably defined measure-valued functional ξ of TLF point sets

in Rd × R+, of the general type considered in Section 2, applied to a Poisson point process in

space-time. Then we show that in both cases the appropriate choice of ξ satisfies the exponential

stabilization condition described in Definition 2.2, so that Theorem 2.1 is applicable to this choice

of ξ. We defer to the next section the proof that in both cases the appropriate choice of ξ satisfies

σ2(ξ) > 0.

Throughout we let dS stand for the diameter of S. In our proofs, we shall assume that 2dS < 1.

This assumption entails no loss of generality, since once Theorems 1.1 and 1.2 hold under this

assumption, the results follow for general S by obvious scaling arguments.

Let us say that two points (x, t) and (y, u) in Rd × R+ are adjacent if (x + S) ∩ (y + S) 6= ∅.
Given TLF X ⊂ Rd × R+, let us first list the points of X in order of increasing time-marks using

the lexicographic ordering on Rd as a tie-breaker in the case of any pairs of points of X with equal

time-marks. Then consider the points of X in the order of the list; let the first point in the list be

accepted, and let each subsequent point be accepted if it is not adjacent to any previously accepted

point of X ; otherwise let it be rejected. We call this the usual rule for packing points of X , since

it corresponds to the packing rule of Section 1 with the input ordering determined by time-marks.

Let A(X ) denote the subset of X consisting of all accepted points when the points of X are packed

according to the usual rule.

We consider two specific measure-valued functionals ξ∗ and ξ′ on TLF point sets in Rd × R+,

of the general type considered in Section 2, which are defined as follows.
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For any bounded Borel A ⊂ Rd, recall that A+ := A×R+. For any TLF point set X ⊂ Rd×R+

let ξ∗(X , A) be the number of points of A(X ) which lie in A+, and with | · | denoting Lebesgue

measure, let

ξ′(X , A) := |S|−1

∣∣∣∣∣∣
A ∩


 ⋃

(x,t)∈A(X )

(x + S)




∣∣∣∣∣∣
.

Then ξ∗ and ξ′ are clearly translation invariant, and are bounded (i.e., satisfy (2.1)), since only a

bounded number of solids can be packed in any fixed cube.

Recall that Pλ denotes a homogeneous Poisson point process of intensity λ on Rd × R+, and

P = P1. Assume Pλ is obtained from P by Pλ := λ−1/dP. For all λ > 0, recall the definition of

ξλ in Section 2, and define the random measures

µξ∗

λ ( · ) := ξ∗λ(Pλ ∩ (Q1)+, ·) and µξ′

λ ( · ) := ξ′λ(Pλ ∩ (Q1)+, ·).

Let N ξ∗

λ denote the total mass of µξ∗

λ , i.e.

N ξ∗

λ := µξ∗

λ (Pλ ∩ [0, 1]d+, [0, 1]d).

Then µξ∗

λ and µξ′

λ are the random packing point measure and the random packing volume mea-

sure, respectively, corresponding to the random sequential adsorption process obtained by taking

the spatial locations of the points of P ∩ Qλ, in order of increasing time-mark, as the input se-

quence. Since these spatial locations are independent and uniformly distributed on Qλ, we have

the distributional equalities

µξ∗

λ
D= νλ, µξ′

λ
D= ν′λ, and N ξ∗

λ
D= Nλ, (3.1)

where the measures νλ and ν′λ are given in (1.3) and (1.4) and the jamming number Nλ is also

given in Section 1.

We show in Lemmas 3.5 and 3.7 below that both ξ∗ and ξ′ are exponentially stabilizing, and

therefore we can apply Theorem 2.1 to either of these choices of ξ. To proceed with the proof

of exponential stabilization, consider a partition of Rd into translates of the unit cube C :=

Q1 = [0, 1)d. It is convenient to index these translates as Ci, i := (i1, . . . , id) ∈ Zd, with Ci :=

(i1, . . . , id)+C. We shall write C+
i :=

⋃
j∈Zd, ||i−j||∞≤1 Cj , that is to say C+

i is the union of Ci and

its neighboring cubes. We also consider the moat ∆Ci := C+
i \ Ci.

