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Abstract

The current study investigates how people incorporate
ambiguous information into judgments of causal relations.
We presented participants with information that was not
easily classified into the presence or absence of a candidate
cause, breaking a traditional requirement of models of causal
induction.  We found that people were willing to incorporate
this ambiguous information into their collected evidence,
instead of ignoring the information as uninformative.
Furthermore, people interpreted ambiguous stimuli as
evidence most consistent with their prevailing causal
hypothesis.  These results give an idea of how people begin to
determine what can function as a candidate cause in a causal
induction problem.

Introduction
Determining the causal relationship between events is an
essential skill in daily life.  Humans are constantly presented
with events for which we must determine probable causes.
To be able to manipulate the occurrence of an event in our
favor, we must determine what cause resulted in the event.
Most of the current debates in the field of causal learning
concern how information about presence or absence of one
event followed by presence or absence of another should be
combined in order to determine the causal relationship
between the two events.  The current study examines a more
fundamental issue of how people first determine whether or
not an event is present while they are learning a new causal
relation.

Traditional studies in causal induction assume candidate
causes exist in distinct, definable states.  These states take
the form of a candidate cause either being present or absent
(e.g., fertilizer was dispensed or not, a button was pressed or
not) or as polar opposites that vary along a given dimension
(e.g., small or large) (Baker, Mercier, Vallée-Tourangeau,
Frank, & Pan, 1993; Cheng, 1997; Shanks, Lopez, Darby, &
Dickinson, 1996; Spellman, 1996).  In all of these studies
definitions of what constitutes presence or absence of a
cause is clear. For instance, a button is either pressed or not,
or a tank is camouflaged or not.

The assumption of well-defined candidates is also built
into all existing models of causal induction (e.g., Cheng,
1997; Cheng & Novick, 1990; Pearle, 2000; Rescorla &
Wagner, 1972). For instance, consider the well-known
measure of contingency called ∆P. This measure is based on
four types of evidence created by combining the presence
and absence of the cause (X) with the presence and absence
of the effect (E) as shown in Figure 1.  The contingency

model of causal induction hypothesizes that people’s
judgments of causal strengths approximate ∆P, which is the
difference between the probability of the effect occurring in
the presence of the candidate, P(effect | cause), and the
probability of the effect occurring in the absence of the
candidate, P(effect | no cause) (e.g., Cheng & Novick,
1990).  More recently, the Power PC theory uses a ∆P
measure weighted by the presence of the effect in the
cause’s absence (Cheng, 1997).  Implicit in these different
theories of how causal strength or covariation may be
calculated is the assumption that an event would be
unambiguously classified into one of the four possible types
of information with little complication.

Candidate
present

(X)

Candidate
absent
(~X)

Effect
present

(E)
XE ~XE

Effect
absent
(~E)

X~E ~X~E

Figure 1.  The four possible types of information available
in a well-defined causal induction task.  Note: ~X notation
is used both here to denote the absence of a candidate cause
as well as in other situations to denote the presence of the
opposite pole of the candidate.

It can easily be seen why clear-cut stimuli are desirable in
an experimental setting or in modeling.  However, this
assumption is not warranted in many real-life situations. For
instance, consider the following hypotheses that a layperson
might entertain: stress causes insomnia, humid weather
causes joint pain, and cheap shoes cause sore feet. In all of
these examples, there is no definite boundary for what
counts as presence or absence of stress, humid weather, or
cheap shoes. How does one decide what counts as a
potential cause?

In the following experiment we examined how people
interpret ambiguous information in a causal learning
situation.  We constructed a basic causal induction problem
where participants were asked to track the relationship
between one causal candidate and the presence versus
absence of a given effect.  Unlike the traditional causal
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reasoning experiment, we introduced variation in our causal
candidate that did not make it immediately obvious what
constituted presence or absence of the target value.
Participants were given a causal candidate that varied along
one dimension (e.g., height), producing three distinct forms
of the candidate.  Two candidate forms were extreme
opposites of one another along the varying dimension (e.g.,
tall and short). The third candidate variation we created was
a hybrid of the polar opposite forms, appearing as an
absolute midpoint between the two poles along the varying
dimension (e.g., medium height).  This created a variation of
the candidate that was not defined as belonging to either end
of the dimension and was therefore ambiguous as to where
it belongs in the four types of possible evidence depicted in
Figure 1.  The question we set out to answer is how such
pieces of ambiguous information will be incorporated
alongside clearly defined information to produce an
estimation of causal status.

