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Mobility of an electron in a multimode polar lattice
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The interaction of a free electron with a polar lattice possessing more than one infrared-active optical-
phonon mode is considered. From the full Lagrangian describing the electron-lattice system in the presence of
an applied field we derive an effective electron-phonon coupling constant and an effective longitudinal optical-
phonon frequency that we argue give accurate predictions when used in the extensive, existing polaron theo-
ries. We apply this formalism to the strongly coupled large polaron @fID,,, where the Boltzmann
equation cannot apply. We calculate a theoretical prediction for the large polaron mobility as a function of
temperature which gives good agreement with experiment. We determine the temperature dependence of
Feynman'’s variational parametarsandw to assist in our prediction§S0163-18209)01426-5

[. INTRODUCTION polaron that was a function of tHadjustablg second parti-
cle’s mass and couplifgFeynmanet al. argued that the
The small mobility of low-density electrons photoexcited perturbation calculation of the expected velodiand other
into the conduction band of insulating, transparent, andropertie$ that they carried out would give a reasonable es-
strongly polar cubicn-type Bij,SiO,q (n-BSO) has been timate in the stron'g-coupling regime of intere;t here, pro-
measured at temperatures from 300 to 485 Kae magni- Vided that one adjusted the two parameters in the unper-
tude of the mobility 3 cn?/V~1s™1), its rate of decline turbed Hamiltonian to minimize the upper bound of the free
with increasing temperature, and its independence of the paﬁnergy? _ .
ticular crystal employed suggest that this mobility is intrinsic It is the purpose of this paper to adapt this theory to treat
and dominated by interaction of the electron with longitudi-2 material such as-BSO, which has about a dozen distinct,
nal optical phonons. strongly polar LO phonon branches. The problem becomes
If an independent-collision model were used to describélearer if one considers Eqgt6) and (47) predicted by this
the observed electron drift and diffusion, the thermal meartheory in Ref. 3 for the mobility. of the “Frohlich polar-
free path (-0.2 nm) would be less than the de Broglie ON.” From there it follows(both inesuand in S.1)
wavelength, and the collision rate times Planck’s constant 5/ 3
would be an order-of-magnitude larger than the electron’s e .« B v
R AT uor= - K(a,b), Q)
thermal energy; in this “strong coupling” regime, the Bolt- om* 3\/; sinh(B/2) w?
zmann equation cannot be expected to apply. In addition, all
approaches suggest that the wavefunction of the conductionhere » is the (angulaj LO phonon frequencye is the
electron is delocalized over many tens of atoms. Such amagnitude of the electron chargay is the effective mass of
electron with its accompanying cloud of virtual phonons hashe electron in the conduction band when the nuclei are sta-
been called a “strongly-coupled large polarofih a polar tionary at their average position8=7%w/kgT, and« is the
crystal, an electron polarizes the lattice in its neighborhiood dimensionless coupling constant for the electron-phonon in-
A theory exists to treat this reginfé, but it assumes that teraction(in terms of which all theorists to date have ex-
the crystal lattice has only one polar longitudinal optical pressed their results
(LO) phonon branch which has no dispersion; i.e., it uses the It will be most convenient for our purposes to use a La-
much-studied “Fralich model” of the polarorf. The start-  grangian formulation of our problem. In Sec. Il we set up a
ing point of this theory is the quantum-mechanical exprescomplete Lagrangian for the multibranch lattice and then, in
sion for the expected electron velocity in the presence of a®ec. Ill, we develop two algorithms for determining appro-
externally applied spatially uniform electric field. The theory priate effective values fotw and « for a multimode polar
proceeds by a perturbation expansion about an unperturbdsaitice. We find that they give the same valuesdoand« to
Hamiltonian(or Lagrangiahin which the electron is coupled within a few percent, and give the same value by to
to a second free particle rather than to the phonons. Thiwithin less than 2%, when used to predict the mobility of
two-particle unperturbed Hamiltonian, which exhibits muchn-BSO over the experimental range.
of the structure of the Fidich Hamiltonian, is exactly solv- In additionK(a,b) is determined by the two variational
able for any values of the mass of the second particle and thearameters andw introduced by Feynma&mwhen he proved
strength of the electron’s coupling to it. Feynman discoveredhat certain Lagrangian—path-integral expressions gave an
a rigorous upper bound to the free energy of thehfich  upper bound to the ground-state polaron energy. This upper
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bound has proven to be a significantly lower upper boundransforms. The electron’s position coordinate ¥t). The
than has been found to date in conventional Hamlltonlarbo|arization density may be thought of as the sum of inde-

quantum mechanics. In EGL), pendent components 73i(Ft)(i =12,...mm+1,...,

o m+ M) at each positiorf that corresponds to the (infra-
K(a,b)zf du[u®+a®~bcogvu)] ¥ cogu), (2  red polar lattice modes and tHéd bound-electror{ultravio-
0 let) modes of the material:

