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Mobility of an electron in a multimode polar lattice
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The interaction of a free electron with a polar lattice possessing more than one infrared-active optical-
phonon mode is considered. From the full Lagrangian describing the electron-lattice system in the presence of
an applied field we derive an effective electron-phonon coupling constant and an effective longitudinal optical-
phonon frequency that we argue give accurate predictions when used in the extensive, existing polaron theo-
ries. We apply this formalism to the strongly coupled large polaron of Bi12SiO20, where the Boltzmann
equation cannot apply. We calculate a theoretical prediction for the large polaron mobility as a function of
temperature which gives good agreement with experiment. We determine the temperature dependence of
Feynman’s variational parametersv andw to assist in our predictions.@S0163-1829~99!01426-5#
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I. INTRODUCTION

The small mobility of low-density electrons photoexcite
into the conduction band of insulating, transparent, a
strongly polar cubicn-type Bi12SiO20 (n-BSO) has been
measured at temperatures from 300 to 480 K.1 The magni-
tude of the mobility (;3 cm2/V21 s21), its rate of decline
with increasing temperature, and its independence of the
ticular crystal employed suggest that this mobility is intrins
and dominated by interaction of the electron with longitu
nal optical phonons.1

If an independent-collision model were used to descr
the observed electron drift and diffusion, the thermal me
free path (;0.2 nm) would be less than the de Brogl
wavelength, and the collision rate times Planck’s const
would be an order-of-magnitude larger than the electro
thermal energy; in this ‘‘strong coupling’’ regime, the Bol
zmann equation cannot be expected to apply. In addition
approaches suggest that the wavefunction of the conduc
electron is delocalized over many tens of atoms. Such
electron with its accompanying cloud of virtual phonons h
been called a ‘‘strongly-coupled large polaron’’~in a polar
crystal, an electron polarizes the lattice in its neighborhoo!.

A theory exists to treat this regime,2,3 but it assumes tha
the crystal lattice has only one polar longitudinal optic
~LO! phonon branch which has no dispersion; i.e., it uses
much-studied ‘‘Fro¨hlich model’’ of the polaron.4 The start-
ing point of this theory is the quantum-mechanical expr
sion for the expected electron velocity in the presence o
externally applied spatially uniform electric field. The theo
proceeds by a perturbation expansion about an unpertu
Hamiltonian~or Lagrangian! in which the electron is coupled
to a second free particle rather than to the phonons. T
two-particle unperturbed Hamiltonian, which exhibits mu
of the structure of the Fro¨hlich Hamiltonian, is exactly solv-
able for any values of the mass of the second particle and
strength of the electron’s coupling to it. Feynman discove
a rigorous upper bound to the free energy of the Fro¨hlich
PRB 600163-1829/99/60~1!/299~9!/$15.00
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polaron that was a function of the~adjustable! second parti-
cle’s mass and coupling.2 Feynmanet al. argued that the
perturbation calculation of the expected velocity~and other
properties! that they carried out would give a reasonable
timate in the strong-coupling regime of interest here, p
vided that one adjusted the two parameters in the un
turbed Hamiltonian to minimize the upper bound of the fr
energy.3

It is the purpose of this paper to adapt this theory to tr
a material such asn-BSO, which has about a dozen distinc
strongly polar LO phonon branches. The problem becom
clearer if one considers Eqs.~46! and ~47! predicted by this
theory in Ref. 3 for the mobilitym of the ‘‘Fröhlich polar-
on.’’ From there it follows~both in esuand in S.I.!

e

vm*
m215

a

3Ap

b5/2

sinh~b/2!

v3

w3 K~a,b!, ~1!

where v is the ~angular! LO phonon frequency,e is the
magnitude of the electron charge,m* is the effective mass o
the electron in the conduction band when the nuclei are
tionary at their average positions,b[\v/kBT, anda is the
dimensionless coupling constant for the electron-phonon
teraction ~in terms of which all theorists to date have e
pressed their results!.

It will be most convenient for our purposes to use a L
grangian formulation of our problem. In Sec. II we set up
complete Lagrangian for the multibranch lattice and then
Sec. III, we develop two algorithms for determining appr
priate effective values forv and a for a multimode polar
lattice. We find that they give the same values forv anda to
within a few percent, and give the same value for~1! to
within less than 2%, when used to predict the mobility
n-BSO over the experimental range.

In addition K(a,b) is determined by the two variationa
parametersv andw introduced by Feynman2 when he proved
that certain Lagrangian–path-integral expressions gave
upper bound to the ground-state polaron energy. This up
299 ©1999 The American Physical Society
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300 PRB 60ROBERT W. HELLWARTH AND IVAN BIAGGIO
bound has proven to be a significantly lower upper bou
than has been found to date in conventional Hamilton
quantum mechanics. In Eq.~1!,

K~a,b![E
0

`

du@u21a22b cos~vu!#23/2cos~u!, ~2!

where a2[(b/2)21Rb coth(bv/2), b[Rb/sinh(bbv/2),
andR[(v22w2)/(w2v).

In Sec. IV we evaluate the ‘‘best’’v andw values using
the extension by Osaka5 of Feynman’s upper bound for th
ground-state energy to an upper bound for the free energF
at any temperatureT.

