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Degenerate four-wave mixing in noncentrosymmetric materials
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This work treats degenerate four-wave mixing~DFWM! in noncentrosymmetric materials, taking into full
account the fact that the DFWM signal arises from third-order nonlinear optical effects as well as from two
distinct combinations of second-order effects: second-harmonic generation plus difference frequency genera-
tion and optical rectification plus Pockels effect. Because of these second order ‘‘cascaded’’ contributions, the
DFWM signal becomes dependent on details of the experimental setup that do not normally matter for
centrosymmetric materials, such as the wave vectors of the interacting beams and the pulse duration. The
origin, consequences, and possible applications of these effects are discussed for both the ‘‘forward’’ and the
‘‘phase-conjugation’’ DFWM configurations. All second-order contributions are described quantitatively by
introducing effective third-order susceptibilities, and their value is discussed using the example of two mate-
rials: ferroelectric KNbO3 and the organic salt 4-N,N-dimethylamino-48-N8-methyl-stilbazolium tosylate.
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In noncentrosymmetric materials, the optical electric fie
can induce a second-order nonlinear polarization that a
interacts with the optical field to create a new nonlinear
larization that is then proportional to the third power of t
electric field@1–8#. Such a ‘‘cascading’’ of second-order pro
cesses can contribute to typical third-order nonlinear opt
phenomena such as the optical Kerr effect, self-phase m
lation, soliton formation, and the interaction of different o
tical waves @9#. Cascaded contributions are important b
cause they entail a new possibility to optimize nonline
optical materials for typical third-order applications, and b
cause they lead to a sensitivity to experimental parame
~such as the wave vectors of the interacting optical wav!
that are not relevant for pure third-order interactions, th
affecting experiments in unusual ways.

Degenerate four-wave mixing~DFWM! is a commonly
used experimental technique for the determination of
third-order nonlinear response. It allows the measuremen
most elements of the third-order nonlinear optical susce
bility tensor that describe the interaction of optical fields a
single frequency. Second-order contributions to DFWM
possible via two mechanisms: second-harmonic genera
plus difference frequency generation~SHG/DFG! and optical
rectification plus linear electro-optic~Pockels! effect ~OR/
EO!. In order to enable a reliable and reproducible deter
nation of third-order nonlinear optical susceptibilities
DFWM, it is necessary to quantitatively predict the relati
contributions of each cascaded effect and of the genu
third-order effects in the various possible DFWM expe
mental setups.

Second-order contributions to nondegenerate wave m
ing were first discussed in Ref.@2#, where the principles and
most important features of the cascading contributions h
already been recognized. Second-order contributions
DFWM have been analyzed in Refs.@10–13#, and the pecu-
liar geometry dependence of the OR/EO contribution
DFWM was first pointed out in Refs.@10,12#. However, no
complete treatment of DFWM that takes into account
second-order contributions has been published to date
important point that has not been treated consistently in
1050-2947/2001/64~6!/063813~13!/$20.00 64 0638
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literature is connected to the question of how the induc
second-order polarization interacts with an electric field
generate an effective third-order polarization. It is possible
identify two mechanisms for this to happen: directly throu
the material polarization, and indirectly through a mac
scopic field that is sometimes~but not always! associated
with the material polarization. Reference@11# did not include
the direct mechanism, which lead to a SHG/DFG contrib
tion too large by a factor of the order of the refractive ind
squared, and to an incorrect description of the OR/EO c
tribution. Reference@12# considered both direct and indirec
mechanisms, but slightly overestimated the magnitude of
first one, while the contribution from SHG/DFG was n
glected. In addition, both Ref.@11# and Ref.@12# considered
only the ‘‘phase-conjugation’’ DFWM configuration wher
two of the interacting beams are counterpropagating@14#.
Reference@13# expanded on the treatment of Ref.@12# by
including piezoelectric effects, took both direct and indire
mechanisms properly into account, and considered also
‘‘forward’’ DFWM configuration, but still limited itself to the
OR/EO contributions.

This work presents a general, detailed treatment
DFWM where all second-order contributions are taken in
account for the two experimental configurations that co
into considerations for bulk materials. The present comp
treatment is a prerequisite for a proper analysis of a
DFWM experiment performed in noncentrosymmetric ma
rials. It makes it possible to determine correct values for
third-order susceptibilities and to compare results obtai
with different experimental setups.

I will first present the nomenclature and formalism us
in this work by reviewing the usual treatment of DFWM in
pure third-order material and describing the two experim
tal geometries with which DFWM can be realized. I will the
introduce the two mechanisms with which a nonlinear pol
ization can interact with the electric field of an optical wav
From this discussion I will then derive expressions for bo
the SHG/DFG and the OR/EO contributions to DFWM, a
define an effective third-order susceptibility tensor that co
prises all second- and third-order contributions. Finally
©2001 The American Physical Society13-1
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IVAN BIAGGIO PHYSICAL REVIEW A 64 063813
will discuss the manifestations of these second-order co
butions and their dependence from the experimental par
eters in the example of two different materials: the f
roelectric oxide KNbO3 and the molecular cryst
al 4-N,N-dimethylamino-48-N8-methyl-stilbazolium tosylate
~DAST!.

I. GENERAL DESCRIPTION OF DFWM FOR PURE
THIRD-ORDER NONLINEARITIES

The following is a short review of DFWM for the cas
where the interaction of the optical waves is mediated o
by a pure third-order effect. It serves as an introduction to
subject of DFWM and to the formalism and the definitio
that are used throughout this work.

In the most general case of DFWM there are three se
rate ‘‘input’’ waves that can be distinguished by their prop
gation direction. We are interested in the case where the
teracting beams are weakly focused into the material and
be described by spatially and time-modulated plane wa
Then the total electric field at a positionrW and timet can be
written in the form

EW ~rW,t !5
1

2
$EW ~v,kW1!exp@ i ~kW1rW2vt !#

1EW ~v,kW2!exp@ i ~kW2rW2vt !#

1EW ~v,kW3!exp@ i ~kW3rW2vt !#1c.c.%. ~1!

This represents three plane waves with the same frequenv

and three different wave vectorskW i . They are described by
complex amplitudesEW (v,kW i) that are nearly constant on th
time-scale of the optical frequency and the space scale o
optical wave vector. ‘‘1c.c.’’ indicates addition of the
complex-conjugate term.

In a nonlinear optical material with an instantaneous a
local third-order response, the electric field~1! induces a
material polarization which, in SI units, can be written
@15,9,16#

Pi
(3)~rW,t !5e0x i jkl

(3) Ej~rW,t !Ek~rW,t !El~rW,t !, ~2!

where the Einstein summation convention over repeated
dices is used, andx i jkl

(3) is the third-order susceptibility tenso
in the time domain.

Given the field~1!, the material polarization~2! has a
complicated time and space-dependence corresponding
sum of various plane-wave terms with different frequenc
and wave vectors. For DFWM one is interested in tho
terms that have the frequencyv, which are produced by the
interaction of all three waves in Eq.~1!, and which can ra-
diate a signal wave in a bulk material. By judicious choice
the wave vectorskW1 , kW2, and kW3 one can obtain a well-
defined signal wave from the one single term with the co
plex amplitude
06381
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Pi
(3)~v,kW4!5

3

2
e0x i jkl

(3) ~2v,2v,v,v,2kW4 ,2kW3 ,kW2 ,kW1!