where azzz(ﬁé2)2+2R,8 coth(Bv/2), b=Rp/sinhpBv/2),

andR=(v-—w)/(wv). S .
In Sec. IV we evaluate the “besty andw values using Prt)= ;1 Pi(rt). ©)

the extension by OsaRaf Feynman’s upper bound for the o o

at any temperatur@. coordinate of thg vibration re_sponS|bIe: when we QO the
In Sec. V we apply our models to the calculation of theguantum calculations b)j pflth integrals below, we will sum

large polaron mobility vs temperature inB$iO,q and fi-  over all time trajectorie®;(rt). It will be useful sometimes

nally, in Sec. VI, we summarize the reasons we feel that outo separate the polarization fiel@(rt) into their transverse

procedure is useful for calculating electron mobilifgnd divergencelesoart 7 (ft) and longitudinalcurl-free part
other propertiesin crystals with many polar lattice modes, ( g % iy g { ep

PLrt -
especially when the assumption of independent electrort (ro):
phonon collisions cannot apply.

m+M

P(rt)=PI(rt) + P(rt). (4)

Il. ELECTRON AND EXTERNAL FIELDS
IN A MULTIMODE POLAR LATTICE B. Lagrangian and action functional

In this section we will first review the physics of an elec- Th? Lagrangian for the path integral will have a term

tron in the conduction band of a polar lattice. To do this, We(l/C)J(Ft)'«Zl(Ft), where J(rt) is the total electric current

write a Lagrangian that describes a system consisting of ongensity and.A(rt) is the total vector potential, which we
electron coupled t¢1) a polar cubic lattice with many “in-  assume to be a purely transverse field, i.e., have zero diver-
frared” (IR) modes of different frequencies and strengths,gence(Coulomb gauge The Lagrangian will also contain a
(2) bound electrons in fU”y OCCUpiEd HultraViO|et(UV) va- pure Coulomb interaction potentia| that, érsy is
lence bands(3) an applied homogeneous electric field, and
(4) a transverse electromagnetic wave. In addition, the lattice 1 3 3 p(Ft)P(F’t)
dipoles and UV dipoles interact with each other via the lon- Ef d ff d°r' —=—, 6)
gitudinal Coulomb interactions. =]

We use a description in which the atomic structure of theyinys (divergen; self-potentials. Herep(rt) is the total
lattice is approximated by continuous field variables. From 'tcharge density. In this problem
we derive in a self-consistent way how the transverse polar-
ization density affects the propagation of an electro-magnetic p(rt)=—divP(rt)—es®r —x(t)], (6)
wave, and how the longitudinal polarization density responds
to the field of the electron. In this way we demonstrate tha@nd
we can extract the oscillator strengths and frequencies de- . . -
scribing the polar lattice modes from, e.g., an infrared reflec- J(rt)=aP(rt)/at—exs*[r —x(t)], (7
tivity spectrum of the material, and that we can use them tQ . . ; ) ; -
describe the interaction between the electron and the pol(zgl\r/hICh obviously obeys the charge-conservation condition
lattice. We will derive expressions for electron-phonon cou- ap(Ft)/at+div 3(&):0_ @)
pling in the presence of many polar vibrational branches, and
introduce an effective longitudinal-optical frequency and anThe Lagrangian for our problem is
effective longitudinal-optical oscillator strength that we ar- M
gue can be used with confidence in existing polaron theorlesczf dsr[ Z W_Z[(aﬁi /at)z_wi275i2]+75L(Ft)_Del(;t)

I

that only consider one longitudinal-optical mode. =1

A. Statement of the problem + SL[(&Z‘( Ft)/&t)z— (robzl( Ft))z]
We study the behavior of an electrdonf charge —e) 7
moving near the bottom of a conduction bamdth isotropic 1. . . .
“band” mass my) under the influence of a uniform exter- + EA(rt)ﬁP“(rt)/at

nally applied electric field‘f’ex‘(t), while interacting with a
polar lattice whose unit cell is so smdltompared to the 1( 3R = 2, =

quantum wavelengths of the electjothat its polarization +§f d rf d>r'[P(rt)-G(r—r")-P(r't)]
densityP(rt) may be thought of as a continuous field vari-
able. (Script symbols always denote real physical quantities,

Mo - 21 oy gex
while the corresponding Roman letters denote their complex * 2 (@x(t)/at)*+ex(t)- E741), ©
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where

> - e
(rt) =V —=—=— 0
De(rt) O] (10

denotes the unshieldgdbngitudina) Coulomb field of the

electron, and we have explicitly substitutB andP™" when
possible.

The first term in the Lagrangian describes kinetic and po-
tential energy of the lattice modes, and theandw; are the
frequencies and oscillator strengths of the microscopic oscil-
lators corresponding to each lattice mode when each oscilla-
tor is isolated.