We need further terminology. Given TLF X ⊂ Rd×R+, and given A ⊂ Rd, we say that X fully

packs the region A if every point in A+ is adjacent to at least one point of A(X ). For t > 0, we

say X fully packs A by time t if X ∩ (Rd× [0, t]) fully packs A. Given B ⊆ Rd, we say that a finite
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point configuration X ⊂ (B ∩ C+
i )+ is maximal or strongly saturates the cube Ci in B if for each

TLF external configuration Y ⊂ (B \C+
i )+, X ∪ Y fully packs the region B ∩Ci (the existence of

maximal configurations is guaranteed by Lemmas 3.1 and 3.3 below).

We shall be interested in strong saturation of Ci in B when B = Rd or when B = Qλ. The

reason for our interest is this: If we knew that there was a constant τ < ∞ such that P∩(C+
0 ×[0, τ ])

strongly saturated C0 in Rd almost surely, then points in P with time marks exceeding τ would

have no bearing on the packing status of points in P ∩ (C0)+. Thus, to check stabilization of ξ at

0 it would be enough to replace P by the Poisson point process P ∩ (Rd × [0, τ ]), and follow the

stabilization arguments for packing with finite Poisson input (section four of [17]). While clearly

no such constant τ exists, we shall show in Lemma 3.3 that a finite random τ exists.

We say that X locally strongly saturates Ci if for each η ⊆ X ∩ (∆Ci)+, the point set (X ∩
(Ci)+) ∪ η fully packs Ci. The following lemma shows that local strong saturation implies strong

saturation.

Lemma 3.1 Suppose X ⊂ (C+
i )+ is TLF and locally strongly saturates Ci. Then for any B ⊆ Rd

with Ci ⊆ B, X ∩B strongly saturates Ci in B.

Proof. Let Y ⊂ (B \ C+
i )+ be TLF. Let η := A((X ∩B+) ∪ Y) ∩ (∆Ci)+. We claim that

A((X ∩B+) ∪ Y) ∩ (C+
i )+ = A((X ∩ (Ci)+) ∪ η). (3.2)

Indeed, considering each point of (X ∩ (Ci)+) ∪ η in the usual temporal order, we see that the

decision on whether to accept is the same for these points whether we are applying the usual

packing rule to (X ∩B+) ∪ Y or to (X ∩ (Ci)+) ∪ η.

Since we assume X locally strongly saturates Ci, (X ∩ (Ci)+) ∪ η fully packs Ci, and so by

(3.2), (X ∩B+) ∪ Y fully packs Ci.

We will use one more auxiliary lemma.

Lemma 3.2 With probability 1, P has the property that for any η ⊆ P ∩ (∆C0)+, there exists

T < ∞ such that the point set (P ∩ (C0)+) ∪ η fully packs C0 by time T .

Proof. Suppose that for each rational hypercube Q contained in C0, P ∩ Q+ 6= ∅; this event has

probability 1.

Take η ⊂ P ∩ (∆C0)+. Let A := A((P ∩ (C0)+) ∪ η). Clearly A is finite. Let V be the set of

x ∈ C0 such that (x, 0) does not lie adjacent to any point of A. Then V is open in C0 (because
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we assume S is closed) and if it is non-empty, it contains a rational cube contained in C0 so that

V+ contains a point of P ∩ (C0)+. But then this point should have been accepted so there is a

contradiction. Hence V is empty and since A is finite this shows that C0 is fully packed within a

finite time.

For i ∈ Zd, let Ti := Ti(P) denote the time till local strong saturation, defined to be the smallest

t ∈ [0,∞] such that Ci is locally strongly saturated by the point set (P∩(C+
i )+)∩(Rd× [0, t]) (and

set Ti = ∞ if no such t exists). Clearly, Ti, i ∈ Zd, are identically distributed random variables

depending only on P ∩ (C+
i )+. In particular, (Ti, i ∈ Zd) forms a 2-dependent random field,

meaning that Ti is independent of (Tj , ‖j − i‖∞ > 2) for each i ∈ Zd. We can now prove the key

result that T0 is almost surely finite.