In Sec. V we apply our models to the calculation of t
large polaron mobility vs temperature in Bi12SiO20 and fi-
nally, in Sec. VI, we summarize the reasons we feel that
procedure is useful for calculating electron mobility~and
other properties! in crystals with many polar lattice mode
especially when the assumption of independent elect
phonon collisions cannot apply.

II. ELECTRON AND EXTERNAL FIELDS
IN A MULTIMODE POLAR LATTICE

In this section we will first review the physics of an ele
tron in the conduction band of a polar lattice. To do this,
write a Lagrangian that describes a system consisting of
electron coupled to~1! a polar cubic lattice with many ‘‘in-
frared’’ ~IR! modes of different frequencies and strengt
~2! bound electrons in fully occupied ‘‘ultraviolet’’~UV! va-
lence bands,~3! an applied homogeneous electric field, a
~4! a transverse electromagnetic wave. In addition, the lat
dipoles and UV dipoles interact with each other via the lo
gitudinal Coulomb interactions.

We use a description in which the atomic structure of
lattice is approximated by continuous field variables. From
we derive in a self-consistent way how the transverse po
ization density affects the propagation of an electro-magn
wave, and how the longitudinal polarization density respo
to the field of the electron. In this way we demonstrate t
we can extract the oscillator strengths and frequencies
scribing the polar lattice modes from, e.g., an infrared refl
tivity spectrum of the material, and that we can use them
describe the interaction between the electron and the p
lattice. We will derive expressions for electron-phonon co
pling in the presence of many polar vibrational branches,
introduce an effective longitudinal-optical frequency and
effective longitudinal-optical oscillator strength that we a
gue can be used with confidence in existing polaron theo
that only consider one longitudinal-optical mode.

A. Statement of the problem

We study the behavior of an electron~of charge2e)
moving near the bottom of a conduction band~with isotropic
‘‘band’’ mass m0) under the influence of a uniform exte
nally applied electric fieldEWext(t), while interacting with a
polar lattice whose unit cell is so small~compared to the
quantum wavelengths of the electron! that its polarization
densityPW (rWt) may be thought of as a continuous field va
able.~Script symbols always denote real physical quantiti
while the corresponding Roman letters denote their comp
d
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transforms.! The electron’s position coordinate isxW (t). The
polarization density may be thought of as the sum of in
pendent components PW i(rWt)( i 51,2, . . . ,m;m11, . . . ,
m1M ) at each positionrW that corresponds to them ~infra-
red! polar lattice modes and theM bound-electron~ultravio-
let! modes of the material:

PW ~rtW !5 (
i 51

m1M

PW i~rWt !. ~3!

Each mode polarization density is assumed to be a quan
coordinate of the vibration responsible: when we do
quantum calculations by path integrals below, we will su
over all time trajectoriesPW i(rWt). It will be useful sometimes
to separate the polarization fieldsPW i(rWt) into their transverse
~divergenceless! partPW i

Tr(rWt) and longitudinal~curl-free! part

PW i
L(rWt):

PW i~rWt !5PW i
Tr~rWt !1PW i

L~rWt !. ~4!

B. Lagrangian and action functional

The Lagrangian for the path integral will have a ter

(1/c)JW (rWt)•AW (rWt), whereJW (rWt) is the total electric curren

density andAW (rWt) is the total vector potential, which we
assume to be a purely transverse field, i.e., have zero d
gence~Coulomb gauge!. The Lagrangian will also contain a
pure Coulomb interaction potential that, inesu, is

1

2E d3r E d3r 8
r~rWt !r~rW8t !

urW2rW8u
, ~5!

minus ~divergent! self-potentials. Herer(rWt) is the total
charge density. In this problem

r~rWt !52divPW ~rWt !2ed3@rW2xW~ t !#, ~6!

and

JW ~rWt !5]PW ~rt !/]t2exẆd3@rW2xW~ t !#, ~7!

which obviously obeys the charge-conservation condition

]r~rWt !/]t1div JW ~rWt !50. ~8!

The Lagrangian for our problem is

L5E d3r H (
i 51

M1m
2p

wi
2 @~]PW i /]t !22v i

2PW i
2#1PW L~rWt !•DW el~rWt !

1
1

8p
@„]AW ~rWt !/]t…22„rotAW ~rWt !…2#

1
1

c
AW ~rWt !•]PW Tr~rWt !/]tJ

1
1

2E d3r E d3r 8@PW ~rWt !•GJ~rW2rW8!•PW ~rW8t !#

1
m0

2
„]xW~ t !/]t…21exW~ t !•EWext~ t !, ~9!
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PRB 60 301MOBILITY OF AN ELECTRON IN A MULTIMODE . . .
where

DW el~rWt !5¹
e

urW2xW~ t !u
~10!

denotes the unshielded~longitudinal! Coulomb field of the
electron, and we have explicitly substitutedPW L andPW Tr when
possible.

The first term in the Lagrangian describes kinetic and
tential energy of the lattice modes, and thev i andwi are the
frequencies and oscillator strengths of the microscopic os
lators corresponding to each lattice mode when each osc
tor is isolated.

