diagnostic 1b

Suppose a life insurance policy costs \$28 for the first unit of coverage and then \$7 for each additional unit 1. of coverage. Let C(x) be the cost for insurance of x units of coverage. What will 10 units of coverage cost?

Book: Blitzer: Precalculus Essentials, 3e

- OA. \$98
- OB. \$42
- Oc. \$70
- OD. \$91
- 2. Use the given conditions to write an equation for the line in slope-intercept form.

Slope = -3, passing through (-7,3)

- $\bigcirc A. \ y-3=x+7$
- \bigcirc B. y = -3x + 18
- \bigcirc c. y = -3x 18
- $\bigcirc D. \quad y 3 = -3x + 7$
- 3. Use the given conditions to write an equation for the line in point-slope form.

Passing through (2,6) and (6,3)

OA.
$$y+6=-\frac{3}{4}(x+2)$$
 or $y+3=-\frac{3}{4}(x+6)$

OB.
$$y-6=-\frac{3}{4}(x-6)$$
 or $y-3=-\frac{3}{4}(x-2)$

Oc.
$$y-6=2(x+2)$$
 or $y-3=6(x-6)$

OD.
$$y-6=-\frac{3}{4}(x-2)$$
 or $y-3=-\frac{3}{4}(x-6)$

For the given functions f and g, find the indicated composition. 4.

$$f(x) = -6x + 2$$
, $g(x) = 5x + 4$; $(g \circ f)(x)$

- $\bigcirc A$. -30x 6
- $\bigcirc B$. -30x + 26
- \bigcirc c. -30x + 14
- \bigcirc D. 30x + 14

Book: Blitzer: Precalculus Essentials, 3e

diagnostic 1b

Determine which two functions are inverses of each other. 5.

$$f(x) = 2x$$
, $g(x) = \frac{x}{2}$, $h(x) = \frac{2}{x}$

- \bigcirc A. g(x) and h(x)
- \bigcirc B. f(x) and h(x)
- Oc. None
- $\bigcirc D$. f(x) and g(x)

Find the inverse of the one-to-one function. 6.

$$f(x) = \frac{8x + 5}{4}$$

$$\bigcirc A. f^{-1}(x) = \frac{4}{8x-5}$$

OB.
$$f^{-1}(x) = \frac{4}{8x+5}$$

Oc.
$$f^{-1}(x) = \frac{4x+5}{8}$$

OD.
$$f^{-1}(x) = \frac{4x-5}{8}$$

7. The area of a rectangular garden is 144 square feet. The garden is to be enclosed by a stone wall costing \$24 per linear foot. The interior wall is to be constructed with brick costing \$10 per linear foot. Express the cost C, to enclose the garden and add the interior wall as a function of x.

OA.
$$C(x) = 10x + 24\left(2x + \frac{144}{x}\right)$$

OB.
$$C(x) = 24x + 10\left(2x + \frac{288}{x}\right)$$

OC.
$$C(x) = 10x + 24\left(2x + \frac{288}{x}\right)$$

OD.
$$C(x) = 10x + 24\left(x + \frac{144}{x}\right)$$

Date:		Instructor: Garth Isaak Course: precalc blitzer (1) Book: Blitzer: Precalculus Essentials, 3e	Ass ignment: diagnostic 1b	Functions and graphs practice
1.	D			
2.	С			
3.	D			
4.	С			
5.	D			
6.	D			
7.	С			