practice diagnostic 4b

1. Use the Intermediate Value Theorem to determine whether the polynomial function has a real zero between the given integers.

$$f(x) = 7x^5 - 10x^3 - 2x^2 + 7$$
; between -2 and -1

$$\bigcirc$$
 A. $f(-2) = 145$ and $f(-1) = 8$; no

OB.
$$f(-2) = 145$$
 and $f(-1) = -8$; yes

Oc.
$$f(-2) = -145$$
 and $f(-1) = -8$; no

OD.
$$f(-2) = -145$$
 and $f(-1) = 8$; yes

2. Use the graph of the rational function shown to complete the statement.

As $x \to +\infty$, $f(x) \to ?$

OA. 1

 $\bigcirc D.$ 0

$$f(x) = \frac{x^2 - 4}{x}$$

Oa.

Ов.

Oc.

Οd.

practice diagnostic 4b

- 4. The revenue achieved by selling x graphing calculators is figured to be x(39-0.2x) dollars. The cost of each calculator is \$15. How many graphing calculators must be sold to make a profit (revenue cost) of at least \$715?
 - OA. Between 56 and 54 calculators
 - OB. Between 55 and 65 calculators
 - Oc. Between 57 and 63 calculators
 - Op. Between 25 and 35 calculators
- 5. The graph of a logarithmic function is given. Select the function for the graph from the options.

- \bigcirc A. $f(x) = \log_4 x 2$
- OB. $f(x) = \log_4(x-2)$
- \bigcirc C. $f(x) = \log_4(x+2)$
- $\bigcirc D$. $f(x) = \log_4 x$

6. Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions.

$$\frac{1}{6}(\log_2 x + \log_2 y)$$

- OA. log ₂⁶√xy
- OB. $\log_2 \sqrt[6]{x} + \log_2 \sqrt[6]{y}$
- Oc. $\log_2 \sqrt[6]{x+y}$
- $\bigcirc D. \ \sqrt[6]{\log_2(xy)}$

Student:	Instructor: Garth Isaak Course: precalc blitzer (1)	Assignment: Polynomial etc functions practice diagnostic 4b
Time:	Book: Blitzer: Precalculus Essentials, 3e	-

7. Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer.

$$\log_2(x+3) = 1 + \log_2(x-4)$$

- $\bigcirc A. \{(11/1)\}$
- $\bigcirc B. \{(7/1)\}$
- $\bigcirc c. \{(-11/1)\}$
- $\bigcirc D. \{(-7/1)\}$

Date:		Instructor: Garth Isaak Course: precalc blitzer (1) Book: Blitzer: Precalculus Essentials, 3e	Assignment: Polynomial etc functions practice diagnostic 4b
1.	D		
2.	D		
3.	В		
4.	В		
5.	A		
6.	A		
7.	A		