The dipole-dipole kernelGJ(rW) is found, by substituting
Eq. ~6! into Eq. ~5! and integrating by parts, to be
(2¹¹r 21). However, to avoid self-interaction and imita
the finite size of a unit cell, we use this result forr

.r 0 (r 0; interatomic distance! and assume thatGJ(rW) drops
to zero forr<r 0 in some convenient manner; the final res
will not be sensitive to the manner of this cutoff. In coord
nate notation (i , j 5x,z,y),

Gi j ~rW !5H 3r i r j

r 5 2
d i j

r 3
, r .r 0

falls to zero, r<r 0 .

~11!

We note the absence of any coupling between the lo
tudinal and transverse parts ofPW (rWt) in Eq. ~9!.

The behavior we want to study will be defined b
quantum-mechanical unitary transformation matric
U(t1 ,t2). They will be of the form of a sum-over-path
PW (rWt) andxW (t) which we write

U~ t1 ,t2!5 (
PW (rWt)xW (rWt)

expS i

\
SD . ~12!

Here the action functional is the time integral over our L
grangian

S5E
t1

t2
Ldt. ~13!

Our next goal is to calculate the dielectric functione(n)
from Eq.~9!. Comparing this expression with the experime
tal data fore(n) will give the frequenciesv i and the cou-
pling strengthswi of the polarization modes in our Lagrang
ian ~9!.

C. The action in frequency and wave-vector space

The action functionalS of Eq. ~13! is a quadratic func-

tional of PW i(rWt) andAW (rWt), but these are not the ‘‘normal’
coordinates since they are coupled to each other. In orde
find the normal coordinates, it is very useful to rewrite E
~13! in terms of the transforms

PW i
Tr~kWn!5E dtE d3rPW i

Tr~rWt !exp~ int2 ikW•rW !, ~14!
-

il-
a-

t

i-

s

-

-

to
.

PW i
L~kWn!5E dtE d3rPW i

L~rWt !exp~ int2 ikW•rW !,

~15!

AW ~kWn!5E dtE d3rAW ~rWt !exp~ int2 ikW•rW !,

~16!

DW el~kWn!5E dtE d3rDW el~rWt !exp~ int2 ikW•rW !,

~17!

Gi j ~kW !5E d3rGi j ~rW !exp~2 ikW•rW !, ~18!

and PW (kWn)5PW Tr(kWn)1PW L(kWn). The transform~18! can be

expanded in a Taylor series in powers of (kW r 0). Since the
electron wave function will contain only wavelengths mu
larger than the interatomic distance, we may keep only
lowest-order terms and write

Gi j ~kW !5H 4p

3
~d i j 23kikj /k2!, k!r o

21

falls to zero, largerk.

~19!

With Eqs.~14!–~18!, and using Eq.~19! to separate the lon
gitudinal and transverse components of the polarization,
~13! can be rewritten~assuming terms withk not much
smaller thanr 0

21 are absent!:

S5~2p!24E dnE d3kH (
i 51

m1M

2p@ uPW i
Tr~kWn!u2

1uPW i
L~kWn!u2#

n22v i
2

wi
2 1PW L~kWn!* •DW el~kWn!

1
1

8p
uAW ~kWn!u2S n2

c2 2k2D1 i
n

c
AW ~kWn!* •PW Tr~kWn!

1
2p

3
@ uPW Tr~kWn!u222uPW L~kWn!u#J 1Sel@xW~ t !#. ~20!

Here the unperturbed electron action is abbreviatedSel and
its form is seen in Eq.~9!.

D. Transverse part of the polarization density

Because Eq.~20! is a quadratic form inAW (kWn) and

PW i
Tr(kWn), their quantum-expected values are related just

are their classical solutions. So we vary Eq.~20! to find that
the following equations describe the classical solutions.

First, we find that the action~20! is stationary for small

changes inAW (kWn) aboutAW C(kWn) where

1

4p
AW C~kWn!S n2

c2 2k2D2 i
n

c
PW Tr~kWn!50. ~21!

Next, the actionS is stationary for small changes in th

transverse partPW i
Tr(kWn) of PW i(kWn) about the classical solu

tions PW Ci
Tr obeying
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4pPW Ci
Tr ~kWn!

n22v i
2

wi
2 1

4p

3
PW C

Tr~kWn!1 i
n

c
AW ~kWn!50. ~22!

Since Eq.~22! is true for each ‘‘branch’’i, we can sum these
solutions to obtain an equation for the classical transve

polarization densityPW C
Tr(kWn)[( i PW Ci

Tr (kWn)

PW C
Tr~kWn!52 i

n

c
AW ~kWn!

x~n!

12~4p/3!x~n!
, ~23!

where

x~n!5
1

4p (
i 51

m1M wi
2

v i
22n2 ~24!

is the polarizability of an isolated unit cell. Here, the sum,
above, is taken over all infrared and ultraviolet branchei.
Note that Eq.~23! agrees with the classical, linear relation
polarization density to electric field with the Lorentz loc
field correction.

Substituting Eq.~23! in Eq. ~21!, we find that the classica

transverse~wave! solutions must all obey, for everykW ,

F 1

4p S n2

c2 2k2D1
n2

c2

x~n!