The dipole-dipole kerne{(r) is found, by substituting
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5?(|2v)=Jdtf d3r PH(rtyexp(ivt—ik-r),

(15
/K(Ey>=fdtf d3r A(rt)expli vt—ik ),

(16)
5eI(EV)=fdtJ’ d3rDe(rt)expli vt—ik 1),

17
Gij(lZ)=f d®r Gy (Nexp(—ik-T), (18)

Eq. (6) into Eg. (5) and integrating by parts, to be and P(kv)=PT(kv)+P-(kv). The transform(18) can be

(—VVr~ ). However, to avoid self-interaction and imitate
the finite size of a unit cell, we use this result for

>r, (ro~ interatomic distangeand assume thak(r) drops

expanded in a Taylor series in powers &fr({). Since the
electron wave function will contain only wavelengths much
larger than the interatomic distance, we may keep only the

to zero forr<r in some convenient manner,; the final result|g\west-order terms and write

will not be sensitive to the manner of this cutoff. In coordi-
nate notationi(,j=x,z,y),

3rirj & -
= 5 T T L r rO
Gijn=9y T 3 (11

falls to zero, r=<ry.

- (s 3Kk 1K), keril
Gj(k)=4 3 7 T ° (19

falls to zero, largerk.

With Egs.(14)—(18), and using Eq(19) to separate the lon-
gitudinal and transverse components of the polarization, Eq.

_ (13) can be rewritten(assuming terms withk not much
We note the absence of any coupling between the longismaller tharr; * are absent

tudinal and transverse parts B{rt) in Eq. (9).

The behavior we want to study will be defined by
guantum-mechanical unitary transformation matrices
U(tq,ty). They will be of the form of a sum-over-paths

P(rt) andx(t) which we write

i
Ut t)= > ex —s). (12)
Pro)x(rt) h

m+M

=(2w)*4f dvf d3k[ Zl 27| P (kv)|2

v2— wiz

+|P(kv)|?] +PL(kp)*-D®(kv)

I
1 .- v? Vo - . -
— 2 k2| i — * pTr
+ 87T|A(k1/)| (Cz k )+I CA(kv) P'(kv)

Here the action functional is the time integral over our La-

grangian

+ ST 1B () P2l (K1 + SR, (20)

t
Szf 2£dt. (13 Here the unperturbed electron action is abbrevi&@¥dand
t its form is seen in Eq(9).

Our next goal is to calculate the dielectric functiefw)
from Eqg.(9). Comparing this expression with the experimen-
tal data fore(v) will give the frequenciesy; and the cou-
pling strengthawv; of the polarization modes in our Lagrang-
ian (9).

D. Transverse part of the polarization density

Because EQ.20) is a quadratic form inAi(lZv) and

PiTr(kv), their quantum-expected values are related just as

are their classical solutions. So we vary E2Q) to find that

the following equations describe the classical solutions.
First, we find that the actio20) is stationary for small

The action functional of Eq. (13) is a quadratic func- changes in&(IZv) about,&c(IZv) where

tional of P,(rt) and.A(rt), but these are not the “normal”
coordinates since they are coupled to each other. In order to
find the normal coordinates, it is very useful to rewrite Eq.
(13) in terms of the transforms

C. The action in frequency and wave-vector space

i il ke =i %M =0, (ot
EC(V)?_ —IE(V)—- (21

Next, the actionS is stationary for small changes in the
transverse parPiTr(kv) of P;(kv) about the classical solu-

ﬁin(lZy)=Jdtf dBrAl(rexpivt—ik-r), (14 tions B obeying
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e e V=% A . v . TABLE I. Frequencies, oscillator strengths, and damping coef-
47PY(ky) ———+ —PJ(kv)+i-A(kv)=0. (22) ficients in cm* used in Eq.(A1) to fit the experimental infrared
Wi 3 ¢ reflectivity spectrum of B,SiOs.