3Ej~2v,2kW3!Ek~v,kW2!El~v,kW1!. ~3!

wherekW45kW11kW22kW3 , Ej (2v,2kW3) is the complex con-
jugate of Ej (v,kW3), and x i jkl

(3) (2v,2v,v,v,2kW4 ,

2kW3 ,kW2 ,kW1) is the complex third-order susceptibility tenso
Under the assumption that the third order response is b
instantaneous and local, it does not depend from either
frequencies or the wave vectors and is a constant dire
related to the time-domain tensor introduced in Eq.~2!.
However, it is often useful to consider some slight noninst
taneous effects that lead to a frequency dispersion. I a
explicitly included a wave vector dependence in Eq.~3! be-
cause it will be required for the effective third-order susce
tibility introduced below to account for the second-ord
contributions. Only for a pure third-order effect the locali
assumption we introduced above removes any wave ve
dependence, and the wave vector arguments can be drop

There are two alternative experimental setups wher
unique signal wave is radiated by the polarization~3!. They
are sketched in Fig. 1. In both of these configurations
signal wave is emitted in a phase-matched way over
whole thickness of the material@17#. Besides Eq.~3!, there
are two other polarization components at the frequencyv

that have wave vectorskW45kW12kW21kW3 and kW452kW11kW2

1kW3. However, the magnitude of these wave vectors d
not fulfill the dispersion relation of a propagating electr
magnetic wave of frequencyv. The corresponding DFWM
signal, which has a different propagation direction than

FIG. 1. Two possibilities for an experimental realization
DFWM. ~a! ‘‘Forward geometry’’: The three input beams 1, 2, an
3 propagate in the same general direction. They go through
vertices of a square in a plane parallel to the surface of the sam
and nearly perpendicular to the propagation direction and they m
in the sample. The signal beam 4 exits the sample so that, in
square defined by the three transmitted input beams, it hits
corner opposite to the one of beam 3.~b! ‘‘Phase-conjugation ge-
ometry’’: Beams 1 and 2 are counterpropagating to each other,
all interacting beams propagate inside the same plane. The s
beam 4 is then counterpropagating to beam 3.
3-2
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DEGENERATE FOUR-WAVE MIXING IN . . . PHYSICAL REVIEW A64 063813
one radiated by Eq.~3!, can only be observed in thin sample
@18#. We will not consider this case any further.

The numerical factor of 3/2 in Eq.~3! is a degeneracy
factor that arises when substituting Eq.~1! into Eq. ~2! and
collecting terms with the same space and time dependen
obtain Eq.~3! @19#.

The nonlinear polarization~3! gives rise to the signa
wave in DFWM by radiating an electric fieldEW S that must
fulfill the wave equation

¹W 3¹W 3EW S~rW,t !52
1

c2

]2

]t2 FeJEW S~rW,t !1
1

e0
PW (3)~rW,t !G ,

~4!

where c is the speed of light in vacuum andPW (3)(rW,t)
5(1/2)PW (3)(v,kW4)exp@i(kW4rW2vt)#1c.c.. The wave vectorkW4
of the polarization~3! has the right magnitude for phas
matched radiation of the fieldEW S: for PW (3) oriented along a
main axisi of the dielectric tensor,k45e i i v/c. In the slowly
varying amplitude approximation and as long as the sig
wave remains much weaker than the other waves, Eq.~4!

implies thatEW S will grow linearly with propagation distance
L as

Ei
S~v,kW4!5L

ik4

2e0
e i j

21Pj
(3)~v,kW4!, ~5!

whereL is the thickness of material along the wave vec
kW4. Relating the electric fieldsEi

n5Ei(v,kWn) to intensities
I n5(ce0/2)Ae i i uEi

nu2 and using Eq.~3! one obtains, for in-
dividual field amplitudesEj

3 , Ek
2 , andEl

1 polarized along the
main axesj, k, and l, respectively,

I S5L2
v2

c4e0
2

I 1I 2I 3

ninjnknl
U32 x i jkl

(3) U2

, ~6!

whereni is the refractive index for light polarized alongi,
andx i jkl

(3) is the third-order susceptibility tensor introduced
Eq. ~3! with the frequency and wave vector arguments om
ted.

For pulsed experiments it is useful to express the sig
energyFS as a function of the input pulse energiesFn , with
all energies measured outside the sample,

FS5jL2
TiTjTkTl

ninjnknl
F1F2F3ux i jkl

(3) u2, ~7!

whereFn is the pulse energy in beamn andj is a factor that
is proportional to the spatial and temporal pulse overlap
tegrals in the material. The ‘‘calibration factor’’j must be
determined for any DFWM experimental setup in order to
able to measure absolute values for the nonlinear optical
ceptibilities. TheTi are the intensity transmission factors f
a beam with polarization parallel to thei axis that propagate
from outside the sample to themiddle of the sample. They
can be determined experimentally, or they can be calcula
06381
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from normal Fresnel reflection losses and from the lin
absorption constanta i of the material

Ti5F12S ni21

ni11D 2Gexp~2a iL/2!. ~8!

Expression~7! is the final result that can be used in an
centrosymmetric material to determine experimentally
components of the third-order susceptibility tensorx i jkl

(3) .
Note that the results derived here are valid for both DFW
configurations in Fig. 1. The labelling of the beams has b
chosen in such a way that Eq.~3! and the discussion sur
rounding it apply for both configurations.

II. PRINCIPLE AND DESCRIPTION OF CASCADED
SECOND-ORDER EFFECTS

We will now review the principles of the cascading pr
cess and derive a general expression for the effective th
order polarization it induces. In order not to unnecessa
restrict this particular argument to DFWM, let us consid
three plane wave, but otherwise arbitrary, ‘‘input’’ electr
fields EW i(rW,t)5EW i exp@ i (kW i•rW i2vt)# with complex ampli-
tudesEW 1, EW 2, and EW 3 @EW i5EW (v i ,kW i)# and assume thatEW 1

andEW 2 combine to generate a second-order polarizationPW (2).
This polarization can be described with the same assu
tions and formalism used in the preceding section. Its co
plex amplitude is

Pp
(2)~vp ,kW p!5K1e0xpkl

(2)~2vp ,v2 ,v1!Ek
2El

1 , ~9!

whereK1 is the appropriate degeneracy factor. This nonl
ear polarization has the space- and time dependence
plane wave. When discussing DFWM later on, we will co
sider the special cases wherevp50 ~optical rectification! or
kW p50 ~a homogenous polarization harmonically modulat
in time!.

Let us start by establishing the conditions under whic
nonlinear polarization with the complex amplitude~9! can
induce an electric fieldEW P. First, the displacement field

Di
P~rW,t !5e0e i j Ej

P~rW,t !1Pi
(2)~rW,t !, ~10!

must be divergence-free in the absence of free charges.
ond, forvp50 the curl of the electric fieldEW P must vanish,

¹W 3EW P~rW !50W, ~11!

while for vp5” 0 EW P must fulfil the wave equation

¹W 3¹W 3EW P~rW,t !52
1

c2

]2

]t2 FeJEW P~rW,t !1
1

e0
PW (2)~rW,t !G .

~12!

These conditions lead to separate solutions for oscillat
and static polarizations. For the purposes of this pape
polarization can be seen as static when its time-modula
period is of the order of the laser-pulse duration.
3-3
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Consider an oscillating (vp5” 0) nonlinear polarization in
a coordinate system wheree i j is diagonal. Then, for a longi
tudinal polarization withPW (2)(vp ,kW p)ikW p , or for an homog-
enous polarization withkW p50,

Ei
P52

1

e0e i i
Pi

(2) , ~13!

while for a transverse polarization (PW (2)'kW p) the solution of
the wave equation is

Ei
P5

1

e0

Pi
(2)

~kpc/vp!22e i i ~vp!
, ~14!

under the assumption that the wave vector mismatch
tween the nonlinear polarization and a propagating wav
so high thatEW P has the same spatial and time dependenc
the source polarizationPW (2). As an example, for non-phase
matched frequency doubling of one fieldEW 5EW (v,kW ),
kp52k, vp52v, and Eq. ~14! becomes Ei

P

5(1/e0)Pi
(2)/@e i i (v)2e i i (2v)#, as was found, e.g., in Re

@6#.
For a static, plane-wave modulated nonlinear polarizat

the solution of Eqs.~10! and ~11! is @11,12#

EW P~kW !52kW
kj Pj

NL~kW !

e0kkeklkl
, ~15!

which reduces to Eq.~13! for a longitudinal polarization and
to EW P50 for a transverse polarization. The electric field is
this case always parallel to the wave vector of the nonlin
polarization, reflecting the requirement that the curl of t
electric field be zero.