12~4p/3!x~n!GAW C~kWn!50.

~25!

Defining the refractive indexn(n) by k5n(n)n/c, and using
the dielectric functione(n)5n2(n), we obtain from Eq.~25!
the well-known Lorentz-Lorenz relation

e~n!5n2~n!5
11~8p/3!x~n!

12~4p/3!x~n!
. ~26!

Of course, to fit Eqs.~26! and ~24! to experimental data
we will need to include damping factors for the lattice a
band oscillators, i.e., replacen2 by n21 ing everywhere.
This damping arises mainly from small anharmonic coupl
terms among oscillators, which affect the free energy a
mobility negligibly, and which do not impede our determ
nation of the set of values ofwi and v i to use in our La-
grangian~9! and action functionalS Eq. ~20!. This determi-
nation is carried out for Bi12SiO20 in Appendix A and gives
the values for the ‘‘infrared’’~IR! lattice mode frequencie
v i and coupling constantswi in Table I.

E. Longitudinal part of the polarization density

For arbitrary electron motion, we find that the action~20!

is stationary for small changes in thePW i
L(kWn) about the clas-

sical solutionsPW Ci
L (kWn) which obey

4pPW Ci
L ~kWn!

n22v i
2

wi
2 2

8p

3
PW C

L ~kWn!1DW el~kWn!50. ~27!

Multiplying Eq. ~27! by wi
2/(v i

22n2) and summing over al

branchesi we obtain for the classical solutionPW C
L (kWn)

[( i PW Ci
L (kWn)

PW C
L ~kWn!5x~n!FDW el~kWn!2

8p

3
PW C

L ~kWn!G , ~28!
e

s

g
d

which gives

PW C
L ~kWn!5

x~n!

11~8p/3!x~n!
DW el~kWn!. ~29!

Comparing this with Eq.~26!, we obtain

PW C
L ~kWn!5

1

4p S 12
1

e~n! DDW el~kWn! ~30!

for the classical solution driven by the unshielded fie

DW el(kWn) of the conduction band electron.

F. Effective action for the electron-lattice interaction

To compare our results later to the existing Lagrangi
based theories, it will be useful at this point to calculate
part of the path integral~12! that is over all trajectories of the
polarization coordinatesPi(rWt). This can be done exactly
because the Lagrangian contains only terms that are inde
dent of, or linear or quadratic in, thePi . The result is espe-
cially simple if we use the initial and final conditions o
these paths that form the matrix element^0uU(t1 ,t2)u0& of
Eq. ~12!, whereu0& represents the ground state of all unpe
turbed polarization oscillators. Then the result
(xW (t)exp(iS8/\), where S8 is the previous action~20! in

which PW i
Tr and PW i

L have been replaced by the classical so

tions ~23! and ~29!, with AW (kWn)50. There is also an unim
portant normalization termS9 in S8 that does not contain
xW (t).6

The sum in the first term of Eq.~20! can be calculated

using Eqs.~22! and~27!. The twoPW C
Tr that appear in the firs

and in the last term of the integral in Eq.~20! cancel each

other, and only a term (1/2)PC
L (kWn)* •DW el(kWn) remains in

the effective action functional for the electron.S8 can finally
be written as

S85Sel@xW~ t !#1Sint1S9. ~31!

whereSel contains the terms describing the unperturbed e
tron, and

TABLE I. Frequencies, oscillator strengths, and damping co
ficients in cm21 used in Eq.~A1! to fit the experimental infrared
reflectivity spectrum of B12SiO20.

v i wi g i

105.50 164.19 226.6
159.897 193.27 61.1
178.027 371.21 94.0
206.247 172.17 72.0
250.058 472.30 111.8
360.088 1057.2 176.9
495.365 1100.0 131.3
540.467 1458.1 117.4
578.340 927.14 115.6
600.387 746.37 104.1
828.19 1110.4 116.4
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Sint5~2p!24E dnE d3k
1

2
B~n!DW el~kWn!* •DW el~kWn!,

~32!

where, from Eq.~30!,

B~n!5
1

4p S 12
1

e~n! D5
x~n!

11~8p/3!x~n!

5
polynomial of degree~m21! in n2

polynomial of degreem in n2
~33!

can always be written in the form

B~n!5
1

4p (
i 51

m1M Wi
2

V i
22n2 . ~34!

Each term in this sum, when it appears in the action fu
tional ~32!, acts exactly as would an harmonic longitudin
lattice mode of frequencyV i and coupling constantWi

2

coupled linearly to the conduction electron fieldDW el.
The thermal speed of the conduction electron is such

its main frequency components are lower than the oscilla
frequencies of the UV~optical! oscillators and are highe
than the oscillator frequencies of the~infrared! longitudinal
optical phonons~with a thermal speed of 105 m/s the elec-
tron moves by 1 nm in 10 fs!. We, therefore, consider th
Born-Oppenheimer approximation~assumed by Fro¨hlich and
others! to be accurate for this problem. Thus, we assume
response speed of the bound electron clouds to be essen
instantaneous, and the electronic contribution to the die
tric polarization when the ions are kept immobile is prac
cally given by the short-wavelength limite` of the dielectric
constant. On the other hand, the contribution related to
ionic displacements is assumed to be given by the strain-
dielectric constantedc, i.e., that which does not include th
effects of piezoelectricity or electrostriction. In contrast
the electronic clouds, the ions tend to remain in their posit
for picoseconds and follow the movements of the elect
with a time delay.~It is this UV-dressed conduction electro
accompanied by its local lattice deformation that has b
called a ‘‘polaron.’’!