Lemma 3.3 It is the case that P [T0 = ∞] = 0.

Proof. Suppose that T0 = ∞. Then for each positive integer τ there exists ητ ⊆ P ∩ (∆C0)+ such

that (P ∩ (C0)+) ∪ ητ does not fully pack C0 by time τ .

Assume P ∩ (∆C0)+ is locally finite (this happens almost surely). Then P ∩ (∆C0 × [0, 1])

is finite so that we can take a strictly increasing subsequence (τ (1)
n )n≥1 of the integers τ , along

which η
τ
(1)
n
∩ (∆C0 × [0, 1]) is the same for all n. Then we can take a further strictly increasing

subsequence (τ (2)
n )n≥1 of (τ (1)

n )n≥1 along which η
τ
(2)
n
∩(∆C0×[0, 2]) is the same for all n. Repeating

this procedure and using Cantor’s diagonal argument, i.e. taking τn := τ
(n)
n for all n, we obtain a

subsequence τn tending to infinity, and a limit set η ⊂ (∆C0 × R+), such that for all k, it is the

case that

ητn ∩ (∆C0 × [0, k]) = η ∩ (∆C0 × [0, k]) (3.3)

for all but finitely many n.

Let k > 0, and choose n to be large enough so that τn ≥ k and such that (3.3) holds. Then the

point set (P ∩ (C0)+) ∪ ητn does not yet fully pack C0 by time τn, and therefore (P ∩ (C0)+) ∪ η

does not yet fully pack C0 by time k.

Since (P ∩ (C0)+)∪η does not yet fully pack C0 by time k for any k, we are in the complement

of the event described in Lemma 3.2. Thus by that result, the event {T0 = ∞} is contained in an

event of probability zero, which completes the proof of Lemma 3.3.
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Using Lemma 3.3, we can now prove that ξ∗ and ξ′, defined at the start of this section, satisfy

the first part of exponential stabilization (exponential decay of the tail of R′). To this end, consider

the following {0, 1}-valued random field (πi, i ∈ Zd) on (Ω,F , P ):

πi :=





1, if Ti ≤ T ∗,

0, otherwise,

where T ∗ is a constant to be specified below. Clearly the field (πi)i∈Zd inherits the 2-dependence

property of (Ti)i∈Zd . We shall use the following auxiliary lemma showing that if T ∗ is chosen so

that P [πi = 0] is small enough then the probabilities of observing long paths of zeros in πi decay

exponentially in the sense made precise below.

Given L > 0, let E1(L) be the event that there is a path of zeros from some site i ∈ {−1, 0, 1}d

to the complement of BL/2−
√

d in the random field (πi, i ∈ Zd). More formally, E1(L) is the event

that there exists a sequence i0, i1, i2, . . . , in, such that (a) i0 ∈ {−1, 0, 1}d, and (b) in /∈ BL/2−2
√

d,

and (c) for j = 1, . . . , n, ij ∈ Zd and ‖ij − ij−1‖∞ = 1 and πij = 0.

Lemma 3.4 There exists δ∗ > 0 such that if T ∗ is chosen large enough so that P [πi = 0] ≤ δ∗,

the probability of event E1(L) decays exponentially in L, i.e. limsupL→∞L−1 log P [E1(L)] < 0.

Proof. This is a direct consequence of the product measure domination result of Liggett,

Schonmann and Stacey ((7.65) of [10]), combined with the exponential decay of the cluster radius

in the subcritical regime of Bernoulli percolation, see e.g. Section 5.2 of [10]. Alternatively, the

lemma can be proved directly by a standard path-counting argument.

Lemma 3.5 There exists a positive constant K1 such that for either ξ = ξ∗ or ξ = ξ′, there is a

stabilization radius R′ as described in Definition 2.2, satisfying

P [R′ > L] ≤ K1 exp(−L/K1), ∀L > 0.