From the above it is clear that the existence of an elec
field associated to the nonlinear polarization, or its mag
tude, depends on the circumstances. For the following
cussion it is useful to write

Ei
P5

1

e0
z i j Pj

NL , ~16!

wherez i j is defined by the expressions above. For any l
gitudinal polarization,z i i 521/e i i ; for a transverse static po
larization,z i i 50, while for a transverse, oscillating polariz
tion z i i has a pole at (kpc/vp)25e i i (vp). The importance of
these variations inz i j will become evident when discussin
DFWM later on.

Consider now how the polarization~9! can interact with
the third optical waveEW 3 to generate a new nonlinear pola
ization PW (C), which is then of the third order in the field
EW 1,EW 2,EW 3. Evidently, when the polarization~9! generates a
field EW P given by Eq.~16!, second-order nonlinear optica
interaction ofEW P andEW 3 contributes a term

K2e0x i jq
(2)~2vc ,v3 ,vp!Ej

3Eq
P , ~17!
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to the effective third-order polarizationPi
(C) . But this is not

the only possibility. The nonlinear optical polarization ca
also combine directly withEW 3, even whenEW P50 @6#. Calcu-
lating the magnitude of this direct contribution is nontrivi
because the nonlinear optical susceptibilities are defined
measured using applied electric fields, not polarizations. O
way to do this is to move to the microscopic level and co
sider the effects of the nonlinear polarization and the elec
field on a single polarizable unit~a ‘‘molecule’’! in the ma-
terial @6#.

Denoting local fields and dipoles by lower case lette
and, for the sake of simplicity, dropping temporarily the ve
tor notation, we can write the local field induced by the no
linear polarizationP(2) as eP5LP(2), while E3 generates a
local field e35 f 3E3. L and f 3 are local-field factors tha
assume the valuesL51/(3e0) and f 3511x(v3)/3 in the
Lorentz local-field approximation@20#; x(v3) is the linear
polarizability. The subscripts of the local-field factorsf i in-
dicate the frequency at which they must be taken. By seco
order nonlinear optics, the local fieldseP ande3 generate a
nonlinear dipolepC5K2e0a (2)ePe3, wherea (2) is the mi-
croscopic second-order susceptibility. To move back to
macroscopic level, the average macroscopic nonlinear po
ization P(C) must be derived from the nonlinear dipolepC

using PC5N fcp
C, and the macroscopic second-order su

ceptibility is related to a (2) by x (2)(2v1 ,v2 ,v3)
5N f1f 2f 3a (2)(2v1 ,v2 ,v3) @21#. Here, N is the number
density of ‘‘molecules.’’ From this, one obtainsP(C) as a
function of the macroscopic quantitiesP(2), E3, and x (2).
Going back to vector notation, this direct contribution
PW (C) can be written as

K2e0x i jq
(2)~2vc ,v3 ,vp!Ej

3L
dqp

f p
Pp

(2) . ~18!

The final expression for the total cascaded polarizat
PW (C) is obtained by summing Eqs.~17! and ~18!,

Pi
(C)5K2x i jq

(2)~2vc ,v3 ,vp!Ej
3Fzqp1e0L

dqp

f p
GPp

(2) .

~19!

Substituting Eq.~9! for PW (2) and comparing the resul
with the formPi

(C)5K3x i jkl
(C) (2vc ,v3 ,v2 ,v1)Ej

3Ek
2El

1 for a
third-order effect, one finds the following expression for t
effective third-order susceptibility describing the cascad
contribution:

x i jkl
(C) ~2vc ,v3 ,v2 ,v1!

5
K1K2

K3
x i jq

(2)~2vc ,v3 ,vp!Fzqp1
e0Ldqp

f p
G

3xpkl
(2)~2vp ,v2 ,v1!. ~20!

This is the final result of this section. It is valid in gener
for any two second-order processes that combine to con
ute to a third-order process. A very important fact that
peculiar to this cascading process is that thezqp term inside
3-4
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DEGENERATE FOUR-WAVE MIXING IN . . . PHYSICAL REVIEW A64 063813
the square brackets depends on the characteristics of th
termediate second-order polarization~9!. The magnitude of
the elements of the effective third-order susceptibility ten
describing the cascading effect will, therefore, change
pending on the wave vector, frequency, and orientation of
intermediate second-order polarization, which are in turn
fluenced by details of the experimental geometry used. T
is particularly true for the case of DFWM, because static a
frequency-modulated second-order polarizations can b
contribute to the signal at the same time.

III. CASCADED SECOND-ORDER EFFECTS IN DFWM

For noncentrosymmetric crystals, second-order nonlin
optical effects such as second-harmonic generation~SHG!
and optical rectification~OR! become possible. Any two o
the interacting beams in DFWM can give rise to a nonlin
optical polarization that can then interact with the third be
to produce the signal wave.

Referring to Fig. 1 for the labeling of the interactin
fields, there are three second-order nonlinear-polariza
components that play a role in the generation of the sig
wave by cascaded second-order effects in DFWM@their
wave vectors are found by picking any two terms, includi
their signs, from the sumkW11kW22kW3 found in Eq.~3!#.

The first one is produced by second-harmonic genera
between wave 1 and wave 2. Its complex amplitude is

Pp
(SH)~2v,kWSH!5e0xpkl

(2)~22v,v,v,2kWSH,kW2 ,kW1!

3Ek~v,kW2!El~v,kW1!, ~21!

where kWSH5kW11kW2. It is interesting to note that for the
phase-conjugation DFWM configuration of Fig. 1~b!, kW15

2kW2, andkWSH50. The resulting wave vector of the ‘‘second
harmonic’’ polarization~21! is zero: it is a homogenous po
larization density oscillating at the frequency 2v that cannot
radiate any electromagnetic wave, but which can still c
tribute to the DFWM signal.

The second one is produced by optical rectification
tween wave 1 and wave 3 and is

Pp
(OR)~v50,kWa

OR!5e0xp jl
(2)~0,2v,v,2kWa

OR ,2kW3 ,kW1!

3Ej~2v,2kW3!El~v,kW1!, ~22!

with kWa
OR5kW12kW3.

The third one is produced by optical rectification betwe
wave 2 and wave 3 and is

Pp
(OR)~v50,kWb

OR!5e0xp jk
(2) ~0,2v,v,2kWb

OR ,2kW3 ,kW2!

3Ej~2v,2kW3!Ek~v,kW2!, ~23!

with kWb
OR5kW22kW3.

A polarization of exactly the same form as Eq.~3!, with
frequencyv and wave vectorkW45kW11kW22kW3, is obtained
when any of the above second-order polarization
produced by a selected pair of input waves—combine w
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the remaining input wave. The corresponding ‘‘cascade
mechanisms are~A! noncollinear second-harmonic gener
tion through interaction of beams 1 and 2, and differen
frequency generation between the polarization~21! generated
in such a way and beam 3; and~B! optical rectification
through interaction of beams 1~or 2! and 3, and electro-optic
interaction between the polarization~22! @or ~23!# generated
in such a way and beam 2~or 1!.

In the following, I will designate the effective third-orde
polarizations and susceptibilities induced by such ‘‘ca
caded’’ processes as ‘‘PW (C,kW )’’ and ‘‘ x (C,kW ),’’ where kW identi-
fies the wave vector of the relevant second-order polar
tion, e.g.,kWSH when cascading occurs through the seco
harmonic polarization ~21!. The genuine third-order
polarizationP(3) as well as any of thePW (C,kW ) radiate in a
phase-matched way a wave that contributes to the t
DFWM signal.

The effective third-order susceptibilities for the three ca
caded processes introduced above are derived in the
sections.

A. Second-Harmonic Generation and Difference
Frequency Generation

The interaction of the second-harmonic polarization~21!

with the electric fieldEW (v,kW3) of the third ‘‘input’’ wave
leads to an effective third-order polarizationP(C,kWSH), which
can be calculated using Eq.~19!. In a coordinate system
where the dielectric tensor is diagonal,

Pi
(C,kWSH)~v,kW4!

5x i jq
(2)~2v,2v,2v,2kW4 ,2kW3 ,kWSH!

3Ej~2v,2kW3!Fzqp~kWSH!1
e0dqpL

f p
GPp

(SH) .

~24!