It follows that Eq.~34! can be separated into an infrare
and an optical contribution, and that the latter can be rep
sented by a constant, given bye`

B~n!5B̃~n!1
1

4p S 12
1

e`
D , ~35!

with

B̃~n!5
1

4p (
i 51

m Wi
2

V i
22n2 , ~36!

where m is, as in Eq.~3!, the number of polar IR lattice
branches. In Appendix A we fit the IR reflectivity spectru
of Bi12SiO20 very well with m511 vibrational modes whos
LO frequenciesV i and coupling parametersWi are given in
Table II. We note that the zero-frequency limit of Eq.~35! is
(4p)21(121/edc), so that
-
l

at
r

e
lly

c-
-

e
ee

n
n

n

e-

(
i 51

m Wi
2

V i
2 5

1

e`
2

1

edc
. ~37!

We now drop the optical terms in Eq.~32!, assuming that
their effects are well summarized ine` and an effective mass
m* that replacesm0 in the original Lagrangian~9!. There-
fore, in Sint we replaceB(n) with B̃(n).

To make a direct comparison of Eq.~31! with the action
functional for the electron used in Refs. 2 and 3, we perfo

the integrals overn and kW in the actionSint of Eq. ~32! to
convert back to a space-time integral action.

The integral over the frequencyn in Eq. ~32! corresponds
to the Fourier transform of ‘‘harmonic oscillator’’ terms o
the form Wi

2/(V i
22n2). Feynman showed6 that the correct

quantum results for each harmonic oscillator represente
Eq. ~36! are obtained by adding a small negative imagina
part to each oscillator frequencyV i , and using the resulting
transform

E dn

2p

exp~2 int !

V i
22n2

5
i

2V i
exp~2 iV i utu!. ~38!

The transformDW (kWn) in Eq. ~32! can be calculated from
Eq. ~17! and is

DW el~kWn!54p ie
kW

k2E dt exp~ int !exp@2 ikW•xW~ t !#. ~39!

With this in mind,Sint becomes

Sint5~2p!23E d3k
1

2U4p ie
kW

k2U2

3E dtE dsexp„ikW•@xW~ t !2xW~s!#…

3(
i

F iWi
2

8pV i
exp~2 iV i ut2su!G . ~40!

TABLE II. LO frequencies and oscillator strengths, in cm21,
obtained from Eqs.~26!, ~A1!, and the parameters in Table I fo
B12SiO20. The sum of allWi

2 is 38 778 cm22. The sum of all
numbers in the third column is 91.34 cm21.

V i Wi
Wi

2

Vi
coth~hVi/2kBT!

106.23 8.86 2.92
160.51 9.50 1.51
180.33 20.85 5.83
206.69 10.05 1.05
252.76 27.00 5.26
369.64 61.78 14.40
501.71 52.87 6.63
553.60 86.18 15.35
585.36 75.41 10.90
607.29 98.15 17.59
834.53 89.36 9.90



-
en
n

-

o
t

o

re
pt

(
h

w
o

ll

-
ase
qs.

g
t
as

ing

ne

all

304 PRB 60ROBERT W. HELLWARTH AND IVAN BIAGGIO
After performing the integral overkW we are left with

Sint5 i
e2

4 E dtE ds
1

uxW~ t !2xW~s!u

3(
i

FWi
2

V i
exp~2 iV i ut2su!G . ~41!

To complete our comparison ofSint with the literature we
switch to the special ‘‘polaron’’ unit system in which fre
quencies are measured relative to a standard lattice frequ
v ~to be chosen later for convenience!, times are measured i
units of v21, energies are measured in units of\v, lengths
are measured in units ofA\/(m* v), electric fields are mea
sured in units ofA\v3m* /e, mobility is measured in units
of e/(m* v), and temperature is measured in units
\v/kB . Rewriting Eq.~41! with these new units we find tha
Eq. ~32! gives

i

\
~S82S9!5 i E dtF1

2
~]xW~ t !/]t !21xW~ t !•EWext~ t !G

2223/2E dtE ds
1

uxW~ t !2xW~s!u

3(
i 51

m

@a i exp~2 iV i ut2su!#, ~42!

where the dimensionless coupling constantsa i are defined
by

a i5
Wi

2

V iv
Am*

me

Ry

\v
~43!

in terms of the free-electron massme , the Rydberg of energy
Ry (Ry5mee

4\22/2 in esu), the effective massm* of an
electron in the unpolarized lattice, and the ‘‘standard’’ ph
non energy\v.