Since Eq(22) is true for each “branch’i, we can sum these

solutions to obtain an equation for the classical transverse @i Wi Vi
polarization densityPl'(kv)=3;PL(kv) 105.50 164.19 226.6
) 159.897 193.27 61.1
STr Ve X\ 178.027 371.21 94.0
Pl (kv)=—i =A(ky)——————, 23
c(kv)=—iZA( V)l—(47T/3))((V) 23 206.247 172.17 72.0
where 250.058 472.30 111.8
360.088 1057.2 176.9
1 m+M Wi2 495.365 1100.0 131.3
xX(V=7— 2, 75— (24 540.467 1458.1 117.4
4m =1 of—v 578.340 927.14 115.6
is the polarizability of an isolated unit cell. Here, the sum, as 600.387 746.37 104.1
above, is taken over all infrared and ultraviolet branches 828.19 1110.4 116.4
Note that Eq(23) agrees with the classical, linear relation of
polarization density to electric field with the Lorentz local _
field correction. which gives
Substituting Eq(23) in Eq. (21), we find that the classical
transverséwave solutions must all obey, for ever; Sy X g e
Pc(kv) 1+(87T/3)X(V)D (kv). (29
L7 o) X0 L g Comparing this with Eq(26 btai
E EZ EZW/:’))X(V) o v)=0. omparing this wit C]( ), we obtain
(25 o 1 A
L _ el
Defining the refractive inder(v) by k=n(v)v/c, and using Pe(ky)= E( 1- G(V)) De(kv) (30
the dielectric functiore(v) =n?(v), we obtain from Eq(25)
the well-known Lorentz-Lorenz relation for the classical solution driven by the unshielded field
el ;
, 1+ (87/3)x(v) D®'(kv) of the conduction band electron.
e(v)=n (V):m. (26)
)Xy F. Effective action for the electron-lattice interaction
Of course, to fit Eqs(26) and(24) to experimental data, ~ To compare our results later to the existing Lagrangian-

we will need to include damping facgor; for the lattice andbased theories, it will be useful at this point to calculate the
band oscillators, i.e., rgplacez by v“+ivy everywhere. part of the path integrdlL2) that is over all trajectories of the
This damping arises mainly from small anharmonic COUp"”gpoIarization coordinateQDi(Ft). This can be done exactly

terms among oscillators, which affect the free energy anthecayse the Lagrangian contains only terms that are indepen-
mobility negligibly, and which do not impede our determi- qent of or linear or quadratic in, th . The result is espe-

nation of the set of values of; and w; 10 use in our La-  ja)ly simple if we use the initial and final conditions on
grangian(9) and action functionab Eq. (20). This determi- these paths that form the matrix eleméatU(t, ,t,)|0) of

nation is carried out for BbSiOy in Appendix A and gives — gq (12) where|0) represents the ground state of all unper-
the values for the “infrared”(IR) lattice mode frequencies turbed polarization oscillators. Then the result is

w; and coupling constants; in Table I. S50€xp(S'/h), where S’ is the previous action20) in
which P" and P- have been replaced by the classical solu-

. . . . tions (23) and (29), with A(IZv)=O. There is also an unim-
For arbitrary electron motion, we find that the acti@®) portant normalization tern§’ in S’ that does not contain

is stationary for small changes in tﬁé(ﬁy) about the clas- ;(t)_e
sical solutionsﬁéi(IZv) which obey The sum in the first term of Eq20) can be calculated

2,2 g using Eqs(22) and(27). The twolszr that appear in the first

47T|5éi(|2,,) ﬁ_ —77|5|{;(|2V)+|5e|(|21/)=0. 27) and in the last term of the integral in E(O) cancel each

Wi 3 other, and only a term (1/E>)é(kv)*~5e'(kv) remains in

Multiplying Eq. (27) by w?/(w?— v?) and summing over all the effective action functional for the electrd®. can finally
be written as

E. Longitudinal part of the polarization density

branchesi we obtain for the classical solutioﬁ;é(lzv)
R - .
=ZiPci(kv) §'=s[x(t)]+S"+ . (31)

SL0 el 87 - hereS®' contains the terms describing the unperturbed elec-
PL(kv)=x(v) De'(kv)—?P(L:(kv) , (29) ‘t’;’on -y ! Ibing the unpertu
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) 1 . . TABLE 1. LO frequencies and oscillator strengths, in th
S"“=(277)_4f dvf d3k§ B(v)D®(kv)*-D®'(kv), obtained from Eqgs(26), (A1), and the parameters in Table | for
B,,SiO,;. The sum of aIIWi2 is 38778 cm?. The sum of all

(32) numbers in the third column is 91.34 crh
where, from Eq/(30), "
50 (1 ) () Q W ﬁ'icotr(hQiIZKBT)
= —|1-— =
4 1+(8w/3
T e) (8/3)x(v) 106.23 8.86 2.92
polynomial of degree(m—1) in »? 160.51 9.50 151
= | o d — (33 180.33 20.85 5.83
polynomial of degreem in » 206.69 10.05 1.05
can always be written in the form 252.76 27.00 5.26
369.64 61.78 14.40
mtM\W2 501.71 52.87 6.63
Bv=7- 2 o2 —. (34) 553.60 86.18 15.35
mosL ATy 585.36 75.41 10.90
Each term in this sum, when it appears in the action func- 607.29 98.15 17.59
tional (32), acts exactly as would an harmonic longitudinal 834.53 89.36 9.90
lattice mode of frequency); and coupling constanWi2
coupled linearly to the conduction electron fidd'. "W o1 1
The thermal speed of the conduction electron is such that P —— (37)
its main frequency components are lower than the oscillator =1 Q] € €qe

frequencies of the UMoptical) oscillators and are higher

than the oscillator frequencies of tli@frared longitudinal heir off I ed i d ttocti
optical phonongwith a thermal speed of £0m/s the elec- eI effects are well summarized &, and an effective mass

tron moves by 1 nm in 10 fs We, therefore, consider the M that replacesn, in the original Lagrangiarn9). There-
Born-Oppenheimer approximatid¢assumed by Fidich and ~ fore, in S™ we replaceB(») with B(v).