Possible Hypotheses
There are at least three plausible hypotheses concerning
how people would deal with ambiguous candidate causes.
First, people might completely ignore ambiguous
information because it cannot be readily classified into one
category or another. We call this the Discredi t ing
Hypothesis.  For instance, in testing the hypothesis of
whether one’s joint pain gets worse when it is humid, a day
that is difficult to be classified as either dry or humid would
not be figured into computation because it is an ambiguous
case.

The second hypothesis is what we termed the Coin Toss
Hypothesis. Instead of completely ignoring the ambiguous
trials, people would randomly classify each piece of
ambiguous information into either X or ~X as if they are
tossing a coin in each ambiguous trial. For instance, those
days that are difficult to be classified as either dry or humid
would be classified as dry half the time, and humid half the
time.

The third possibility is that people would assimilate
ambiguous events in light of the most likely causal
hypothesis they hold at that point in time (Assimilation
Hypothesis).  Consider the previous example of outside
humidity as a cause of joint pain.  Suppose a person is
leaning towards believing that humid days cause her joint
pain.  One day when her joint pain was particularly bad, the
weather was neither definitely humid nor definitely dry.
Because she believed high humidity caused her joint pain,
she would interpret the weather that day as being humid.
Conversely, on a day with the same ambiguous humidity
where she did not experience joint pain, she would interpret
that day as dry, despite the exact same weather as in the
previous case. To put it in more general terms, suppose the
most plausible hypothesis at trial N is that X causes E.
Further suppose that at trial N the reasoner is presented with
an ambiguous value that can be thought of as either X or
~X. If E is obtained in this trial, this ambiguous value would
be interpreted as X. If E is not obtained in this trial, this
ambiguous value would be interpreted as ~X. Thus, each
ambiguous trial is assimilated online to be consistent with
the most dominant hypothesis held at that trial.

Methods

Overview
In each condition, participants received a series of 60 trials,
each of which described which candidate cause was present
and whether an effect was present or absent. The candidate
cause took one of three values on a continuous dimension
(e.g., short, medium, tall), where the intermediate value was
selected through a pre-test to be a value that was judged to
be equally similar to the two extreme values. After viewing
all 60 trials, participants were asked to estimate the
frequency of each of four cells in Figure 1, where X was one
of the extreme values and ~X was the opposite extreme
value (e.g., In how many cases were the bacteria TALL and
white blood cells DID increase? In how many cases were
the bacteria SHORT and white blood cells DID increase?).
The main question is how the intermediate value was
classified during causal learning. According to the
Discrediting hypothesis, trials with the intermediate value
would be ignored and therefore participants’ frequency
estimates will reflect only the trials with extreme values.
According to the Coin Toss hypothesis, trials with the
intermediate value will be sorted roughly in half. According
to the Assimilation hypothesis, participants’ hypothesis
about what causes E will influence how ambiguous trials
would be interpreted.

Materials and Design
Two sets of materials were developed (see Figure 2). In Set
1, a causal candidate, described as bacteria, varied in height
(short, medium, and tall), and in Set 2, a causal candidate,
described as spacing between rows of fruit trees, varied in
spacing (near, intermediate, and far-spaced). A pre-test was
conducted to verify that the medium value in each of the
dimensions was perceived to be equally similar to extreme
values on the same dimension.

Figure 2. Set 1 and Set 2 targets and ambiguous items.