Comparing Eq.~42! with the expression~4! of Ref. 2 for
an electron coupled to a single LO phonon branch of f
quencyv shows that Eq.~42! is the same expression, exce
that it is summed over several phonon branchesi
51,2, . . . ,m). If the lattice had only one phonon branc
with frequencyV5v and strengthW, then our value~43! for
its coupling would reduce to

a5F 1

e`
2

1

edc
GAm*

me

Ry

\v
, ~44!

where we usedW2/V251/e`21/edc from Eq. ~37!. The
electron-phonon coupling constant~44! is the same as the
one calculated by Fro¨hlich4 and used in Ref. 2.

We are now in a position to devise and compare t
schemes for reducing the multiphonon-branch situation t
single-branch equivalent.

III. TWO WAYS TO OBTAIN A SINGLE LONGITUDINAL
OPTICAL BRANCH MODEL

Our goal is to use the Lagrangian~9!, or its electron-only
form ~42!, to calculate the electron mobility and the fu
cy

f

-

-

o
a

frequency-dependent response of^xW (t)& to an arbitrary ex-
ternal electric fieldEWext, and to be able to use in our calcula
tion the extensive theoretical predictions for the special c
when there is only a single term in the sum appearing in E
~9! and ~42!.

In Ref. 3 the mobility calculation was carried out by usin
the m51 form of Eq.~42! to calculate the density matrix a
finite temperature for the electron. This density matrix w
expressed as a double path integral@over two sets of trajec-
toriesxW (t) andxW8(t)# in which the effective ‘‘Fro¨hlich’’ ac-
tion functionalFF@xW (t),xW8(t)# of Eq. ~14! of Ref. 3 has the
same parameters as Eq.~42! with m51 @or as Eq.~4! of Ref.
2# with the addition of the temperatureT.

It is clear from a comparison of Eq.~14! of Ref. 3 with
our Eq.~42! that, had those authors assumedm LO phonon
branches instead of one, their interaction termFF

int would
have been simply converted to a sum over terms differ
only in the phonon frequenciesV i and coupling constantsa i
as follows:

FF
int@xW~ t !,xW8~ t !#→ i223/2E dtE ds(

i 51

m
Hi~ t2s!

uxW~ t !2xW~s!u

1similar terms containingxW8~ t !.

~45!

Here

Hi~ t ![a i@exp~2 iV i utu!12P~b i !cos~V i t !#, ~46!

whereb i[\V i /kBT andP(b)[@exp(b)21#21.
Both of our schemes will reduce this expression to o

term with one ‘‘effective’’ frequencyVe and one ‘‘effec-
tive’’ coupling constantWe , or

ae5
We

2

Vev
Am*

me

Ry

\v
. ~47!

Below, we will take the ‘‘standard frequency’’v to equal the
effective frequencyVe in each case, so that we may use
the formulas in Refs. 2 and 3 directly.

A. First scheme

In our first scheme we chooseVe andWe so as to make
an effective time kernelHe defined as in Eq.~46!, but with a
single effective frequencyVe and a single effective coupling
coefficientWe or ae , to have the properties

He~0!5(
i 51

m

Hi~0!, ~48!

and

]He~ t !/]t5(
i 51

m

]Hi~ t !/]t at t50. ~49!

We fulfill Eq. ~48! by taking

We
2

Ve
coth~be/2!5(

i 51

m Wi
2

Ve
coth~b i /2!. ~50!
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We fulfill Eq. ~49! by taking

We
25(

i 51

m

Wi
2 . ~51!

Using the values forWi andV i listed in Table II@whose
last column also gives the expressions on the right-hand
of Eq. ~50!# for Bi12SiO20, and the conditions~50! and ~51!
at T5295 K, we obtain

We5196.9 cm21, ~52!

Ve5504 cm21, ~53!

ae52.25Am* /me, ~54!

with v5Ve for the standard lattice frequency.

B. Second scheme

In our second scheme we chooseVe and We in a way
suggested by Ref. 5, which gives an upper bound to the
energy of an electron coupled to a single branch. This
proven to be the lowest upper bound discovered to date.
‘‘exact’’ Fröhlich action ‘‘S’’ of Eq. ~1! in Ref. 5 resembles
our Eq.~42!, but with a double time integral that runs from
to b5\V1 /kBT and treats the Fro¨hlich model with a single
phonon branch at frequencyV15v and coupling constan
W1 @giving a1, as in our Eq.~43!#. The time kernelH̃1(t)
involved in Ref. 5 is

H̃1~ t !5a1@exp~2V1utu!12P~b!cosh~V1t !# ~55!

which is a sort of ‘‘imaginary time’’ version of our Eq.~46!.
In our second scheme we adjust the single effective

quency and coupling constantsV1 andW1 so as to match

E
0

b i
dtH̃1~ t !5E

0

b i
dt(

i 51

m

H̃i~ t !, ~56!

and

]H̃1~ t !/]t5(
i 51

m

]H̃ i~ t !/]t at t50. ~57!

Here theH̃ i are defined as functions ofa i andV i as in Eq.
~55!. We fulfill Eq. ~56! by taking

W1
2

V1
2 5(

i 51

m Wi
2

V i
2 ~58!

and fulfill Eq. ~57! by taking

We
25(

i 51

m

Wi
2 . ~59!

Fortuitously, even though we based these results
matching the finite-temperature kernels~55!, the temperature
has canceled from both Eq.~58! and Eq.~59!, the latter being
identical with Eq.~51! of the first scheme.