others to be accurate for this problem. Thus, we assume the To make a direct comparison of E(1) with the action
response speed of the bound electron clouds to be essentiaflynctional for the electron used in Refs. 2 and 3, we perform
instantaneous, and the electronic contribution to the dieleathe integrals ovew andk in the actionS™ of Eq. (32) to

tric polarization when the ions are kept immobile is practi-convert back to a space-time integral action.

cally given by the short-wavelength limét, of the dielectric The integral over the frequenayin Eq. (32) corresponds
constant. On the other hand, the contribution related to théy the Fourier transform of “harmonic oscillator’ terms of
ionic displacements is assumed to be given by the strain-frege form Wf/(QiZ_ »?). Feynman showédthat the correct
dielectric constanty, i.e., that which does not include the guantum results for each harmonic oscillator represented in
effects of piezoelectricity or electrostriction. In contrast to gq. (36) are obtained by adding a small negative imaginary

the electronic C|OudS, the ions tend to remain in their pOSitiOf‘bart to each oscillator frequen@i , and using the resu'ting
for picoseconds and follow the movements of the electronrgnsform

with a time delay(lt is this UV-dressed conduction electron
accompanied by its local lattice deformation that has been dv exp(—irt) i

called a “polaron.” T S ﬁexq—iﬂiltb. (38
P 14 i

We now drop the optical terms in E(B2), assuming that

It follows that Eq.(34) can be separated into an infrared
and an optical contribution, and that the latter can be repre-

sented by a constant, given lay The transf_orrrﬁ(lzv) in Eqg. (32) can be calculated from
Eq.(17) and is
B(»=B(n)+ |1 1) (35) K
v)=B(v)+—|1——], 2al > >
A € De'(ky)=4wiePJ dtexp(ivt)exd —ik-x(t)]. (39
with _
With this in mind, S™ becomes
- 1 & w? N

B(v) (36)

T 4r 5 Q=2

) 1
s'm=(27r)*3f d3k§ 47rieﬁ
wherem is, as in Eq.(3), the number of polar IR lattice
branches. In Appendix A we fit the IR reflectivity spectrum Xf f SR
of Bi{,SiO,q very well with m=11 vibrational modes whose dt | dsexplik-[x()=x(s)])
LO frequencied); and coupling parametek¥, are given in W2
Table Il. We note that the zero-frequency limit of E§5) is XE [ IVV; exp(—iQ|t—s])
(47) " Y(1—1leyy, SO that T |87, '

. (40
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After performing the integral ovek we are left with frequency-dependent response(gft)) to an arbitrary ex-
) ternal electric field®® and to be able to use in our calcula-
Sint—j e_J dtf ds 1 tion the extensive theoretical predictions for the special case
4 IX(t) = X(s)| when there is only a single term in the sum appearing in Egs.

(9) and(42).

In Ref. 3 the mobility calculation was carried out by using
X Z them=1 form of Eq.(42) to calculate the density matrix at

finite temperature for the electron. This density matrix was

To complete our comparison & with the literature we ~ €xpressed as a double path intedraler two sets of trajec-
switch to the special “polaron” unit system in which fre- toriesx(t) andx’(t)] in which the effective “Frdilich” ac-
quencies are measured relative to a standard lattice frequengyn functional® ([ x(t),x’ (t)] of Eq. (14) of Ref. 3 has the
 (to be chosen later for convenienctmes are measured in  same parameters as B42) with m=1 [or as Eq(4) of Ref.
units of o, energies are measured in unitsfab, lengths 2] with the addition of the temperatuie
are measured in units Qfﬁ/(m* w), electric fields are mea- It is clear from a comparison of Eq14) of Ref. 3 with
sured in units ofy% w®m* /e, mobility is measured in units our Eq.(42) that, had those authors assunmad.O phonon
of e/(m*w), and temperature is measured in units ofpranches instead of one, their interaction tedrf' would
fiwlkg . Rewriting Eq.(41) with these new units we find that have been simply converted to a sum over terms differing
Eq. (32 gives only in the phonon frequencig®; and coupling constants;

as follows:

2

Wi .
Eexq—lﬂi|t—s|) ) (41

i ’ A 1 - 2.9 cext
%(S -S )—If dt E(&X(t)/&t) +x(t)- E(t)