Proof. Choose δ∗ > 0 as given by Lemma 3.4. Using Lemma 3.3, take T ∗ > 0 such that

P [T0 ≥ T ∗] ≤ δ∗.

Let us say that the cube Ci is T ∗-saturated iff Ti ≤ T ∗, that is to say iff πi = 1. By Lemma 3.1,

if Ci is T ∗-saturated then for any B ⊆ Rd with Ci ⊆ B, P ∩ ([C+
i ∩B]× [0, T ∗]) strongly saturates

Ci in B.

We declare a point (x, t) ∈ P ∩ (Ci)+ to be causally relevant if either

• πi = 0,
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• or πi = 1 and t ≤ T ∗.

Otherwise the point x ∈ P ∩ (Ci)+ is declared causally irrelevant.

We now argue as follows, directly adapting the oriented percolation technique introduced in

section four of [17]. We convert the collection of points P (in Rd × R+) into a directed graph

by providing a directed connection from (y, s) to (x, t) whenever |y − x| ≤ 2dS and s < t and,

moreover, both (x, t) and (y, s) are causally relevant. By the causal cluster Cl[(x, t);P] of (x, t) ∈ P
we understand the set of all causally relevant points (y, s) of P such that there is a directed path

from (y, s) to (x, t) (referred to as a causal chain for (x, t) in the sequel). Necessarily the points

in the causal cluster for (x, t) have time mark at most t.

For each (x, t) ∈ P we define the causal cube cluster of (x, t) in Rd by

C̄l[(x, t);P] :=
⋃

[C+
j : (Cj)+ ∩ Cl[(x, t);P] 6= ∅]

and for each i ∈ Zd we define its causal cube cluster as the union of clusters given by

C̄l[i;P] :=
⋃

(x,t)∈P∩(C+
i )+

C̄l[(x, t);P]. (3.4)

The significance of causal cube clusters is as follows. First, we assert that the packing status

of a given point (x, t) is unaffected by changes to P outside C̄l[(x, t);P]. Indeed, viewing the

directed connections as potential direct interactions between overlapping solids in the course of

the sequential packing process, we can repeat the corresponding argument from Lemma 4.1 in

[17], adding the extra observation that causally irrelevant points will not be accepted regardless

of the outside packing configuration and hence do not have to be taken into account. Similarly,

the packing status of the totality of points falling within distance dS of the cube Ci can only be

affected by the status of points falling in the causal cube cluster C̄l[i;P]. Consequently, we see

that for either ξ = ξ∗ or ξ = ξ′, we can define a radius of stabilization by

R′ := diam(C̄l[0;P]). (3.5)

We need to show that R′ is almost surely finite and has an exponentially decaying tail.

For L > 0, let E1(L) be as in Lemma 3.4. For i ∈ Zd, let E2(L, i) be the event that there exists

(x, t) ∈ P ∩ (Ci)+, such that t ≤ T ∗ and there exists a causal chain for (x, t) which starts at some

point of P \ (BL−2
√

d)+. Define the event

E2(L) :=
⋃ [

E2(L, i) : i ∈ Zd, Ci ∩BL/2 6= ∅] .

14



Then we assert that the event {R′ > L} is contained in E1(L) ∪E2(L). Indeed, if E2(L) does not

occur, then for any causal chain for any (x, t) ∈ P ∩ (C+
0 )+ starting outside (BL−2

√
d)+, all points

in the causal chain of (x, t) lying inside (BL/2)+ must have time-coordinate greater than T ∗; if

also E1(L) does not occur, at least one of these points must lie in a cube which is T ∗-saturated,

and therefore be causally irrelevant, so in fact there is no causal chain for any (x, t) ∈ P ∩ (C+
0 )+

starting outside (BL−2
√

d)+. Hence, C̄l[0,P] ⊆ BL, so that R′ ≤ L.