From the values ofWi and V i listed in Table II for
Bi12SiO20, we obtain using Eq.~58! and ~59!
de

e
s

he

-

n

We5196.9 cm21, ~60!

and

Ve5500 cm21. ~61!

In the case ofn-type Bi12SiO20 the prescription derived
from Eqs.~50! and ~51! gives the same results as Eqs.~58!
and~59!, to within a few percent. The change in the relati
of b21 to laboratory temperature counteracts the change
effective electron-phonon coupling constant when calcu
ing the polaron mobility with Eq.~1! and the variational
parametersv andw derived in the next section.

IV. TEMPERATURE DEPENDENCE OF THE FEYNMAN
VARIATIONAL PARAMETERS

We determined the parametersv andw at every tempera-
ture by following the free energy minimization procedu
described in Ref. 5. We rewrite here the upper boundF of
the free energy of Ref. 5 in a slightly different form:

F52~A1B1C! ~62a!

with

A5
3

b F lnS v
wD2

1

2
ln~2pb!2 lnS sinh~vb/2!

sinh~wb/2! D G ~62b!

and

B5
av

Ap@exp~b!21#

3E
0

b/2

dx
exp~b2x!1exp~x!

@w2x~12x/b!1Y~x!~v22w2!/v#1/2 ,

~62c!

where

Y~x!5
1

12exp~2vb!
$11exp~2vb!2exp~2vx!

2exp~v@x2b#!%, ~62d!

and

C5
3

4

v22w2

v S coth~vb/2!2
2

vb D . ~62e!

TheB andC terms are related to the expectation value
the action describing the electron in the polar crystal and
a trial action, respectively.2,5 Compared to Ref. 5 the integra
in B has been rewritten in a symmetrized form which is mo
convenient for numerical computation.

At each temperature, the optimal values of the variatio
parametersv andw are obtained by numerically finding th
minimum of Eq.~62a! as a function ofv andw. The values
of the variational parametersv andw as a function of tem-
perature, as they were derived from the minimization of E
~62a!, are shown in Table III.

Using these values in Eq.~2.4! of Ref. 9, we estimate a
room-temperature polaron radius of approximately 0.6
for Bi12SiO20. The Bi12SiO20 unit cell is 1.0 nm large and
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contains 66 atoms. The sphere defined by the polaron ra
contains;60 atoms. Therefore, the continuum approxim
tion of Refs. 2,5,3 can be applied.

V. TEMPERATURE DEPENDENCE OF THE MOBILITY

The results derived above can be applied to the calc
tion of the large polaron mobility in Bi12SiO20 as a function
of temperature.

The only unknown parameter in Eqs.~9! and ~1! is the
electron effective band massm* . The prediction of Eq.~1! at
T5300 K corresponds to the room-temperature mobi
value of 3.4 cm2/(Vs) when settingm* 52.0me .1

From m* , Eq. ~1!, and using the effective values of LO
phonon frequency and coupling strengths derived ab
(We5196.9 cm21 andVe5504 cm21), we can predict the
temperature dependence of the mobility. The results, gi
in Ref. 1, agreed very well with the experiment within th
experimental error ifm* 5(260.1)me .

We find that puttingb50 in Eq.~1! makes less than 0.1%
error throughout the temperature range in Ref. 1. This
useful becauseK(a,0)5K1(a)/a, where K1 is a modified
Bessel function.7 We note that Eq.~1!, whereK1(a)/a can
be substituted forK(a,b), becomes equal to Eq.~24! in Ref.
8 in the limit of smalla.

VI. CONCLUSIONS

We developed a theoretical description of an electron
the conduction band of a polar lattice characterized by m
than one optical-phonon mode, and were able to derive
self-consistent way both the polaron properties and the o
cal properties of the lattice, which can then be used to de
mine the electron-phonon coupling constant.

We discussed how the many phonon branches can be
tated by a single phonon branch, so that the extensive re
of existing polaron theories can be applied to a crystal w
many polar vibrational modes.

We calculated optimal values of the Feynman action
scribing the large polaron for all temperatures. From the
sulting variational parametersv andw as a function of tem-
perature we are able to predict the temperature depend
and absolute value of the large polaron mobility in a mate
with many polar longitudinal-optical branches.

We applied our theory to the case of Bi12SiO20 and ob-
tained a very good agreement with the experimental valu

TABLE III. Variational parametersv and w for various cou-
pling constantsa and temperatures.b5hv/kBT.

a51 a52 a53 a54 a55
b v w v w v w v w v w

1.00 7.20 6.50 7.69 6.20 8.26 5.87 8.95 5.51 9.78 5
1.25 5.94 5.31 6.38 5.03 6.91 4.73 7.57 4.41 8.39 4
1.50 5.11 4.54 5.52 4.29 6.02 4.01 6.66 3.70 7.48 3
1.75 4.54 4.01 4.92 3.77 5.40 3.51 6.02 3.22 6.83 2
2.00 4.12 3.63 4.48 3.40 4.94 3.16 5.54 2.88 6.36 2
2.50 3.57 3.13 3.89 2.93 4.32 2.70 4.90 2.45 5.71 2
2.75 3.38 2.97 3.69 2.77 4.10 2.55 4.67 2.31 5.48 2
3.00 3.24 2.84 3.53 2.65 3.93 2.44 4.48 2.21 5.29 1
ius
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the electron band mobility as a function of temperature p
lished in Ref. 1.