In the pretest, 17 undergraduate participants received 12
sets of stimuli, each containing two targets (Target A and B)
and 15 test items. Within each set, the two targets varied
greatly from one another along one dimension and the
fifteen different test stimuli varied systematically between
the targets. For instance, one set of materials consisted of a
0.1 inches long target and a 3.3 inches long target.  The

  Set 2 Set 1
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fifteen test items increased systematically in length by 0.2
inches between the two targets (i.e., 0.3, 0.5, …, 2.9, 3.1).
All of the items in a set were identical except for the varying
dimension.

The participants’ task was to rate the similarity of each
test item to Targets A and B on a nine-point scale.
Participants were told that if they believed a test item was
very similar to Target A to give it a number close to 1 and if
they believed a test item was very similar to Target B to
give it a number close to 9.  Participants were also
instructed that they could use any number between 1 and 9,
keeping in mind that 5 was the midpoint of the scale.  After
reading the instructions for a given item set, a participant
rated all 15 test items in a random order. For the two item
sets that were chosen for the actual experiment, participants’
mean similarity ratings for the intermediate value (5.0 and
4.76 for Set 1 and Set 2, respectively) were not significantly
different from the scale’s midpoint of 5 (all p’s > .20). Thus,
the pre-test verified that the intermediate values that were
equally similar to either one of the two extreme values on
the same dimension were perceived as such.

For each set of materials, 60 trials were developed for the
learning phase. Specifically, 40 trials were developed using
the two extreme values and 20 trials were developed using
the ambiguous value. As shown in the contingency table in
Figure 3, the 40 unambiguous trials were constructed to
strongly suggest that X is a generative cause of E (with ∆P
of 0.8). In the Ambiguous+ condition, E was present in all
20 trials involving the ambiguous value. In the Ambiguous–
condition, E was absent in all 20 trials involving the
ambiguous value.

X ~X

E 18 2

~E 2 18

Figure 3.  Number of trials for each type of evidence in
the main experiment.

On each trial of Set 1, the value of a causal candidate was
depicted on the left and the value of effect was depicted on
the right. Figure 4 shows a sample trial. For Set 2 the
candidate was shown at the top of the screen and the effect
was shown on the bottom.  The actual value of X or ~X was
counterbalanced across subjects (e.g., In one version of Set
1, X was short bacteria, and in the other version, X was long
bacteria).

Cover stories were built around each item set.  For Set 1,
participants were told that a newly discovered strain of
bacteria was believed to be associated with white blood cell
production in humans.  Medical researchers were now trying
to determine the relationship between the height of the
bacteria and an increase in a person’s white blood cell
count. For Set 2, participants were told that the spacing
between rows of fruit trees was believed to be associated
with population numbers of a type of bird that lived in the
trees.  Agricultural researchers were trying to determine the
relationship between the spacing of the trees and an increase
in the bird’s population.

Figure 4. Sample trial for Set 1.

Procedures
Each participant completed both the Ambiguous+ and the
Ambiguous– conditions, instantiated in two different sets of
stimulus materials.  Each condition was presented to a
participant as two experiments separated by a filler task.
The order of the Ambiguous+ and Ambiguous– conditions
as well as which value was chosen as X or ~X within a
stimulus set was counterbalanced between subjects.

Participants began each condition by reading one of the
previously described cover stories. They were also told that
after seeing all of the cases for the given condition they
would be asked to estimate the relationship between a target
pole of the dimension and the effect event. (E.g., “You will
be asked to estimate the relationship between a bacterium
having a tall height and an increase in white blood cells.”)
Most critically, participants were not told what defines the
target or given examples of the target; they were only
provided with a target label (such as ‘tall’). After finishing
this introductory material, participants proceeded through
the experiment by pressing the space bar.  Each case was
followed by a 500 millisecond black screen, so that
participants could not easily compare the stimuli in adjacent
trials.  Regardless of conditions, the order of events was
fixed as the order shown in Figure 5.1

After seeing all of the trials for a given condition,
participants made a series of ratings for the trials they had
just seen.  The first rating asked participants to recall how
many individual pieces of each evidence type they had seen.
The following is an example for how participants were
asked to respond for Set 1:

“In how many cases were the bacteria:
1)    TALL and white blood cells DID increase?
2)    TALL and white blood cells DID NOT increase?
3)    SHORT and white blood cells DID increase?
4)    SHORT and white blood cells DID NOT increase?”