By the choice of δ∗ and T ∗ as in Lemma 3.4 we have exponential decay of P [E1(L)]. Since

T ∗ is fixed, we can use the methods of [17] for finite (Poisson) input packing, in particular the

argument leading to Lemma 4.2 in [17], to see that there is a constant K3 such that P [E2(L, i)] ≤
K3 exp(−L/K3) for all i ∈ Zd ∩ BL/2. Since the number of such i is only O(Ld), we see that

P [E2(L)] also decays exponentially in L, and hence so does P [E1(L)] + P [E2(L)]. Since the event

{R′ > L} is contained in E1(L) ∪ E2(L), Lemma 3.5 is proved.

To finish checking that ξ∗ and ξ′ satisfy the conditions for Theorem 2.1, we consider strong

saturation, not only of unit cubes but of cubes of slightly less than unit size. Let Q+
ζ denote the

cube [−ζ1/d, 2ζ1/d)d, i.e. the cube of side 3ζ1/d concentric with Qζ . Let us say that Qζ is locally

strongly saturated by a finite point set X ⊂ (Q+
ζ )+ if for every η ⊆ X ∩ (Q+

ζ \Qζ)+, the point set

(X ∩ (Qζ)+) ∪ η fully packs Qζ .

Lemma 3.6 Given δ > 0, there exist constants ε > 0 and t0 < ∞ such that for all ζ ∈ [1− ε, 1],

P [P ∩ (Q+
ζ × [0, t0]) locally strongly saturates Qζ ] > 1− δ. (3.6)

Proof. By Lemma 3.3, we can choose t0 such that P ∩ (Q+
1 × [0, t0]) locally strongly saturates

Q1, with probability at least 1 − δ/2. Having chosen t0 in this way, we can then choose ε, with

2dS < (1− ε)1/d, so that for any ζ ∈ [1− ε, 1],

P [P ∩ ((Q1 \Qζ)× [0, t0]) 6= ∅] < δ/2.

For ζ < 1 with 2dS < ζ1/d, if P ∩ (Q+
1 × [0, t0]) strongly saturates Q1, and P ∩ ((Q1 \Qζ)× [0, t0])

is empty, then P ∩ (Q+
ζ × [0, t0]) strongly saturates Qζ . Hence, the preceding probability estimates

complete the proof.

Lemma 3.7 There exists a positive constant K4 such that for either ξ = ξ∗ or ξ = ξ′, there is

a family of stabilization radii R(i, λ) := Rξ(i, λ), defined for λ ≥ 1 and i ∈ Zd as described in
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Definition 2.2, which satisfy

sup
λ≥1,i∈Zd

P [R(i, λ) > L] ≤ K4 exp(−L/K4). (3.7)

Proof. First let us restrict attention to λ with λ1/d ∈ N. Adapting notation from the proof of

Lemma 3.5, for (x, t) ∈ P ∩ (Qλ)+ we let Cl[(x, t);P ∩ (Qλ)+] denote the set of all causally relevant

points (y, s) of P ∩ (Qλ)+ such that there is a directed path from (y, s) to (x, t), with all points in

the path lying inside (Qλ)+. Then define the causal cube cluster in Qλ for (x, t) by

C̄l[(x, t);P ∩ (Qλ)+] :=
⋃

[C+
j ∩Qλ : (Cj)+ ∩ Cl[(x, t);P ∩ (Qλ)+] 6= ∅]

and and for i ∈ Zd by

C̄l[i;P ∩ (Qλ)+] :=
⋃

(x,t)∈P∩(Qλ∩C+
i )+

C̄l[(x, t);P ∩ (Qλ)+].

Define

R(i, λ) := diam(C̄l[i;P ∩ (Qλ)+]), λ1/d ∈ N. (3.8)

Then for i ∈ Zd, the packing statuses of points of P ∩ (C+
i ∩ Qλ)+ are unaffected by changes

to P ∩ (Qλ)+ in the region (Qλ \ BR(i,λ)(i))+, by the same argument as in proof of Lemma 3.5.

Here we are using the fact that λ1/d ∈ Z, and that if Ci ⊂ Qλ is T ∗-saturated then Ci is strongly

saturated in Qλ by P∩ (Qλ× [0, T ∗]) (Lemma 3.1). Thus, R(i, λ) serves as a radius of stabilization

in the sense of Definition 2.2 (for either ξ∗ or ξ′). Moreover, C̄l[i;P ∩ (Qλ)+] ⊆ C̄l[i;P], and so

with K1 in as in proof of Lemma 3.5 we have P [R(i, λ) > L] ≤ K1 exp(−L/K1), uniformly over

i, λ with λ1/d ∈ N.