The local field factorf p applies to the intermediate polariza
tion ~21! with a frequency of 2v and polarized alongp. The
tensorzqp(kW

SH) is defined by Eqs.~13!–~14! and Eq.~16!,
and takes into account the macroscopic electric field that
be induced by the polarizationPW SH(kWSH), as discussed in the
previous section. Note thatzqp(kW

SH) also depends on the
frequency and on the direction of the intermediate polari
tion ~21!.

Inserting Eq.~21! into Eq. ~24! one obtains

Pi
(C,kWSH)~v,kW4!5e0xpkl

(2)~22v,v,v,2kWSH,kW2 ,kW1!

3x i jq
(2)~2v,2v,2v,2kW4 ,2kW3 ,kWSH!

3Ej~2v,2kW3!Ek~v,kW2!El~v,kW1!

3F zqp~kWSH!1
dqp

np
212

G , ~25!

where we introduced the Lorentz expressions forf p and L,
and we used the refractive indexnp

25epp(2v).
3-5
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In Eq. ~25!, the second-order susceptibilities descri
second-harmonic and difference-frequency generation. T
can both be expressed in terms of the frequently useddi jk
coefficients

xpkl
(2)~22v,v,v,2kWSH,kW2 ,kW1!52dpkl , ~26!

x i jq
(2)~2v,2v,2v,2kW4 ,2kW3 ,kWSH!52dqi j , ~27!

where the factor of 2 has no special significance and o
reflects how the ‘‘d coefficients’’ were originally defined.

Following the same way used to derive the general
pression~20!, Eq. ~25! can be compared to Eq.~3! to obtain
the effective third optical susceptibility for the SHG/DF
contribution

x i jkl
(C,kWSH)5

8dqi jdpkl

3 F zqp~kWSH!1
dqp

npp
2 12

G , ~28!

where a factor of 2/3 had to be introduced because of
degeneracy factor in Eq.~3!, and a factor of 4 comes from
the definition of thed coefficients.

As discussed before,zqp(kW
SH) assumes different value

depending on the characteristics of the second-harmonic
larization. For the phase-conjugation DFWM configurati
of Fig. 1~b!, and whenever the second-harmonic polarizat
is longitudinal,zqp(kW

SH)52dqp /epp as found in Eq.~13!,
and Eq.~28! becomes

x i jkl
(C,kWSH)52

8dpi jdpkl

3

2

npp
2 ~npp

2 12!
. ~29!

For a transverse second-harmonic polarization, a situa
that can only arise in the forward DFWM configuration
Fig. 1~a!, zqp5dqp$@kc/(2v)#22npp

2 (2v)%21 as found in
Eq. ~14!. Then Eq.~28! becomes

x i jkl
(C,kWSH)5

8dpi jdpkl

3 F 1

@kSHc/~2v!#22npp
2 ~2v!

1
1

npp
2 ~2v!12

G . ~30!

The completely different role played by the SHG/DF
process for DFWM in the two possible experimental geo
etries is immediately visible from Eqs.~29! and ~30!. While
for the phase-conjugation geometry the SHG/DFG contri
tion is always independent of the wave vectors of the in
acting beams, for the forward geometry the SHG/DFG c
tribution becomes very sensitive on the birefringence of
material and on the orientation of the wave vector of
intermediate second-harmonic polarization~this wave vector
vanishes for the phase-conjugation DFWM configuration!.

For the phase-conjugation DFWM setup of Fig. 1~b!, Eq.
~29! always applies. In this case the second-harmonic po

ization is spatially homogenous andx i jkl
(C,kWSH) is a constant,

only dependent on the polarizations of the interacting bea
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in the same way asx i jkl
(3) . This is an important point becaus

it means that in this configuration the SHG/DFG cascad
contribution cannot be distinguished from the direct thir
order contribution. It would, therefore, be possible, in pr
ciple, to include the SHG/DFG contribution in the numeric
value ofx i jkl

(3) . This will not be the case for the OR/EO con
tribution, or for the SHG/DFG contribution in the forwar
DFWM setup of Fig. 1~a!.

The SHG/DFG contribution for the phase-conjugati
DFWM geometry is normally relatively modest. An order-o
magnitude evaluation of Eq.~29! using a refractive index of

;2 givesx i jkl
(C,kWSH);20.2dpi jdpkl , which for dpi j5dpkl510

pm/V becomesx i jkl
(C,kWSH);0.2310222 m2/V2, more than an

order of magnitude less than the third-order susceptibility
fused silica, which is x1111

(3) 54310215 esu52310222

m2/V2 @18,22–24#. In this example we used susceptibilit
values that are typical of inorganic materials, and the re
tively low contribution of the SHG/DFG process can also
understood on the basis of the frequency dependence o
material excitations that contribute to the various proces
while the contribution of ionic motion~optical phonons! to
DFWM is allowed and large, only the electronic respon
contributes to frequency doubling@9#. For organic materials
on the other hand, the nonlinearity is given by the respo
of the electron clouds for practically all frequency combin
tions, which should tend to make the SHG/DFG contributi
more comparable to the direct third-order contribution. Mo
detailed examples of the magnitude of the SHG/DFG con
butions for different materials and experimental geometr
will be given later on.

The magnitude of the SHG/DFG contribution to DFW
in the phase-conjugation experimental geometry has
been calculated in Ref.@11#. But there the direct contribution
of the nonlinear polarization@the term proportional to 1/(n2

12) in ~28!# was not taken into account. As a consequen
the treatment of the SHG/DFG contribution given in Re
@11# predicts effective third-order susceptibilities with th
wrong sign, and which are too large by a factor (n212)/2.
This lead to effective third-order susceptibilities substantia
larger than the ones given here.

The cascaded contribution by SHG/DFG in the forwa
DFWM setup of Fig. 1~a! is also given by Eq.~29! whenever
the second harmonic polarization is longitudinal. For a tra
verse polarization, however, the effective susceptibility
given by Eq. ~30! and it depends on the refractive inde
dispersion. In Eq.~30! one recognizes the possibility that th
second-harmonic polarization radiates a wave, because i
a pole forkSH52vnpp /c. Obviously, the fact that Eq.~30!
diverges when the second harmonic polarization is ph
matched to a propagating electromagnetic wave of the s
frequency and wave vector requires a different solution t
takes into account the linear growth of the radiated wa
with propagation distance. However, this phase-match
condition will be very sensitive to the intersection angle a
the polarization of the interacting beams. It would be eas
detected experimentally and should not adversely af
DFWM experiments as long as one avoids the particu
beam crossing angles, if they exist, where the pha
3-6
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DEGENERATE FOUR-WAVE MIXING IN . . . PHYSICAL REVIEW A64 063813
matching condition is satisfied. In the following we consid
only the SHG/DFG contributions that always contributes
DFWM, independent of phase-matching conditions for SH

The magnitude and characteristics of the SHG/DFG c
tribution in the forward DFWM geometry can be better u
derstood by considering the limit of a small angleb ~outside
the sample! between beams 1 and 2. Then one can w
kSH5ukW11kW2u5cos(b/2)@nk(v)1nl(v)#v/c, and

x i jkl
(C,kWSH)5

8dpi jdpkl

3 F 1

~@nk~v!1nl~v!#/2!22npp
2 ~2v!

1
1

npp
2 ~2v!12

G . ~31!

is a good approximation for Eq.~30!. Consider for example

x1111
(C,kWSH) . Sincen1(v),n1(2v) because of dispersion, th

first term in the square brackets is negative. And since it
a difference of refractive indices in the denominator it dom
nates over the second term. One sees that the SHG/
contribution has the potential of becoming large and nega

for diagonal elements ofx i jkl
(C,kWSH) and for materials with low

dispersion, while it also depends on the birefringence
nondiagonal elements of the susceptibility tensor. Some
amples for specific inorganic and organic materials will
given below.

As a final comment to conclude this section it is intere
ing to note that it would be wrong to expect that SHG/DF
does not contribute to DFWM because the SHG proces
not phase matched. After the two-step SHG/DFG proc
takes place, the resulting effective third-order polarizat
~25! is perfectly phase matched to the direct third-order
larization ~3! ~the signals radiated by both polarizations a
in phase!. Thus the contribution of SHG/DFG isalways
phase matched for DFWM. The fact that the SHG proc
itself is not phase matched only affects the magnitude of
effective third-order susceptibility~28! by influencing the
value ofzqp(kW

SH) whenPW (C,kWSH) is transverse.