                                                            
1 As will be further discussed in Discussion, the results we obtain
appear to depend on when the ambiguous trials first appear in the
sequence. In the current experiment, which did not investigate that
issue, the order was fixed in order to minimize that effect.

Bacteria height White blood cells
increased?

Yes

In one trial...

Press the SPACE bar to continue to the next case.
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Hypotheses Results

Discrediting Coin Toss Assimilation
X ~X X ~X X ~X X ~X

Ambiguous+ E 18 2 E 18 +10 2 +10 E 18 +20 2 E 28.7 3.5

Condition ~E 2 18 ~E 2 18 ~E 2 18 ~E 3.1 21.8

X ~X X ~X X ~X X ~X

Ambiguous– E 18 2 E 18 2 E 18 2 E 21.2 3.5

Condition ~E 2 18 ~E 2 +10 18 +10 ~E 2 18 +20 ~E 2.9 28.2

Figure 6. Division of trials according to each hypothesis and actual results. Highlighted cells note where
ambiguous information should be parsed for that hypothesis.  Italicized numbers reflect idealized number of trials

parsed to that cell.

For each estimation, questions concerning the cued target
dimension were listed first.  Participants were told that they
had seen 60 total trials, but were not explicitly told that their
estimations must add to 60.  Ambiguous stimuli were not
directly asked about, and it would be under participants’
discretion as to how to count ambiguous values.

In the second rating participants were asked to estimate to
what extent X caused E (e.g., “To what extent does bacteria
that are tall cause an increase in white blood cells?”)
Participants were asked to make their rating on a scale of 0
(not a cause) to 100 (strongly causes) and then asked to rate
their confidence on a scale of 1 (not at all confident) to 7
(very confident).

In the last rating participants were asked to judge the
similarity of the ambiguous stimuli to the target and
alternative stimuli they had seen in the preceding block.
The same type of rating system was used as in the pre-test.
This final task was added to verify one more time that the
same participants also agreed that the ambiguous values
used in the main experiment are equally similar to their
extreme values.

Thirty-four Vanderbilt University undergraduates
participated in the experiment in partial fulfillment of a
course requirement.  Five additional subjects participated
but were dropped from the study for not following the
experimental directions (e.g., their total frequency estimates
exceeding 60 trials).  All experiments were conducted on
iMac computers using SuperLab™.

Results
Figure 6 summarizes predictions of the three hypotheses
discussed in the introduction, and the results from the
experiment on frequency estimates. There was no effect of
block order, materials, or which dimension served as X, so
all results are collapsed across materials and order.

To test the Discrediting hypothesis, the data was first
examined to see if participants were in fact not
incorporating ambiguous trials into their estimates. If
participants were following the Discrediting hypothesis,
then their estimates should not exceed 40 (i.e., total number
of trials not involving ambiguous values).  Yet, 81% of the
estimate sets reflected a total of 60 trials added across
evidence types, and 9% reflected a total trial set of over 40.
Therefore only 10% of the responses could possibly have
been generated employing a discrediting strategy. In
addition, the mean estimate of XE in the Ambiguous+
condition (28.71) was significantly greater than a
hypothesized mean of 18 (the idealized estimation for these
cells if no ambiguous information was included), t(33) =
8.55, p < .0001.  The mean estimate of ~X~E in the
Ambiguous– condition (28.24) was also significantly
greater than 18, t(33) = 7.57, p < .0001).