T Hi(t—s)
CI>PT>Z(t),>Z’(t)]—>i2’3’2f dtf dsy, ————
1 =1 x(t) —x(s)|
—2_3/2f dtf ds———— R
Ix(t) —x(s)| + similar terms containingx’ (t).
§ O (45)
X iexp(—iQ;t—9|)], 42
24 [ exp(—iQ|t—s|)] (42) Here
where the dimensionless coupling constasntsare defined H(t)=q;[exp —iQ;[t]) +2P(B;)cog Q;t)],  (46)
b
Y where8;=%0Q,;/kgT andP(B)=[exp(B)—1] L.
W2 [m* Ry Both of our schemes will reduce this expression to one
%= oV fie (43)  term with one “effective” frequency(), and one “effec-
1 e

tive” coupling constanW,, or

in terms of the free-electron masg,, the Rydberg of energy

Ry (Ry=mge*%"2/2 in esu), the effective massn* of an _ W2 [m* Ry

electron in the unpolarized lattice, and the “standard” pho- ae_Qew me e (47)

non energyi w. . . N
Comparing Eq(42) with the expressiori4) of Ref. 2 for Below, we will take the “standard frequencys to equal the

an electron coupled to a single LO phonon branch of fre£ffective frequency). in each case, so that we may use all
quencye shows that Eq(42) is the same expression, except the formulas in Refs. 2 and 3 directly.
that it is summed over several phonon branchés (

=1,2,...m). If the lattice had only one phonon branch A. First scheme
with frequency() = w and strengtiw, then our valug43) for In our first scheme we choog®, andW, so as to make
its coupling would reduce to an effective time kernel, defined as in Eq(46), but with a
1 1 "R single effective frequenc§}, and a single effective coupling
N I YL coefficientW, or a,, to have the properties
a , (44
€x  €4c me Aw
m
where we usedW?/Q2=1/e,.— lle4. from Eq. (37). The Ho(0)=> H,(0), (48)
i=1

electron-phonon coupling constai4) is the same as the
one calculated by Fhoich* and used in Ref. 2.
) e . and
We are now in a position to devise and compare two

schemes for reducing the multiphonon-branch situation to a m
single-branch equivalent. aHe(t)/&t=2 AH;(t)/at att=0. (49)
=1
l1l. TWO WAYS TO OBTAIN A SINGLE LONGITUDINAL We fulfill Eq. (48) by taking
OPTICAL BRANCH MODEL
0 X he L i49), o its el | We o W
ur goal is to use the Lagrangi&®), or its electron-only —®cot =S ' coth B8./2). 50
form (42), to calculate the electron mobility and the full Qe nBel2) Z’l Qe "(&il2) (50
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We fulfill Eq. (49) by taking

(59)

Using the values foWV; and (), listed in Table lI[whose
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W,=196.9 cm !, (60)

and
Q,=500 cmL. (61)

In the case oln-type Bi,SiO,, the prescription derived

last column also gives the expressions on the right-hand sideom Egs.(50) and (51) gives the same results as E¢S8)

of Eqg. (50)] for Bi;,Si0,, and the conditiong50) and(51)
at T=295 K, we obtain

W,=196.9 cm?, (52
0.,=504 cm?, (53
ae=2.25/m*/m,, (54

with =, for the standard lattice frequency.

B. Second scheme

In our second scheme we chooQg and W, in a way

suggested by Ref. 5, which gives an upper bound to the free
energy of an electron coupled to a single branch. This has

and(59), to within a few percent. The change in the relation
of B! to laboratory temperature counteracts the change in
effective electron-phonon coupling constant when calculat-
ing the polaron mobility with Eq(1) and the variational
parameters andw derived in the next section.

IV. TEMPERATURE DEPENDENCE OF THE FEYNMAN
VARIATIONAL PARAMETERS

We determined the parameterandw at every tempera-
ture by following the free energy minimization procedure
described in Ref. 5. We rewrite here the upper bo&ndf
the free energy of Ref. 5 in a slightly different form:

F=—(A+B+C) (623

proven to be the lowest upper bound discovered to date. Thaith

“exact” Frohlich action “S” of Eq. (1) in Ref. 5 resembles
our Eq.(42), but with a double time integral that runs from 0

to B=hQ,/kgT and treats the Ftdich model with a single

phonon branch at frequendy;=® and coupling constant

W; [giving a4, as in our Eq.(43)]. The time kerneH(t)
involved in Ref. 5 is

H1(t) = ay[exp —Q,]t])+2P(B)costiQt)] (55

which is a sort of “imaginary time” version of our E¢46).

