practice diagnostic 4a

1. Use the Intermediate Value Theorem to determine whether the polynomial function has a real zero between the given integers.

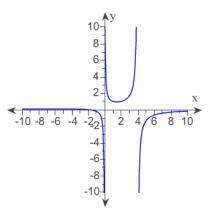
Book: Blitzer: Precalculus Essentials, 3e

$$f(x) = -5x^4 + 6x^2 + 9$$
; between -2 and -1

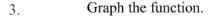
$$\bigcirc$$
 A. $f(-2) = -47$ and $f(-1) = -10$; no

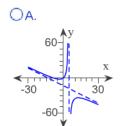
OB.
$$f(-2) = -47$$
 and $f(-1) = 10$; yes

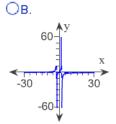
Oc.
$$f(-2) = 47$$
 and $f(-1) = -10$; yes

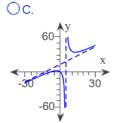

OD.
$$f(-2) = 47$$
 and $f(-1) = 11$; no

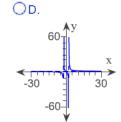
2. Use the graph of the rational function shown to complete the statement.



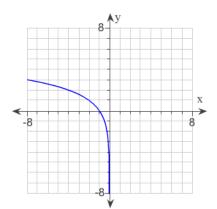

$$\bigcirc D. + \infty$$




As
$$x \rightarrow 4^-$$
, $f(x) \rightarrow ?$



$$f(x) = \frac{x^2 + 8x - 2}{x - 5}$$


practice diagnostic 4a

4. The average cost per unit, y, of producing x units of a product is modeled by

$$y = \frac{650,000 + 0.25x}{x}$$

Describe the company's production level so that the average cost of producing each unit does not exceed \$6.75.

- OA. Not more than 100,000 units
- OB. At least 200,000 units
- Oc. At least 100,000 units
- OD. Not more than 200,000 units
- 5. The graph of a logarithmic function is given. Select the function for the graph from the options.

- $\bigcirc A$. $f(x) = 1 \log_2 x$
- \bigcirc B. $f(x) = \log_2 x$
- $\bigcirc c$. $f(x) = -\log_2 x$
- $\bigcirc D$. $f(x) = \log_2(-x)$

Instructor: Garth Isaak Course: precalc blitzer (1)

Book: Blitzer: Precalculus Essentials, 3e

Assignment: Polynomial etc functions

practice diagnostic 4a

6. Use properties of logarithms to condense the logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions.

$$\frac{1}{5}(\log_2 x + \log_2 y) - 2\log_2(x+2)$$

- OA. $\log_2 \frac{\sqrt[5]{xy}}{2(x+2)}$
- OB. $\log_2 \frac{\sqrt[5]{xy}}{(x+2)^2}$
- Oc. $\log_2 \frac{\sqrt[5]{x+y}}{(x+2)^2}$
- OD. $\log_2 \frac{\sqrt[5]{x} + \sqrt[5]{y}}{(x+2)^2}$

7. Solve the logarithmic equation. Be sure to reject any value that is not in the domain of the original logarithmic expressions. Give the exact answer.

$$\log_3(x+5) = 2 + \log_3(x+2)$$

- $\bigcirc A. \{(-3/8)\}$
- \bigcirc B. $\{(-13/8)\}$
- $\bigcirc c. \{(13/8)\}$
- $\bigcirc D. \{(3/8)\}$

Date:		Instructor: Garth Isaak Course: precalc blitzer (1) Book: Blitzer: Precalculus Essentials, 3e	Assignment: Polynomial etc functions practice diagnostic 4a
1.	В		
2.	D		
3.	С		
4.	С		
5.	D		
6.	В		
7.	В		