If the Coin Toss hypothesis is supported, we should
expect that in the Ambiguous+ condition, frequencies of
both XE and ~XE would increase to the same extent
compared to frequencies of extreme trials only (i.e., 18 and
2, respectively). Yet, in the Ambiguous+ condition, the
degree to which participants’ frequency estimate on ~XE
(3.53) departed from 2 was much less than the degree to
which their estimate on XE (28.71) departed from 18. More
specifically, each participant’s estimate on ~XE was
subtracted from 2 and their estimate on XE was subtracted
from 18, and a paired-sample t-test was carried out for these
difference scores, finding a significant difference, t(33)=
5.31, p < .0001.  Furthermore, participants’ frequency
estimate on ~XE did not differ from their estimate on X~E
(3.15), p > .12, contrary to the expectations of the coin-toss
hypothesis. Similarly, in the Ambiguous– condition, the
Coin Toss hypothesis would predict that frequencies of both
X~E and ~X~E would increase to the same extent.

XE ~X~E Amb ~X~E XE Amb ~X~E Amb XE Amb ~X~E Amb

XE Amb ~X~E Amb XE ~X~E XE Amb ~X~E ~XE XE Amb
~X~E Amb XE Amb ~X~E Amb XE ~X~E XE Amb XE Amb

~X~E X~E XE Amb ~X~E ~XE XE Amb ~X~E Amb XE Amb

~X~E Amb XE X~E ~X~E XE ~X~E Amb XE ~X~E XE ~X~E
Figure 5. Trial sequence for all experimental conditions. The sequence should be read from left to right, top to

bottom.  ‘Amb’ refers to ambiguous trials.
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However, in the Ambiguous– condition, a paired-sample t-
test, similar to the one conducted in the Ambiguous+
condition, found a significant difference for these difference
scores, t(33) = 6.78, p < .0001.  In addition, participants’
estimate on X~E (2.85) did not differ from their estimate on
~XE (3.53), p > .17.  Also, looking across Ambiguous+ and
Ambiguous– conditions, there was no reliable difference
between the estimates on the X~E in the Ambiguous+ (3.15)
and Ambiguous– (2.85) conditions, t(33) = .45, p = .65, nor
was there a difference between the estimates on the ~XE in
the two conditions (both with a mean of 3.53).

The above results are most consistent with the
Assimilation hypothesis. Recall that the non-ambiguous
trials were constructed such that participants would be most
likely to believe that X causes E. Thus, in the Ambiguous+
condition where ambiguous trials are accompanied with E,
ambiguous trials would be more likely to be interpreted as
XE rather than ~XE. Indeed, as reported earlier, this was the
result that was obtained. Conversely, in the Ambiguous–
condition where ambiguous trials are accompanied with ~E,
they would be more likely to be interpreted as ~X~E rather
than X~E (because participants presumably believe X
causes E). Again, as reported earlier, this was exactly the
pattern that was obtained.

There was no difference for the overall causal strength
estimate across conditions (M = 79.30 in the Ambiguous+
condition, M = 79.62 in the Ambiguous– condition, p >
.89).  There was also no difference in the confidence rating
for the overall causal strength estimates across conditions (p
> .11).  Finally, participants in the main experiment also
agreed that the ambiguous values were equally similar to the
two extreme values, as shown by no significant difference
for each rating from the midpoint of 5 on the similarity scale
(all p’s > .56).

 Discussion
The current results show that an identical value is classified
in different ways depending on a dominant causal
hypothesis. Thus, if a person believes that tall bacteria
increase white blood cell counts, then medium-height
bacteria that also increased white blood cell counts are more
likely to be classified as being tall. However, the bacteria
that had the same medium-height, but did not increase white
blood cell counts are more likely to be classified as being
short.   In this way, the power of the causal relationship
gives the otherwise ambiguous stimuli an unambiguous
nature.

Although the current experiment examined classification
of causes only, we speculate that similar results would be
obtained along the effect dimensions. Going back to our
previous example, a person who believes that humid
weather makes joint pain worse might be more likely to
believe that joint pain in medium intensity is worse on a
humid day than on a dry day.