Now suppose λ1/d /∈ N. In this case, instead of dividing Qλ into cubes of side 1, some of which

would not fit exactly, we divide Qλ into cubes of side slightly less than 1, which do fit exactly, and

repeat the above argument.

More precisely, we modify the proof of Lemma 3.5. With δ2 as in that proof, we use Lemma

3.6 to choose constants ε > 0 and T ∗ < ∞ (with max(2dS , 1/2) < (1 − ε)1/d) in such a way that

for any ζ ∈ [1− ε, 1] we have

P [P ∩ (Q+
ζ × [0, T ∗]) locally strongly saturates Qζ ] > 1− δ2.

With ε thus fixed, for all large enough λ we can choose ζ = ζ(λ) ∈ [1 − ε, 1] in such a way that

λ1/d/ζ1/d is an integer. Partitioning Rd into cubes C ′i of volume ζ, we can then follow the argument
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already given for the case λ1/d ∈ N, using the fact that each of the unit cubes i + Q1, for which

we need to check conditions in Theorem 2.1, is contained in the union of at most 2d cubes in the

partition {C ′j}.

4 Proof of volume order variance growth

At the end of this section, we complete the proofs of Theorems 1.1 and 1.2. First, we need to show

that the limiting variance σ2(S, d) is non-zero for all d and all S. This is achieved by Proposition

4.1 and Lemma 4.1 below. The first of these results establishes that any convex S ⊆ Rd with

nonempty interior satisfies jamming variability (as defined in remark 6, Section 1), and the second

establishes that this is sufficient to guarantee that σ2(S, d) > 0. Recall from (3.1) that we can

work just as well with N ξ∗

λ as with Nλ.

Proposition 4.1 The convex body S has jamming variability.

Proof. Given S, for all x ∈ Rd define

‖x‖ := sup{a ≥ 0 : (x + aS) ∩ aS = ∅}.

It is straightforward to verify that ‖ · ‖ is a norm on Rd, using the convexity of S to verify the

triangle inequality. For nonempty A ⊂ Rd, and x ∈ Rd, write D(x,A) for inf{‖x − y‖ : y ∈ A}.
By our earlier assumption that 2dS < 1 we have ‖x‖ > ‖x‖∞ for all x ∈ Rd.

For L ⊂ Rd, we shall say L is packed if ‖x−y‖ ≥ 1 for all x ∈ L, y ∈ L, and that L is maximally

packed if it is packed and

D(w,L) < 1, ∀w ∈ Rd. (4.1)

We shall say L is a periodic set if for all x ∈ L and z ∈ Zd we have x + z ∈ L.

Let L be a maximally packed periodic subset of Rd (it is not hard to see that such an L
exists). Then the function x 7→ D(x,L) is a continuous function on Rd that is periodic (i.e.,

D(x,L) = D(x + z,L) for all x ∈ Rd, z ∈ Zd). Hence the range of this function is the continuous

image of the compact torus Rd/Zd, and so is compact. Hence by (4.1) we have

β := sup{D(w,L) : w ∈ Rd} < 1.

Then for x ∈ Rd and α > 0, by scaling

D(x, αL) = αD(α−1x,L) ≤ αβ. (4.2)
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Choose δ > 0 such that β(1 + 6δ) < 1 − 2δ. For i = 1, 2, let Li := (1 + 3iδ)L. By (4.2) and the

choice of δ we have for all x ∈ Rd and i = 1, 2 that

D(x,Li) < 1− 2δ. (4.3)

Let c1 denote the number of points of L in [0, 1)d. Denote by Box(L) the hypercube [−L/2, L/2]d.

