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This is a discussion of a first “case study”: we have a data set describing the refractive index of
a material at various temperatures, and we want to see how we can model it to both describe the
empirical data well, and to extract physical parameters. Several activities are suggested, and this
example will be useful to implement a few of the techniques that we will discuss later on.

Table I shows the data obtained for the refractive index
of some material at different temperatures. There are two
aims for this case study:

1. Find out if we can represent the refractive index
data with a simple mathematical formula.

2. See if it is possible to extract some interesting phys-
ical parameter.

The first thing to do is to come up with an appropriate
description for a refractive index as a function of the
wavelength. One of the most used descriptions is based
on the Sellmeier Formula [1]. In its simplest form it can
be written as

n(λ)2 − 1 =
S1

1 − (λ1/λ)2
, (1)

TABLE I. Refractive index data at various temperatures. The
maximum experimental error for a single data point is 3×10−4

λ [nm] 22◦C 50◦C 75◦C 100◦C 140◦C 180◦C

404.66 2.4556 2.4584 2.4611 2.4641

435.83 2.4065 2.4087 2.4108 2.4131 2.4173 2.4224

467.82 2.3705 2.3723 2.3740 2.3759 2.3793 2.3835

479.99 2.3594 2.3611 2.3627 2.3645 2.3677 2.3716

508.58 2.3374 2.3389 2.3403 2.3420 2.3449 2.3484

546.07 2.3149 2.3163 2.3175 2.3190 2.3215 2.3247

576.96 2.3003 2.3016 2.3027 2.3041 2.3065 2.3094

643.85 2.2768 2.2779 2.2789 2.2801 2.2822 2.2847

700.00 2.2627 2.2636 2.2645 2.2657 2.2676 2.2699

800.00 2.2450 2.2458 2.2466 2.2476 2.2494 2.2515

900.00 2.2329 2.2337 2.2344 2.2354 2.2370 2.2390

1000 2.2240 2.2248 2.2255 2.2266 2.2281 2.2299

1064 2.2195 2.2202 2.2209 2.2219 2.2232 2.2252

1400 2.2027 2.2035 2.2042 2.2049 2.2064 2.2081

1700 2.1924 2.1932 2.1937 2.1945 2.1959 2.1976

2000 2.1832 2.1839 2.1845 2.1852 2.1866 2.1882

2250 2.1755 2.1762 2.1768 2.1775 2.1789 2.1805

2500 2.1675 2.1682 2.1688 2.1695 2.1709 2.1725

2750 2.1590 2.1598 2.1603 2.1611 2.1624 2.1640

3000 2.1499 2.1507 2.1512 2.1519 2.1533 2.1549

3250 2.1401 2.1408 2.1415 2.1422 2.1435 2.1451

3400 2.1339 2.1346 2.1352 2.1359 2.1373 2.1389

where S1 and λ1 represent the strength and the posi-
tion of an “oscillator”, which often simply stands in for
an electronic transition of certain strength (the oscilla-
tor strength S1) that happens for a given photon energy
h̄c/λ1 in the high energy region beyond the transparency
region of the material.

Figure 1 shows a plot of the refractive index data, with
the inset showing the not extremely big, but significant
change in the data as the temperature is raised.

Simplest approach

In order to investigate how this data can be modeled, I
suggest that you first fit the room temperature refractive
index data in the first column of Table I using Eq. (1.
Such a fit will deliver two numbers, the values of the
parameters S1 and λ1. What values do you get? In
which spectral region is λ1? Do you think this is a good
fit? Discuss how good Eq. (1) is for fitting the refractive
index data. What are the limitations?

Adding parameters to improve a fit

Next, check what happens if you extend Eq. (1) so that
it doesn’t consist of only one oscillator, but two! This is
a natural extension. Fit again. Look at the result. Is it
better now? Is it good enough? Is there something else
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FIG. 1. Graphical representation of the data shown in Table I.
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that could be done to improve the fit?

residuals

To evaluate the quality of a fit, it is very helpful if
you plot the residuals, which are the differences between
the data values and the values calculated by the fitted
function, as a function of wavelength. Plot the residuals
for the case when you fit with Eq. (1), and for the case
when you fit with the extended Eq. (1) that contains one
additional oscillator.

Adding even more parameters

Do you see how the data starts “bending down” to-
wards the infrared in Figure 1 ? Can this behavior be
modeled at all with Eq. (1)? Can we add one more oscil-
lator so that we can finally obtain a good fit? At which
wavelength should this oscillator be, so that it causes the
function to bend down to follow the data? Try one last
extension to further improve the fit

Too many parameters?

A good question to ask now is when should one stop?
Is it really necessary to fit the room temperature data
for the refractive index with 6 parameters? Are all 6 pa-
rameters determined with enough precision by the data?
Is there a way to simplify the dispersion formula so that
it contains only 5 parameters but it can still fit the data
equally well? What is the advantage of doing so?

Try adding one more oscillator and to fit with 8 pa-
rameters! What happens, does the fit get better?

Parameter errors

When doing the studies above, try fitting with an al-
gorthm that gives you estimations for the errors in the
parameters of the function that are determined by the fit.
Levenberg-Marquardt normally does that. What hap-
pens to the errors of the parameters when you increase
the number of parameters used in the fit?

More...

Once you have determined your preferred “optimum”
way to fit this data, try fitting the data at the various
temperatures, and analyze what temperature dependence
do you get for the parameters of the fitted function. How
does the temperature dependence look like when you use
too few parameters, too many parameters, or just the
right amount?

This is where help from funding agencies or other peo-
ple is recognized.
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