The crux of the assimilation hypothesis is that
interpretations of whether or not a cause is present or an
effect is present are constrained by the on-going hypothesis
that a reasoner holds. Furthermore, this assimilation would
influence the kind of causal relation that a reasoner could
induce. For instance, after interpreting medium-height

bacteria that increase white blood cell count as “tall”
bacteria, their hypothesis of what bacteria increase white
blood cell counts would include “tall and medium values”.
Thus, causal induction involves a continuous interaction
between top-down and bottom-up processes where the
dominant hypothesis influences interpretations of incoming
data, which in turn would influence causal induction (e.g.,
Wisniewski & Medin, 1994). The current models of causal
induction are moot about this interaction in that they all
assume that events come pre-classified as one of the four
event types in Figure 1, and the induction process takes
place over these pre-classified data. Yet, our results indicate
that perceptually identical stimuli can be classified
differently under the influence of a developing hypothesis of
a causal relation.

The idea of changing one’s classification of an object
according to contextual information has also been
demonstrated in categorization research. Research on
similarity judgments has found that traits identified for an
object can change according to the grouping of an object in
a comparison task.  For example Medin, Goldstone, and
Gentner (1993) found that an object that has an ambiguous
number of appendages would be described as having three
appendages when compared to an object with three well-
defined appendages but paradoxically would be described as
having four appendages when compared to an object with
four.  It is impossible for a given object to physically
vacillate between possessing three and four appendages. It is
concluded that the context of the task is what drives the trait
description.  (See also Schyns, Goldstone & Thibaut, 1998).

Compared to this earlier study in categorization and
similarity judgments, our results can be seen as a stronger
demonstration of how the context of a situation can change
the interpretation of ambiguous information. Whereas
Medin et al.’s task directly asked participants to compare an
ambiguous and a well-defined item, participants in our
experiment were not explicitly forced to do such and could
freely ignore ambiguous stimuli in the counting task.
Despite this stronger manipulation, participants were still
willing to evaluate and include ambiguous information into
their estimates.

One possible objection to the current study is that our task
forced participants to group ambiguous information in
accordance with their existing hypothesis in a way that is
not reflective of how such candidates would be treated in
real life cases. That is, participants could normally treat
ambiguous candidates as a third, intermediate value or as a
sub-type of one of the defined variables. Most of the
existing models of causal induction do not provide for such
flexibility and are limited to situations involving candidates
with binary values (e.g., presence or absence). Furthermoe,
in every-day language people seem to explicitly verbalize
causal rules in terms of a contingency between binary-
valued variables (e.g., humidity causes joint pain) rather
than a complex function that maps two continuous
dimensions (e.g., varying levels of humidity and degrees of
joint pain).  Where does this tidy mapping come from if
actual data present in the environment are not as neat as
shown in the 2X2 contingency table of Figure 1? Our
experiment gives the first idea of how this essential initial
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process might proceed when confronted with ambiguous
information.

What are the boundary conditions for our demonstrations?
Can any two items be grouped together given the
appropriate dimension and causal hypothesis?  We are
currently exploring interesting boundary conditions, which
will illuminate the process of online incorporation of
ambiguous information.  In the current study, we have
demonstrated the assimilation phenomenon when within the
first three trials of an experimental sequence our participants
have seen an example of two extreme values and an
ambiguous stimulus, as illustrated in Figure 5.  In our pilot
studies, however, when ambiguous stimuli begin appearing
much later in a sequence, assimilation did not take place,
presumably because participants had already developed a
well-established notion of how they would define a cause
(e.g., what counts as tall bacteria). Thus, this assimilation
process appears to take place only when ambiguous stimuli
are presented at an earlier stage of causal learning.

At the same time, the assimilation process probably
would not take place too early in learning because at that
point, people might not have developed a hypothesis about a
causal relation. For instance, the first ambiguous stimulus
they encountered (i.e., third trial in the current experiment)
would not have had the benefit of a dominant hypothesis
putting pressure on its interpretation. This first evidence
might have been ignored or randomly classified as tall or
short. Such an initial strategy would explain the discrepancy
between the idealized prediction of the assimilation
hypothesis and the current results shown in Figure 6 (e.g.,
the mean estimates on XE in the Ambiguous+ condition was
28.7 rather than the idealized 38).  We are further
investigating this avenue to discover how much information
must be presented before assimilation will begin.