In our second scheme we adjust the single effective fre-

guency and coupling constarfls; andW,; so as to match

fﬁidtﬁl(t)=fﬁidt2 Hi(t), (56)
0 0 i=1

and

m

aH () at= -21 oH (t)/at att=0. (57)

Here theH,; are defined as functions ef, andQ); as in Eq.
(55). We fulfill Eq. (56) by taking

wi o Zow?
= 58
a2 ;l o2 (58)
and fulfill Eq. (57) by taking
m
Wi=2 We. (59
=1

3 v) 1 (sinf‘(v,B/Z)
A=— |ﬂ(w) - Eln(277,6’)—|n W) (62b)

B

av

B: -
Vrlexp(B)—1]

Bl2
xf d
0

exp( B—X) +exp(x)
X[w2x(1—x/,r;:)+Y(x)(v2—w2)/u]1’2’

(629
where
1
Y(x)= m{l+exq—vﬁ)—exp(—vx)
—explv[x—B]}, (62d)
and
3 v2—W2( 2 )
C_Z COtI’(Uﬂ/Z)—ﬁ . (629

The B andC terms are related to the expectation value of
the action describing the electron in the polar crystal and of
a trial action, respectivel§® Compared to Ref. 5 the integral
in B has been rewritten in a symmetrized form which is more
convenient for numerical computation.

At each temperature, the optimal values of the variational
parameters andw are obtained by numerically finding the
minimum of Eq.(629 as a function oy andw. The values

Fortuitously, even though we based these results oof the variational parametets andw as a function of tem-

matching the finite-temperature kernél), the temperature
has canceled from both E8) and Eq.(59), the latter being
identical with Eq.(51) of the first scheme.

From the values ofW; and (; listed in Table II for
Bi1,Si0,g, we obtain using Eq(58) and (59)

perature, as they were derived from the minimization of Eq.
(624, are shown in Table IIl.

Using these values in E@2.4) of Ref. 9, we estimate a
room-temperature polaron radius of approximately 0.6 nm
for Biy,Si0,q. The Bi,SiOyq unit cell is 1.0 nm large and
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TABLE lll. Variational parametersy andw for various cou- 1.0 T T r T r T T T
pling constantsy and temperatureg8=hw/kgT. 3 -
0.8 R
a=1 a=2 a=3 a=4 a=5

B v w v w v w v w v w g 0.6

1.00 7.20 6.50 7.69 6.20 8.26 5.87 8.95 5.51 9.78 5.13 §04

125 594 531 6.38 5.03 6.91 473 7.57 4.41 8.39 4.05 g

150 5.11 454 552 429 6.02 4.01 6.66 3.70 7.48 3.37 02

1.75 454 401 492 3.77 540 351 6.02 3.22 6.83 2.92 )

2.00 4.12 3.63 4.48 340 494 3.16 554 2.88 6.36 2.60 0.0 g 3
250 3,57 3.13 3.89 293 432 2.70 490 245 571 2.20 0 200 400 600 800

2.75 3.38 2.97 3.69 2.77 4.10 255 4.67 2.31 5.48 2.07 Wave number [cm™]

300 324 2.84 353 2.65 3.93 244 448 221 529 197 FIG. 1. The dots indicate the experimental room-temperature

reflectivity spectrum of B,SiO,, (extracted from Ref. 10 The

contains 66 atoms. The sphere defined by the polaron raditf'sond curve is the 11-oscillators approximation calculated from the

contains~ 60 atoms. Therefore, the continuum approxima—l%1ramerers in Table | using Eq26) and (AL).
tion of Refs. 2,5,3 can be applied.

the electron band mobility as a function of temperature pub-

lished in Ref. 1.
V. TEMPERATURE DEPENDENCE OF THE MOBILITY

The results derived above can be applied to the calcula®PPENDIX A: DERIVATION OF THE BSO PARAMETERS

tion of the large polaron mobility in B}SiOy as a function In the following we will adjust the microscopic oscillator
of temperature. _ , parametersy; and w; appearing in the Lagrangia®) to fit

The only unknown parameter in Eq®) and (1) is the  {he experimental data from the refractive indekr) of
electron effective band mass* . The prediction of Eq(1) at _ Bi;,Si0,, throughout the infrared and visible range of fre-
T=300 K corresponds to the room-temperature mOb'I'tyquencieSV. For the cubic crystal of interest here(»)
value of 3.4 cr/(Vs) when settingn* =2.0m,.! =n2(»).

Fromm*, Eq. (1), and using the effective values of LO
phonon freque_nlcy and coupling _sitrengths derivgd abovggq coupling strengthV, appearing in Eq(36). The fre-
(We=196.9 cm ~ and€),=504 cm ), we can predict the ,encieq); of the LO phonons are at the valuesiofvhere
temperature dependence of the mobility. The results, giveg,q |ongitudinal polarizatiori29) diverges, i.e., the poles of
in Ref. 1, agreed v_erX well with the experiment within the Eq. (33. The frequencies of the transverse-opti¢aD)
experimental error i =(2:0.1)m,. phonons, on the other hand, correspond to the poles of the

We find that puttingy=0 in Eq.(1) makes less than 0.1% jjelectric permittivity (26).

error throughout the temperature range in Ref. 1..'_I'his IS |nstead of using Eq$26)—(24) to fit the index(or reflec-
useful becaus&(a,0)=Ky(a)/a, whereK, is a modified  {jyity) data of Ref. 10, we will, for reasons explained
Bessel functiorl. We note that Eq(1), whereK(a)/a can throughout Sec. 11, use instead H86) and

be substituted foK(a,b), becomes equal to EQR4) in Ref.