B. Optical rectification and Pockels effect

The effective third-order polarizationsP(C,kWa
OR) and

P(C,kWb
OR) induced by OR/EO cascading can be calculated

ing ~19!

P
i

(C,kWa
OR)

~v,kW4!5x iqk
(2)~2v,0,v,2kW4 ,kWa

OR ,kW2!

3Fzqp~kWa
OR!1

dqp

epp12GPp
OR~kWa

OR!

3Ek~v,kW2!, ~32!

P
i

(C,kWb
OR)

~v,kW4!5x iql
(2)~2v,0,v,2kW4 ,kWb

OR ,kW1!

3Fzqp~kWb
OR!1

dqp

epp12GPp
OR~kWb

OR!

3El~v,kW1!, ~33!
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where kW45kWa
OR1kW25kWb

OR1kW1 and the Lorentz value for
L/ f p was used. Because the polarizations~22! and ~23! are
static, the~diagonal! dielectric tensor must be taken at a fr
quency defined by the length of the optical pulses, wh
zqp(kWa

OR) andzqp(kWb
OR) are given by Eq.~15!.

Inserting Eqs.~22!–~23! into Eqs.~32!–~33! one obtains
the third-order polarizations induced by the two step proc
of optical rectification and Pockels effect. Once again, th
have exactly the same form as Eq.~3!, with frequencyv and
wave vectorkW4,

P
i

(C,kWa
OR)

~v,kW4!5e0x iqk
(2)~2v,0,v,2kW4 ,kWa

OR ,kW2!

3xp jl
(2)~0,2v,v,2kWa

OR ,2kW3 ,kW1!

3Fzqp~kWa
OR!1

dqp

epp12G
3Ej~2v,2kW3!Ek~v,kW2!El~v,kW1!,

~34!

P
i

(C,kWb
OR)

~v,kW4!5e0x iql
(2)~2v,0,v,2kW4 ,kWb

OR ,kW1!

3xp jk
(2) ~0,2v,v,2kWb

OR ,2kW3 ,kW2!

3Fzqp~kWb
OR!1

dqp

epp12G
3Ej~2v,2kW3!Ek~v,kW2!El~v,kW1!.

~35!

It is interesting to discuss the case of quasi-degene
four-wave mixing, described by a third-order susceptibil
of the kind x i jkl

(3) (2v4 ,2v3 ,v2 ,v1 ,2kW4 ,2kW3 ,kW2 ,kW1),
where the difference between any of thev i is small com-
pared to their value. In this case the OR/EO process g
over to a difference frequency generation plus Sum F
quency Generation process~DFG/SFG!. The second-order
susceptibilitiesx iqk

(2) and xp jl
(2) appearing in Eq.~34! must

be replaced by x iqk
(2)(2v4 ,va ,v2 ,2kW4 ,kWa

DF ,kW2) and

xp jl
(2)(2va ,2v3 ,v1 ,2kWa

DF ,2kW3 ,kW1) @and equivalently for

Eq. ~35!#. The polarization with wave vectorkWa
DF is in this

case a difference-frequency polarization oscillating at a sm
frequency. In principle, one should, therefore, use thezqp
derived from Eqs.~13! and ~14! instead of Eq.~15! in the
expressions~32! and~34!. This affects the value ofzqp only
in the case where the second-order polarization is transv
and Eq.~14! applies. However, even in this case one se
from Eq.~14! thatzqp tends to zero for a small frequencyvp
~corresponding to the present difference-frequencyva), so
that one gets a smooth transition from the quasi-DFWM c
to the DFWM case~remember that the wave vectorkW p , set
by frequency and crossing angle of two input beams, is
sentially independent from the difference-frequencyvp!.
This shows that the present treatment also applies in the
of quasi-degenerate four-wave mixing. The expressions
3-7
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IVAN BIAGGIO PHYSICAL REVIEW A 64 063813
rived here apply directly when the difference-frequenciesva
andvb are small compared to the typical infrared resona
frequencies of a material, and will have to take into acco
the corresponding resonances otherwise.

The second-order susceptibilities appearing in Eqs.~34!–
~35! are those that describe electro-optic effect and opt
rectification. Permuting indices and frequency/wave vec
arguments they can be expressed in terms of the stan
electro-optic coefficients

x iqk
(2)~2v,0,v,2kW4 ,kWa

OR ,kW2!52
1

2
ni

2nk
2r ikq , ~36!

xp jl
(2)~0,2v,v,kWa

OR ,2kW3 ,kW1!52
1

2
nl

2nj
2r j lp . ~37!

Using these relations and comparing Eqs.~34!–~35! with Eq.
~3! we find the equivalent of Eq.~20! for the present specia
case, that is, the effective third-order susceptibilities that
scribe the cascading processes related to the second-
polarizations with wave vectorskWa

OR andkWb
OR @13#,

x
i jkl

(C,kWa
OR)

5
1

6
ni

2nj
2nk

2nl
2r ikqr j lpFzqp~kWa

OR!1
dqp

epp12G ,
~38!

x
i jkl

(C,kWb
OR)

5
1

6
ni

2nj
2nk

2nl
2r ilq r jkpFzqp~kWb

OR!1
dqp

epp12G ,
~39!

wherezqp(kWa
OR) andzqp(kWb

OR) are given by

zqp~kW !52
kqkp

kie i j kj
. ~40!

The electro-optic coefficients and dielectric tensor used
Eqs.~38!–~39! are the strain-free values when the duratio
of the laser pulse used in a DFWM experiment is mu
shorter than the time needed by an acoustic wave to pr
gate over a distance given by the spatial period of the in
mediate polarizations~22!–~23! @13,25#. The propagation
time of a typical acoustic wave over a distance of 1mm is
generally of the order of a fraction of a nanosecond. Wh
the modulation period of one of the intermediate polari
tions ~22!–~23! becomes very small@e.g., for Eq.~23! in the
DFWM configuration of Fig. 1~b!#, or for longer laser pulses
the electro-optic coefficients and dielectric constants to
used in Eqs.~38!–~39! must take into account the spatial
modulated strain pattern that can form, and are given
@13,25#

r i jk~kW !5r i jk
S 1pi jmnekluk̂nk̂u~A21!ml , ~41!

and

e i j ~kW !5e i j
S1

1

e0
k̂nk̂keimkejln~A21!ml , ~42!
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where kW is the wave vector of the corresponding optica
rectified polarization,r i jk

S is the electro-optic tensor at con

stant strain,e i j
S is the dielectric tensor at constant strain,k̂i

5ki /k, pi jkl is the elasto-optic tensor,ei jk is the piezoelec-
tric tensor,Aik5Ci jkl

E k̂j k̂l , and Ci jkl
E is the elastic stiffness

tensor.
As mentioned above, the effective third-order susceptib

ties ~38! and ~39!, calculated using the strain-free values
the electro-optic coefficients, are also valid for qua
degenerate four-wave mixing as long as the frequency dif
ences between the interacting beams are smaller than
typical optical phonon or vibronic frequencies of a materi

The two OR/EO contributions depend on the orientat
of the intermediate polarizations~22!–~23! and of their wave
vectors. This can be most easily seen by noticing how
~40! is a projection operator that takes the component of
polarization which is parallel to its wave vector. Because
this effect, the OR/EO contribution will depend on the o
entation of the sample for both DFWM geometries in Fig.
even when the directions of polarization of the interacti
beams are kept constant inside the material. This allows
measurement of the OR/EO contributions by comparing
DFWM signal for different geometries@13#. The fact that a
strain pattern can be established in the crystal on the p
second and nanosecond time scale means that the OR
contribution will also depend on the magnitude of the wa
vectorskWa

OR andkWb
OR , not only on their direction@25#. This is

particularly relevant when comparing experimental resu
obtained with the two different DFWM geometries in Fig.
because the spatial period corresponding tokWb

OR changes
typically from a fraction of a micrometer for the setup in Fi
1~b! to several micrometers for the setup in Fig. 1~a!.