Allowing causal hypotheses to influence the interpretation
of ambiguous evidence can speak to phenomena of human
reasoning found in a variety of research fields. For instance
in the illusory correlation literature, Chapman and Chapman
(1969) found that in studying drawings supposedly
produced by individuals with psychoses, participants
reported higher than actual frequencies of features that
matched their theories of the focus of the drawer’s
psychosis.  We speculate that one possible mechanism
underlying illusory correlations is that ambiguous or neutral
features are assimilated differently under the light of the
interpreter’s theory of the mental disorder.

Indeed, the assimilation process appears to be ubiquitous.
For instance in a now classic study, Asch (1946) found that
the presence of one salient adjective could color the
interpretation of an entire list of trait adjectives, in that
adjectives with an ambiguous connotation were interpreted
as positive or negative depending on the valence of a
manipulated adjective.  From illusory correlations to
impression formation, ambiguous evidence may well be the
mainstay, and not the exception, to the type of information
available in everyday life. It is actually surprising that few
previous studies have examined this issue in causal
induction. This could be due to an attempt to unnecessarily

separate out the top-down and bottom-up processes of
causal induction. The idea forwarded by much of the
traditional research (e.g., Cheng, 1997) that causal induction
can operate separately from prior knowledge has become an
even more tenuous claim in light of our findings.

Acknowledgments
The current research was supported by a National Institute
of Mental Health Grant (2 R01 MH57737-05A1) given to
the second author.

References
Asch, S. E.  (1946). Forming impressions of personality.

Journal of Abnormal and Social Psychology, 41, 258-290
Baker, A. G., Mercier, P., Vallée-Tourangeau, F., Frank, R.,

& Pan, M. (1993). Selective associations and causality
judgments: The presence of a strong causal factor may
reduce judgments of a weaker one. Journal of
Experimental Psychology:  Learning, Memory, &
Cognition, 19, 414-432.

Chapman, L. J., & Chapman, J. P. (1969). Illusory
correlation as an obstacle to the use of valid
psychodiagnostic signs. Journal of Abnormal Psychology,
74, 271-280.

Cheng, P. W. (1997). From covariation to causation: A
causal power theory. Psychological Review, 104, 367-
405.

Cheng, P. W., & Novick, L. R. (1990). A probabilistic
contrast model of causal induction. Journal of Personality
& Social Psychology, 58, 545-567.

Medin, D. L., Goldstone, R. L., & Gentner, D. (1993).
Respects for similarity. Psychological Review, 100, 254-
278.

Pearl, J. (2000). Causality: Models, reasoning, and
inference. New York, NY: Cambridge University Press.

Rescorla, R. A., & Wagner, A. R. (1972). A theory of
pavlovian conditioning: Variations in the effectiveness of
reinforcement and nonreinforcement. In A. H. Black &
W. Prokasy (Eds.), Classical conditioning II. New York:
Appleton-Century-Crofts.

Schyns, P. G., Goldstone, R. L., & Thibaut, J. (1998). The
development of features in object concepts. Behavioral
and Brain Sciences, 21, 1-54.

Shanks, D. R., Lopez, F. J., Darby, R. J., & Dickinson, A.
(1996). Distinguishing associative and probabilistic
contrast theories of human contingency judgment. In D.
R. Shanks, D. L. Medin & K. J. Holyoak (Eds.),
Psychology of learning and motivation, Vol. 34: Causal
learning (pp. 265-312). San Diego, CA: Academic Press.

Spellman, B. A. (1996). Conditionalizing causality. In D. R.
Shanks, D. L. Medin & K. J. Holyoak (Eds.), Psychology
of learning and motivation, Vol. 34: Causal learning (pp.
167-207). San Diego, CA: Academic Press.

Wisniewski, E. J., & Medin, D. L. (1994). On the
interaction of theory and data in concept learning.
Cognitive Science, 18, 221-281.

780