For i = 1, 2, let ni(L) denote the number of points of Li in Box(L − 4). Then as L → ∞, for

i = 1, 2 we have

ni(L) ∼ c1(1 + 3δi)−dLd. (4.4)

Let n3(L) denote the maximum integer m such that there exists a packed subset of Box(L) \
Box(L− 6) with m elements. Then there is a finite constant c2 such that for all L ≥ 6 we have

n3(L) ≤ c2L
d−1. (4.5)

By (4.4) and (4.5), we can choose L0 such that for L ≥ L0 we have

n3(L) < n1(L)− n2(L). (4.6)

For x ∈ Rd and r > 0, set B̃r(x) := {y ∈ Rd : ‖y−x‖ ≤ r} (a ball of radius r using the norm ‖ · ‖).
For bounded A ⊂ Rd, let T (A) denote the time of the first Poisson arrival in A, i.e. set

T (A) := inf{t : P ∩ (A× {t}) 6= ∅},

with the convention that the infimum of the empty set is ∞. Fix L ≥ L0, and for i = 1, 2 define

the event Ei by

Ei :=
{

max{T (B̃δ(x)) : x ∈ Li ∩ Box(L− 4)} < T
(
Box(L) \ ∪x∈Li∩Box(L−4)B̃δ(x)

)}
.

Let i = 1 or i = 2. If y, y′ are distinct points of Li then ‖y−y′‖ ≥ 1+3δ. Hence, if also w ∈ B̃δ(y)

and w′ ∈ B̃δ(y′), then ‖w − w′‖ ≥ 1 + δ by the triangle inequality. Moreover, for x ∈ Rd, by (4.3)

and the triangle inequality we can find y = y(x) ∈ Li such that ‖x−w‖ ≤ 1− δ for all w ∈ B̃δ(y).

Hence, if Ei occurs then the set of accepted points (i.e., centroids of accepted shapes) of the infinite

input packing process on Box(L) induced by P with arbitrary external pre-packed configuration

η in Rd \ Box(L), includes one point from each B̃δ(x), x ∈ Li ∩ Box(L − 4), and also contains no

other points from Box(L− 6).

Thus for any pre-packed configuration η in Rd \ Box(L), if E1 occurs the number of accepted

points in Box(L) is at least n1(L), and if E2 occurs the number of accepted points is at most
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n2(L)+n3(L). Also, the probabilities P [E1] and P [E2] are strictly positive and do not depend on η.

By (4.6), it follows that there is a constant ε > 0, independent of η, such that Var[N ξ∗

Ld(Box(L))|η] ≥
ε. Thus we have established the required jamming variability.

Lemma 4.1 It is the case that lim infλ→∞ λ−1Var[N ξ∗

λ ] > 0.

Proof. By Proposition 4.1, there exists L > 0 such that infη VarN [[0, L]d|η] > 0, where the

infimum is over all admissible η ⊂ Rd \ [0, L]d. We consider λ with λ1/d/(L + 4) ∈ N. We

subdivide the cube Qλ into n(λ) := λ/(L+4)d equal-sized sub-cubes C̃1,λ, C̃2,λ, . . . , C̃n(λ),λ arising

as translates of Box(L + 4) centered at x1,λ, . . . , xn(λ),λ respectively. For 1 ≤ i ≤ n(λ), let C̃−i,λ

be the translate of Box(L) centered at xi,λ, and let Mi,λ be the translate of Box(L + 2) \ Box(L)

centered at xi,λ (a ‘moat’ around C̃−i,λ).

Using terminology from Section 3, let Fi,λ be the event that the point set P ∩ (Mi,λ)+ fully

packs Mi,λ by time 1, and let Gi,λ be the event that P ∩ ((C̃i,λ \ Mi,λ) × [0, 1]) is empty. Let

Ei,λ := Fi,λ ∩Gi,λ. Then p := P [Ei,λ] satisfies p > 0, and does not depend on i or λ.

Observing that the events Ei,λ, 1 ≤ i ≤ n(λ), are independent (the cubes C̃i are disjoint), denote

the (random) set of indices for which Ei,λ occurs by I(λ) := {i1, ..., iK(λ)}. Then E [K(λ)] = pn(λ).