IV. EFFECTIVE THIRD-ORDER SUSCEPTIBILITY
FOR DFWM

When the second-order processes outlined in the pre
ing section contribute to DFWM, the separate contributio
from Eq.~28! and Eqs.~38!–~39! will add to the direct third-
order susceptibility that must be used in Eq.~3!. It makes,
therefore, sense to define a total, effective, third-order s
ceptibility that takes into account all contributions to DFW
and that must replacex i jkl

(3) in Eq. ~3! whenever a noncen
trosymmetric material is used

x i jkl
(3),EFF5x i jkl

(3) 1x i jkl
(C,kWSH)1x

i jkl

(C,kWa
OR)

1x
i jkl

(C,kWb
OR)

. ~43!

Thex i jkl
(3),EFF given here must be used in the standard expr

sions ~3!, ~6!, and ~7! to calculate the effective third-orde
polarization and the corresponding DFWM signal@26#.

In Eq. ~43!, x i jkl
(C,kWSH) is defined by Eq.~28! and can depend

on magnitude and direction of the wave vectorkWSH5kW1

1kW2 only for the forward-DFWM configuration@Fig. 1~a!#.

x
i jkl

(C,kWa
OR)

andx
i jkl

(C,kWb
OR)

are defined by Eqs.~38!–~39!, and al-

ways depend on the wave vector differenceskWa
OR5kW12kW3

andkWb
OR5kW22kW3, in a manner described by the wave vect
3-8
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DEGENERATE FOUR-WAVE MIXING IN . . . PHYSICAL REVIEW A64 063813
dependent termzqp(kW ) in Eqs.~38!–~39!. x i jkl
(3) , on the other

hand, does not have any wave vector dependence unde
assumption that the direct third-order interaction is a lo
process.

To analyze a DFWM experiment in a noncentrosymme
material, it is important to be able to measure the dir
third-order susceptibilityx i jkl

(3) , which is buried in the sum
~43!.

This could be done by determiningx i jkl
(3),EFF with respect

to a standard reference material, such as CS2 or fused silica,
and subtracting all the second-order contributions calcula
for the experimental configuration that was used. T
method relies both on the knowledge of the susceptibility
a reference material, and on the ability to predict the seco
order contributions.

A better way is to exploit the geometry dependences
the second-order effects to measure their contribution to

signal, and use the calculated values ofx i jkl
(C,kW ) to determine

the absolute value ofx i jkl
(3),EFF , and, therefore, also ofx i jkl

(3) ,
without having to rely on a reference material@2,13#.

Alternatively, using both a reference material and t
knowledge about the geometry dependence of the sec
order contributions, it is also possible to measure the ma
tude of the second-order contributions with respect to
third-order susceptibility of the reference material. Th
could for example be used to determine the electro-optic
efficients in an all-optical way, and at frequencies of t
order of the pulse length, e.g., of the order of 1 THz for 1
long pulses.

V. EXAMPLES OF THE EFFECT OF SECOND-ORDER
CONTRIBUTIONS ON DFWM

The cascaded contributions~28!, ~38!, and ~39! assume
considerably different values depending on experimental
ometry and the material investigated. Since both the SH
DFG contribution and the OR/EO contribution depend
boundary conditions, the effective values they assume
pend both on DFWM configuration and on crystal orien
tion, not just on the polarization of the interacting beam
Some symmetry rules that are valid for direct third-ord
susceptibilities will not be valid anymore for the effectiv
susceptibilities coming from a cascading of second-or
contributions. This is clearly visible in the example of th
OR/EO contributions alone, which can change a lot w
sample orientation when the intermediate rectified polar
tions change from transverse to longitudinal@13#.

The difference in magnitude between the relative con
butions of SHG/DFG cascading and of OR/EO cascad
depends on the pulse length and material used, as well a
the experimental geometry. This is because optical phon
can contribute to genuine third-order DFWM and to OR/E
cascading, but not to SHG/DFG cascading. Thus, SHG/D
cascading becomes comparable to the other effects in org
crystals or when using very fast laser pulses shorter than
fs, while its relative importance is generally smaller oth
wise. However, SHG/DFG cascading can in all cases bec
considerably strong in the forward DFWM geometry@Fig.
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1~a!#, when the second-harmonic polarization is transvers
These sometimes complicated dependencies of the

caded contributions on several experimental details can
best clarified by giving examples of the corresponding eff
tive third-order susceptibilities for various DFWM geom
etries and for a couple of different materials.

In the following I will give numerical values for the cas
caded contributions from SHG/DFG and OR/EO for the tw
DFWM configurations in Fig. 1 and for two example mat
rials: The organic salt DAST and the orthorhombic ferroele
tric perovskite KNbO3.

A. DFWM in the Inorganic Ferroelectric Crystal KNbO 3

KNbO3 has point group mm2 with orthorhombic symm
try. As such, on a total of 81, it has 21 independent nonz
elements of the third-order susceptibility tensor. The ad
tional symmetry introduced by frequency-degeneracy
DFWM means that, in our nomenclature, the first pair
indices and the last pair of indices are symmetric and se
rately interchangeable, so that the total number of indep
dent elements of the direct third-order susceptibility ten
for DFWM reduces to 9:x1111

(3) , x2222
(3) , x3333

(3) , x1133
(3) x2233

(3) ,
x1313

(3) , x2323
(3) , x1122

(3) , andx1212
(3) .

Each index corresponds to a frequency and a wave ve
parameter ofx i jkl

(3) (2v,2v,v,v,2kW4 ,2kW3 ,kW2 ,kW1). In or-
der to measure, e.g.,x1133

(3) using any one of the DFWM set
ups in Fig. 1, beams 1 and 2 are polarized along 3,
beams 3 and 4 are polarized along 1. In order to simplify
discussion and the analysis, we assume a situation wher
angles between the beams are small—so that light polar
tions are well defined—and where the crystal faces are
perpendicular to the crystallographic axes and are nearly
pendicular to the light beams.

The material properties of KNbO3 that determine the
magnitude of the cascaded contributions are given in Tab
The coordinate system used in KNbO3 identifies the 3 axis
with the polarc axis, so that the only nonzero second-ord
susceptibilities are the ones whose indices are any perm
tion of i i 3, with i 51,2,3. The electro-optic coefficients ar
the strain-free ones that include optical-phonon contri
tions, so they are good for calculating the OR/EO contrib

TABLE I. Nonzero, strain-free electro-optic coefficientsr i jk
S

~from Ref.@27#! and nonlinear optical coefficientsdi jk of KNbO3 at
a wavelength of 1.064mm ~taken from Ref.@28#, and rescaled
using d11150.3 pm/V for quartz!. The dielectric constant~from
Ref. @29#!, and the refractive indices~from Ref. @30#! at the same
wavelength@n(v)# and at twice the frequency@n(2v)# are also
given.

i jk r i jk
S (pm/V) dki j (pm/V) e i i ni(v) ni(2v)

333 30.5 20.5 37 2.1194 2.2031
223 64.0 13.7 780 2.2576 2.3814
113 16.0 11.8 24 2.2195 2.3226
232 348 12.8
131 23.6 12.3
3-9
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IVAN BIAGGIO PHYSICAL REVIEW A 64 063813
tions for DFWM with laser pulse durations of;1 ps or
longer.

To see see how the OR/EO and the SHG/DFG contri
tions arise from the data in Table I, consider again the
ample of x1133

(3) . A rectified polarization with wave vecto

kWa
OR5kW12kW3 is induced by beams polarized along 3 and

respectively, via the electro-optic coefficientr 131. This rec-
tified polarization is, therefore, polarized along 1, and it
teracts with beam 2~polarized along 3! via the electro-optic
coefficientr 131 to generate beam 4~polarized along 1!. The

second-harmonic polarization has wave vectorkWSH5kW11kW2

and it is induced by two beams polarized along 3, via
nonlinear optical coefficientd333. The second-harmonic po
larization is thus polarized along 3, and it interacts w
beam 3~polarized along 1! via the nonlinear optical coeffi
cient d311 to generate beam 4~polarized along 1!. In the
phase-conjugation DFWM setupkWSH50W and the second
harmonic polarization is spatially homogenous and does
depend on the wave vectors of the interacting beams. Th
not the case for the forward DFWM setup.