8 in the limit of smalla. 1 " w2 nZ—1

i )
=— — + :
x(v) 47 =1 wiz—vz—lvyi nZ+2

From this data, we will then derive the LO frequenci®s

(A1)
VI. CONCLUSIONS
_ o _For Bi;,Si0y, n.=\e.=2.39 is the refractive index at
We developed a theoretical description of an electron inyptical frequencies. The second term in E#1) takes care

the conduction band of a polar lattice characterized by morgt nroviding the correct limiting value in the visible part of
than one optical-phonon mode, and were able to derive in g, electromagnetic spectrum.
self-consistent way both the polaron properties and the opti- The power reflectivityR(v) for a set of valuesv;, o,
cal properties of the lattice, which can then be used to deters, y. is obtained by substituting them into quekl) {0

mine the electron-phonon coupling constant. . calculate the refractive index(v) from Eg. (26), and then
We discussed how the many phonon branches can be IMiising the standard relation of Fresnel:

tated by a single phonon branch, so that the extensive results

of existing polaron theories can be applied to a crystal with

many polar vibrational modes. R(v)=
We calculated optimal values of the Feynman action de-

scribing the large polaron for all temperatures. From the reWe obtain the data of Table | by a least-squares fit of Eq.

sulting variational parametetsandw as a function of tem- (A2) with m=11 to the data of Ref. 10.

perature we are able to predict the temperature dependence If we substitute the values of;, w;, andy; in Table |

and absolute value of the large polaron mobility in a materiainto Eq. (A1), and use Egs(26) and (A2), we obtain the

with many polar longitudinal-optical branches. solid curve in Fig. 1. The agreement with the data is excel-
We applied our theory to the case of;8iO,; and ob- lent except at the low-frequency end where the experiments

tained a very good agreement with the experimental value diecame difficult and did not approach the reflectivity appro-

2

nw-1® (A2)

n(v)+1
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priate for the knowreg.=50. We, however, forced our fitto ~ The LO frequency corresponds to the divergence of the
makeR(v) approach 56.6% as—0. longitudinal polarization(29), i.e., the pole of Eq(33) or
We derived the constan®/, andQ); by comparingB(») (34) [it also corresponds to the frequency where the dielec-
of Eq. (35) with the expression fof1— 1/e(v)]/4m derived  tric permittivity (26) becomes equal to zefdt is found to be
from Eqgs.(26) and (A1) with all y; set to zero. The results
are given in Table Il. 02 o2 2, 1 B3
e~ O T IV T 8 ) xn (B3)
APPENDIX B: THE SPECIAL CASE OF A SINGLE
PHONON BRANCH On the other hand, the dstrain-free dielectric permittivity

In order to better understand the relationships between ouarS derived from Eqs(B1) and(26) is

microscopic frequencies;, the transverse-optical phonon ’ )
frequencies and the longitudinal-optical phonon frequencies, € _e [1+(87/3) x-]+2w/3 (B4)
it is interesting to rederive some useful expressions which 4T WA 1—(4m/3) o] — W3’
are valid in the case of a single optical-phonon branch.
When there is only one effective infrared oscillator, Egs.while the permittivity in the visible is
(500 and (51 and (59) and (58) are equivalent, and

Q., W, are directly the oscillator frequency and oscillator 1+ (87/3) x-

strength of the longitudinal-optical mode. €m=m- (BS)
In this case the TO and LO oscillator strengths and fre- ”

quency are related by simple expressions. From Egs.(B2), (B3), (B4), and (B5) we obtain the well-

Assuming one IR oscillator to describe the optical)qn Lyddane-Sachs-Teller relatidn
phonons and a constant UV contribution we can write, in
place of Eq.(24), the microscopic polarizability(v) as

Qg €dc
w? 0% e (B6)
- TO ®
x(v) P R CF (B1)

The LO frequency), also appears in Eq$34), (35), and

wherey., gives the polarizability at visible wavelengths. .
The TO frequency corresponds to the pole of the dielec-(37)' From Eqs.(37) and(B6) we_ see that the LO qullgtor
. o . strengthW, is related to the LO-TO frequency splitting:
tric permittivity (26) and is given by

02 = w?— EWZ; (B2) W :i(QZ—QZ ) (B7)
O 3" 1-(4nB)x»’ e ¢ TV
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