Conditional on the event Ei,λ, the packing process inside C̃−i,λ has a particularly simple form - before

time 1 there are no points in C̃−i,λ, and after that time the newly arriving solids centered in C̃−i,λ

undergo the packing process according to the usual rules with the additional restriction that a solid

overlapping another one packed in Mi,λ before time 1 is rejected. Note that for i ∈ I(λ), no new

solids are accepted in Mi,λ after time 1 and, moreover, the acceptance times of solids accepted in

Mi,λ before time 1 have no influence on the behavior of the packing process in C̃−i,λ after time 1;

only their spatial locations matter. For a configuration η of accepted points (only spatial locations

taken into account) in Mi,λ, the process described above will be referred to as packing in C̃−i,λ in

the presence of the pre-packed configuration η.

Let Mλ be the sigma-algebra generated by the points of P ∩ (Qλ × [0, 1]), i.e. the Poisson

arrivals up to time 1. Event Ei,λ is Mλ-measurable, for each i.

By the conditional variance formula we have

Var
[
N ξ∗

λ

]
= E

[
Var

(
N ξ∗

λ |Mλ

)]
+ Var

[
E

(
N ξ∗

λ |Mλ

)]

≥ E
[
Var

(
Nξ∗

λ

∣∣∣Mλ

)]

= EVar


 ∑

i∈I(λ)

Nξ∗

λ [C̃−i,λ] +


N ξ∗

λ −
∑

i∈I(λ)

N ξ∗

λ [C̃−i,λ]




∣∣∣∣∣∣
Mλ


 ,
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where we set N ξ∗

λ [C̃−k,λ] := ξ∗(P ∩Qλ, C̃−k,λ), the number of solids packed in C̃−k,λ. Conditionally on

Mλ, the packing processes after time 1 over different sub-cubes C̃−i,λ, i ∈ I(λ), are independent of

each other and of the packing process after time 1 in Qλ \ ∪i∈I(λ)C̃
−
i,λ. Hence,

Var
[
N ξ∗

λ

]
≥ E

∑

i∈I(λ)

[
Var[N ξ∗

λ [C̃−i,λ] | Mλ]
]
≥ E [K] inf

η
VarN [[0, L]d|η],

where the infimum is taken over all admissible configurations η outside [0, L]d, and where N [[0, L]d|η]

stands for number of solids packed in [0, L]d in the presence of the pre-packed configuration η. By

Proposition 4.1, this infimum is strictly positive, and Lemma 4.1 follows.

Proof of Theorems 1.1 and 1.2. Let ξ be ξ∗ as defined in Section 3. Then Lemmas 3.5 and 3.7

show that ξ = ξ∗ satisfies the exponential stabilization conditions in Theorem 2.1, so it satisfies

the conclusions (2.6), (2.7) and (2.8) of that result. The conclusion (2.8) gives us (1.1) of Theorem

1.1. Also, by putting f ≡ g ≡ 1 on Q+
1 and using (2.7), we obtain the variance convergence

λ−1VarNλ → σ2 asserted in Theorem 1.1. By Lemma 4.1, we may therefore deduce that σ2 > 0.

Hence we may apply the last part of Theorem 2.1 to obtain the rest of the conclusions in Theorem

1.2 as they pertain to νλ; also the conclusion (2.9) of Theorem 2.1 gives us (1.2).

To get the same results for ν′, we argue similarly with ξ = ξ′. We need to check that the

limiting means and variances are the same, i.e. µ(ξ′) = µ(ξ∗) and σ2(ξ′) = σ2(ξ∗). To see this,

note that if f ≡ 1 on Q+
1 , then 〈f, µξ′

λ 〉 = 〈f, µξ∗

λ 〉 so application of (2.6) to this choice of f yields

µ(ξ′) = lim
λ→∞

λ−1E [〈f, µξ′

λ 〉] = lim
λ→∞

λ−1E [〈f, µξ∗

λ 〉] = µ(ξ∗)

and a similar argument using (2.7) shows that σ2(ξ′) = σ2(ξ∗).
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