In order to show the various interplays between exp
mental geometry, sample orientation, OR/EO contributi
and SHG/DFG contribution, I calculate all contributions f
both DFWM configurations in Fig. 1, two different orienta
tions of the sample, and all third-order susceptibilities
volving the indices 2 and 3. These susceptibilities can, e
be measured in a crystal with a polished face perpendic
to the 1 axis and beam wave vectors almost parallel to th
axis. These are also the tensor elements where the OR
contribution is largest, because of the large electro-optic
sor elementr 232 of KNbO3. The results are displayed i
Table II.

In Table II, the first column specifies the effective thir
order susceptibility and, through its indices, the polarizatio
of the interacting beams in the sample reference frame.
column labeledc gives the orientation of thec axis of the
crystal in the coordinate system defined in Fig. 1:y and z
mean that thec axis is in the incidence plane of beams 1 a
3, or perpendicular to it, respectively~The SHG/DFG contri-
bution is marked with ‘‘y and z’’ because it is the same fo
both sample orientations!. The remaining columns list the
second-order contributions for the two different DFWM g
ometries presented in Fig. 1. The two OR/EO contributio
with different wave vectors are listed in separate colum
while the one SHG/DFG contribution is in a column by
self. For every contribution, the corresponding pair
electro-optic or nonlinear optical coefficients is also liste
The direct third-order contribution is the same for every ho
zontal section of Table II. Bothx3333

(3) and x2233
(3) are of the

order of;60310222 m2/V2 in KNbO3 @13#.
To give an example of its effect, I included piezoelect

elastic relaxation for the contribution with the large wa
vector kWb

OR in Fig. 1~b! ~phase-conjugation DFWM setup!.

For the large wave vectorkWb
OR of the rectified polarization,

the propagation velocity of elastic waves alongkWb
OR can be

so high that the crystal can elastically relax already dur
the light pulse. The OR/EO contributions for all other wa
06381
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vectors have been calculated using the clamped~strain-free!
coefficients, and are valid up to laser pulse lengths of sev
nanoseconds, depending on the angle between the beam
obtain the effective susceptibility including elastic rela
ation, I used the data in Ref.@29# to calculate the effective
electro-optic tensor~41! and the effective dielectric tenso
~42!, and used the results in Eqs.~38!–~39!. Without piezo-

electric relaxation, x
3333
(C,kWb

OR)
5x

3333
(C,kWa

OR)
524310222 m2/V2

for the phase-conjugation setup andciz. For x1133
(3) andx2233

(3)

the piezoelectric contribution forkWa,b'c always vanishes by
symmetry, as can be demonstrated with Eq.~41!. See Ref.
@25# for further details on this effect.

It is important to note that the data in the table assum
that all light polarizations are kept constant in the sam
reference frame when the sample orientation is changed f
cix to ciz. While the direct third-order susceptibility doe
not change with crystal orientation or experimental setup,
indirect second-order contributions do. The considera
variations of the effective third-order susceptibilities listed
Table II obviously has important consequences for the in
pretation of DFWM results in any centrosymmetric materi

TABLE II. Second-order cascaded contributions to DFWM
KNbO3 for the two DFWM setups shown in Fig. 1. The contrib
tions are listed separately for the two OR/EO contributions w

wave vectorskWa
OR5kW12kW3 andkWb

OR5kW22kW3, and for the one SHG/

DFG contribution with wave vectorkWSH5kW11kW2. The effective
third-order susceptibilities are given for two orientations of t
crystal (c-axis parallel or perpendicular to the incidence plane
fined by beams 1 and 3!, and are in units of 10222 m2/V2. The

OR/EO contributions with wave vectorkWb
OR for the case of Fig. 1~b!

have been calculated taking into account elastic relaxation@25#.

Fig. 1~b! Fig. 1~a!

c axis kWa
OR kWb

OR kWa
OR kWb

OR

x3333
(C,kW ) r 333r 333 r 333r 333 r 333r 333 r 333r 333

y 22 33 22 24
z 24 33 24 22

x3333
(C,kWSH) d333d333 d333d333

y andz 20.7 229

x2233
(C,kW )5x3322

(C,kW ) r 232r 232 r 232r 232 r 232r 232 r 232r 232

y 136 136 136 20.3
z 20.3 136 20.3 136

x2233
(C,kWSH) d333d322 d333d322

y andz 20.4 220

x3322
(C,kWSH) d322d333 d322d333

y andz 20.4 32

x2323
(C,kW ) r 333r 223 r 232r 232 r 333r 223 r 232r 232

y 25.5 136 25.5 23.5
z 6.6 136 6.6 136

x2323
(C,kWSH) d232d232 d232d232

y andz 20.2 24.4
3-10
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DEGENERATE FOUR-WAVE MIXING IN . . . PHYSICAL REVIEW A64 063813
As an example, thex3333
(3) coefficient can be measured wit

~i! ciy and all beams polarized alongy, or ~ii ! ciz and all
beams polarized alongz. Depending on experimental con
figuration, several different results can be obtained. For

OR/EO contributions onlyr 333 contributes toPW OR, which is
then parallel toc. For the phase-conjugation setup@Fig.
1~b!#, both rectified polarizations are transverse forciz,

while PW OR(kWa
OR) becomes longitudinal forciy. For the for-

ward setup,PW OR(kWa
OR) is transverse andPW OR(kWb

OR) longitu-
dinal for ciz, and vice versa forciy. The total OR/EO con-
tributions change by about a factor of two when rotating
sample ~and all polarizations! by 90° in the phase-
conjugation setup, or when switching to the forward DFW
geometry for a sample with thec axis parallel toz. The
SHG/DFG contribution, on the other hand, is the same
both sample orientations but is very sensitive to the type
DFWM setup used, changing from being negligible in t
phase-conjugation setup of Fig. 1~b! to being the dominan
cascading contribution in the forward setup. Similar effe
are observed forx2233

(3) andx2323
(3) . Interestingly, in the forward

setup, thetotal cascaded contribution does not depend on
orientation of the sample for all coefficients with the exce
tion of x2323

(3) .
The SHG/DFG contribution is negligibly small in a

cases for the phase-conjugation DFWM configuration
cause in KNbO3 the electronic response responsible
SHG/DFG is smaller than the optical-phonon contributio
to EO/OR, and because the second-harmonic polarizatio
spatially homogenous. But the SHG/DFG contributions
come important in the forward DFWM configuration of Fi
1~a!, where the second-harmonic polarization is a transve
plane wave, and the SHG process is nearer to phase m
ing.

It is very interesting to note that for the SHG/DFG co
tribution x2233

(3) 5” x3322
(3) , while for the direct third-order con

tribution and for the OR/EO contribution the symmetry ru
x i jmn

(3) 5xmni j
(3) always applies. This can be explained as f

lows. For the SHG/DFG contribution tox2233
(3) , the second-

harmonic polarization is induced by beams polarized alo
3, while for the SHG/DFG contribution tox3322

(3) , the second-
harmonic polarization is induced by beams polarized alo
2. This does not matter for the DFWM configuration of F
1~b!, because there the electric field induced by the polar
tion does not depend on the refractive indices seen by
beams inducing the second-order polarization. But for
forward DFWM configuration the second-harmonic polariz
tion is transverse. The magnitude of the electric field it g
erates depends on the phase mismatch between the b
inducing the second-harmonic polarization and a propaga
wave at the second harmonic frequency. This destroys
x2233

(3) 5x3322
(3) symmetry. Moreover, normal refractive-inde

dispersion leads to a negativex2233
(C,kWSH) , because here the po

larizations of beams 1 and 2 and the second-harmonic po

ization are parallel.x3322
(C,kWSH) , on the other hand, is positiv

because here beams 1 and 2 have a polarization perpen
lar to the second-harmonic polarization and the refrac
index differences in the denominator of Eq.~30! change sign.
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Table II is a good example of the sensitivity of the ca
caded contributions to the choice of DFWM experimen
setups and the sample orientation. The same kinds of ge
etry dependencies highlighted in Table II are expected in
noncentrosymmetric materials. Reference@13# presents some
data on the OR/EO contributions to DFWM in tetragon
BaTiO3, another ferroelectric perovskite. In BaTiO3, the
electro-optic coefficients are even larger than in KNbO3, so
that the importance of the OR/EO contributions is abo
twice as large as in KNbO3.