APPENDIX A: DERIVATION OF THE BSO PARAMETERS

In the following we will adjust the microscopic oscillato
parameterswi andv i appearing in the Lagrangian~9! to fit
the experimental data from the refractive indexn(n) of
Bi12SiO20 throughout the infrared and visible range of fr
quenciesn. For the cubic crystal of interest here,e(n)
5n2(n).

From this data, we will then derive the LO frequenciesV i
and coupling strengthsWi appearing in Eq.~36!. The fre-
quenciesV i of the LO phonons are at the values ofn where
the longitudinal polarization~29! diverges, i.e., the poles o
Eq. ~33!. The frequencies of the transverse-optical~TO!
phonons, on the other hand, correspond to the poles of
dielectric permittivity~26!.

Instead of using Eqs.~26!–~24! to fit the index~or reflec-
tivity ! data of Ref. 10, we will, for reasons explaine
throughout Sec. II, use instead Eq.~26! and

x~n!5
1

4p (
i 51

m wi
2

v i
22n22 ing i

1
n`

2 21

n`
2 12

. ~A1!

For Bi12SiO20, n`5Ae`52.39 is the refractive index a
optical frequencies. The second term in Eq.~A1! takes care
of providing the correct limiting value in the visible part o
the electromagnetic spectrum.

The power reflectivityR(n) for a set of valueswi , v i ,
and g i is obtained by substituting them into Eq.~A1! to
calculate the refractive indexn(n) from Eq. ~26!, and then
using the standard relation of Fresnel:

R~n!5Un~n!21

n~n!11U
2

. ~A2!

We obtain the data of Table I by a least-squares fit of E
~A2! with m511 to the data of Ref. 10.

If we substitute the values ofwi , v i , andg i in Table I
into Eq. ~A1!, and use Eqs.~26! and ~A2!, we obtain the
solid curve in Fig. 1. The agreement with the data is exc
lent except at the low-frequency end where the experime
became difficult and did not approach the reflectivity app

3
5
7
2
0
0
7
7 FIG. 1. The dots indicate the experimental room-temperat
reflectivity spectrum of B12SiO20 ~extracted from Ref. 10!. The
solid curve is the 11-oscillators approximation calculated from
parameters in Table I using Eqs.~26! and ~A1!.
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priate for the knownedc550. We, however, forced our fit to
makeR(n) approach 56.6% asn→0.

We derived the constantsWi andV i by comparingB(n)
of Eq. ~35! with the expression for@121/e(n)#/4p derived
from Eqs.~26! and ~A1! with all g j set to zero. The result
are given in Table II.

APPENDIX B: THE SPECIAL CASE OF A SINGLE
PHONON BRANCH

In order to better understand the relationships between
microscopic frequenciesv i , the transverse-optical phono
frequencies and the longitudinal-optical phonon frequenc
it is interesting to rederive some useful expressions wh
are valid in the case of a single optical-phonon branch.

When there is only one effective infrared oscillator, Eq
~50! and ~51! and ~59! and ~58! are equivalent, and
Ve , We are directly the oscillator frequency and oscillat
strength of the longitudinal-optical mode.

In this case the TO and LO oscillator strengths and f
quency are related by simple expressions.

Assuming one IR oscillator to describe the optic
phonons and a constant UV contribution we can write,
place of Eq.~24!, the microscopic polarizabilityx(n) as

x~n!5
1

4p

w2

v22n2 1x` , ~B1!

wherex` gives the polarizability at visible wavelengths.
The TO frequency corresponds to the pole of the diel

tric permittivity ~26! and is given by

VTO
2 5v22

1

3
w2

1

12~4p/3!x`
. ~B2!
et

.

ur

s,
h

.

-

l
n

-

The LO frequency corresponds to the divergence of
longitudinal polarization~29!, i.e., the pole of Eq.~33! or
~34! @it also corresponds to the frequency where the diel
tric permittivity ~26! becomes equal to zero#. It is found to be

Ve
25v21

2

3
w2

1

11~8p/3!x`
. ~B3!

On the other hand, the dc~strain-free! dielectric permittivity
as derived from Eqs.~B1! and ~26! is

edc5
v2@11~8p/3!x`#12w2/3

v2@12~4p/3!x`#2w2/3
, ~B4!

while the permittivity in the visible is

e`5
11~8p/3!x`

12~4p/3!x`
. ~B5!

From Eqs.~B2!, ~B3!, ~B4!, and ~B5! we obtain the well-
known Lyddane-Sachs-Teller relation11

Ve
2

VTO
2 5

edc

e`
. ~B6!

The LO frequencyVe also appears in Eqs.~34!, ~35!, and
~37!. From Eqs.~37! and ~B6! we see that the LO oscillato
strengthWe is related to the LO-TO frequency splitting:

We5
1

e`
~Ve

22VTO
2 !. ~B7!
l
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