From this example it is obvious that a correct inclusion
the second-order effects in DFWM measurements is of p
mount importance for a correct reporting of experimen
results, and in order to be able to compare experimenta
sults obtained in different laboratories.

B. Cascaded Contributions to DFWM in the Organic
Crystal DAST

To complete our practical examples of the second-or
contributions to DFWM we consider an organic molecu
crystal. We chose the organic salt DAST because it is on
the known organic crystals with better optical quality, hig
electro-optic and nonlinear optical susceptibilities, and is
ideal candidate for experiments. Moreover, it has h
second- and third-order nonlinear optical response and s
second-order contributions to DFWM have already been
served experimentally@31#.

Table III gives the relevant material tensors of DAS
taken from the literature. Since DAST belongs to the po
groupm, it has ten independent second-order susceptibili
for OR/EO and SHG/DFG. The ones listed in the table
expected to be the largest ones because of the molec
orientation inside the DAST crystal@32,33#, which makes the
other coefficients negligible.

Similar to what was done for the example of KNbO3, I
calculate all second-order contributions for both DFW
configurations in Fig. 1, and two different orientations of t
sample. For DAST, I calculate all third-order susceptibiliti
involving the indices 1 and 2, which can be measured i
crystal with a polished face perpendicular to the 3 axis a
with beam wave vectors almost parallel to the 3 axis. T

TABLE III. The largest electro-optic coefficientsr i jk ~from
Refs. @32,31#! and nonlinear optical coefficientsdi jk ~from Ref.
@33#! of DAST, at a wavelength of 1.54mm. The dielectric constan
~from Ref. @31#!, and the refractive indices at the same wavelen
@n(v)# and at twice the frequency@n(2v)# are also given.

i jk r i jk (pm/V) dki j (pm/V) e i i ni(v) ni(2v)

111 47 290 6.5 2.13 2.40
221 21 41 2.5 1.60 1.69
331 ,0.1 2.3 1.57 1.62
113 5
212 14 39
3-11
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IVAN BIAGGIO PHYSICAL REVIEW A 64 063813
long axis of the molecules in the DAST crystal is appro
mately oriented along the 1 axis, making the nonlinear o
cal contributions from this axis dominant over all others.

The results—obtained by using the data in Table III a
Eqs. ~28!, ~38!, and ~39!—are displayed in Table IV. As is
readily visible from this table, the second-order contributio
to DFWM in DAST have the same complicated geome
dependences as in KNbO3, and the discussion of the prece
ing section applies also in this case, even though here
OR/EO contributions are less important when compared
the direct third order susceptibility. For DAST,x1111

(3) (2v,
2v,v,v) is of the order of 3000310222 m2/V2 for v cor-
responding to 1.064mm ~while x1122

(3) ;500310222 m2/V2)
andx1212

(3) ;300310222 m2/V2) @31#. For the wavelength of
1.54 mm of interest here these values should probably
reduced by about 50%.

An important difference between this example of DAS
and the previous example of KNbO3, is that for DAST the
SHG/DFG contributions are comparable to the OR/EO c
tributions also in the phase-conjugation DFWM configu
tion of Fig. 1~b! ~while they were negligible in KNbO3). In

TABLE IV. Second-order cascaded contributions to DFWM
DAST for the two DFWM setups shown in Fig. 1 and at a wav
length of 1.54 mm. The contributions are listed separately for t

two OR/EO contributions with wave vectorskWa
OR andkWb

OR , and for
the one SHG/DFG contribution. The effective third-order susce
bilities are given for two orientations of the crystal (1-axis para
or perpendicular to the incidence plane of beams 1 and 3!, and are
in units of 10222 m2/V2.

Fig. 1~b! Fig. 1~a!

1 axis kWa
OR kWb

OR kWa
OR kWb

OR

x1111
(C,kW ) r 111r 111 r 111r 111 r 111r 111 r 111r 111

y 183 183 183 25.6
z 256 183 25.6 183

r 113r 113 r 113r 113 r 113r 113 r 113r 113

y 4.1 23.6 4.1 4.1
z 4.1 23.6 4.1 4.1

x1111
(C,kWSH) d111d111 d111d111

y andz 2100 21545

x1122
(C,kW )5x2211

(C,kW ) r 212r 212 r 212r 212 r 122r 122 r 212r 212

y 27.8 9.8 27.8 9.8
z 9.8 9.8 9.8 27.8

x1122
(C,kWSH) d122d111 d122d111

y andz 214 2218

x2211
(C,kWSH) d111d122 d111d122

y andz 214 258

x1212
(C,kW ) r 111r 221 r 212r 212 r 111r 221 r 212r 212

y 26.1 9.8 29.8 27.8
z 28.0 9.8 28.0 9.8

x1212
(C,kWSH) d212d212 d212d212

y andz 26 73.5
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this organic crystal the electro-optic response as well as
frequency-doubling response both share a very large e
tronic contribution, while the optical-phonon contributions
OR/EO are relatively small. DFWM experiments at a wav
length of 1.06mm in DAST, which demonstrated the pre
ence of the OR/EO cascaded contributions have been
ported in Ref.@31#.

Also notable in Table IV is the very large SHG/DFG co
tribution to x1111

(3) in the forward DFWM configuration. This
is caused by the fact that for this diagonal element the
fractive index difference between a frequencyv and a fre-
quency 2v is only given by the refractive index dispersio
between 1.5mm and 0.7 mm, and not by the~relatively

large! birefringence of DAST. Note also thatx1111
C,kWSH

is large
and negative, so that it tends to compensate the gen
third-orderx1111

(3) in this configuration.

VI. CONCLUSIONS

This work presented a detailed discussion of all seco
order contributions to degenerate four-wave mixing in no
centrosymmetric materials and gave general expressions
the corresponding effective third-order susceptibility th
must be used to calculate the DFWM signal.

It was found that the three input beams in DFWM c
combine pairwise to generate one second-harmonic pola
tion and two static-polarization gratings. The secon
harmonic polarization is spatially homogenous in the pha
conjugation DFWM geometry, while it is modulated like
plane wave for the forward DFWM geometry. Everyone
the three second-order polarizations contributes to
DFWM signal, phase matched with each other and with
genuine third-order effect that is always present. For e
second-order polarization, the magnitude of its contribut
to the DFWM signal depends on the orientation of its spa
modulation.

Because of all these effects the effective susceptibility
scribing DFWM in noncentrosymmetric materials chang
dramatically for different DFWM setups and on varying th
orientation of the sample with respect to the wave vectors
the interacting beams, a fact that is very important wh
comparing third-order susceptibility values measured in d
ferent laboratories. Certain symmetry properties that
characteristic of the third-order susceptibility for DFWM
centrosymmetric materials do not exist anymore for DFW
in acentric materials. If properly taken into account, the d
pendence of the second-order contributions from sample
entation can be used to relate experimentally the value
third-order and second-order susceptibilities. This allows
measurement of the third-order susceptibility without relyi
on a reference material or on a detailed characterization
the spatial and temporal profile of the laser fields inside
sample.

To date, an experimental confirmation of the predictio
of this work has been performed for the OR/EO contrib
tions in the phase-conjugation DFWM geometry of Fig. 1~b!
@13,31,25#. This gives support to the general theoretical a
proach used in this paper, and, therefore, also to the pre

-
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l
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tions regarding the forward-DFWM setup of Fig. 1~a! and
the SHG/DFG contributions.

DFWM is a standard tool for the determination of thir
order susceptibilities. The theory and examples given in
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work should help experimentalists towards a complete
porting of DFWM experiments, and towards a reliable det
mination of third-order susceptibilities of noncentrosymm
ric materials by DFWM.
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