Math 21 Fall 2005, Lehigh University, Exam III review solutions.

1. (i) Call the lengths on the base = and the height h. The volume is V' = z*h and
thus h = V/z%. The material for the box consists of the top and bottom, each
with area 2% and the 4 sides, each with area xh. So the total material is M =
222 + 4xh. Substituting h = V/2? we get M = 22° + 4x(V/2?) = 22% + 4V /x.
Then M’ = 4z — 4V/2%. This is 0 when 4z = 4V/2? = 2° = V. So 2 = V/V is
a possible minimum. To observe that this is an absolute minimum (and hence
the answer) note that M” = 4 + 8V/x? is positive for all z > 0 so M is concave
up for all x > 0 and thus the the local minimum is an absolute minimum for
x> 0.

(ii) Call the width = so the base has dimensions x by 3z. Call the height h. The
8

volume is 8 = x(3x)h = 32*h (cubic feet) so h = ——. The top and bottom have
x

area 3z% (square feet) and hence cost (3)(3z?) = 922 (dollars). Multiply by two
to get the cost of both top and bottom equal to 182%. Two sides have area xh
and two have area 3zxh for a total area of 2(xh) + 2(3zh) = 8zh (square feet)
and hence total cost for the sides is 8xh (dollars). So the cost is C' = 18x2 +8xh.

8 64
Substituting h = 8/(3z?%) we get C' = 182* + 8xh = 182% + SIﬁ =182 + 3
T x
64 64 16
Then ?" = 36z — 322 and ¢’ = 0 when 36z = 2 = ¥ = 57 and hence
2V2 . -
x = ——. To observe that this is an absolute minimum (and hence the answer)

note that C” = 36 + 192/2 is positive for all z > 0 so C' is concave up for all
x > 0 and thus the the local minimum is an absolute minimum for x > 0.

2. (i) The marginal cost is C'(x) = 20 + 2z. The average cost is ¢(z) = C(z)/z =
100/z + 20 + z. To minimize average cost note that ¢/(x) = —100/2? + 1 which
is 0 when 22 = 100 = x = £10. Since we must have x > 0 we take z = 10. To
check that this is an absolute minimum for = > 0 note that ¢(x) = 200/23 is
always positive for > 0. Thus the average cost is concave up for z > 0 and
the local minimum at x = 10 is an absolute minimum. Thus the production
level to minimize average cost is x = 10.

(ii) Note the change to p(z) = 38 — 2x. We have revenue R(z) = zp(x) =
38z — 2% and profit P(z) = R(x) — C(z) = (38x — 22?%) — (100 + 20x + 2?%) =
—3x% + 18z — 100. Then P’(z) = —6z + 18 which is 0 when x = 3. Since
P"(x) = —6 we see that P(z) is always concave down and the local maximum
at © = 3 is also an absolute maximum.

(iii) The linear demand function contains the points (48,12) and (64, 10) and
thus has slope (10 —12) /(64 —48) = —1/8. Then using the point slope equation



-1 p(z)—-10

-1 —
for a line we have 3= s-6 = p(z) = 10_1_?(3;_64) = %4—18.

Then revenue is R(z) = zp(z) = —2?/8 + 18z and with C(z) = 6x (since
each of x widgets produced costs $6) we have profit P(z) = R(x) — C(z) =
—2?/8 4+ 18z — 6z = —2?/8 + 12x. Then P'(z) = —x/4 + 12 which is 0 when
x = 48. To check that this a maximum for > 0 note that P"(z) = —1/4 so
P(z) is always concave down and the local maximum at z = 48 is an absolute
maximum. The selling price for production level x = 48 that maximizes profit
is p(48) = —48/8 4+ 18 = 12 (dollars).
. Use Newton’s method formula z,.1 = z,, — f(x,)/f (x,) with 1 = 2, f(z) =
2?2 — 8z and f/(z) = 2z — 8. With f(2) = 22 —8(2) = —12 and f/(2) =
2(2) — 8 = —4 we get 9 = 2 — f(2)/f(2) = 2—(-12)/(—4) = —1. Then
f(=1) = (=12 —=8(—1) = 9 and f'(—1) = 2(—1) — 8 = —10 and z3 = w9 —
Fa) [ F(@2) = —1 = F(—1)/f/(=1) = —1 — 9/(~10) = —1/10.
. (i) With f(z) = 2* we have f/(x) = 2z. Thus the slope of the tangent at (3,9)
is f'(3) =2-3 = 6. Then an equation for the tangent line at (3,9) is 6 = —.
The z-intercept is where y = 0. Setting y = 0 in the tangent line equation and
solving for x we get 6 = O;g =z =0

(i) With f(z) = 2* we have f'(r) = 2z. Thus the slope of the tangent at
(z1,2%) is f'(r1) = 2z;. Then an equation for the tangent line at (xq,2?) is

2y = ;1. The z-intercept is where y = 0. Setting y = 0 in the tangent line
2
equation and solving for x we get 2x; = 2_21 = r = 4.

(iii) The slope of the tangent at (x1, f(x1)) is f'(x1). An equation for the tangent
line at (z1, f(z1)) is f/(z1) = L2 The z-intercept is where y = 0. Setting

r—x1

y = 0 in the tangent line equation and solving for z we get f'(x;) = 0;{7(;11) =
N A €50
r =T Tl

This is just the Newton’s method formula.

8
(i) The general antiderivative of f(z) = 6V :U7—f3+a:_4/7 = 627/° — 8z 3447
x

$7/5+1 .13_3+1 .T_4/7+1 5 4 7
is F(z) =6 —8 C=-a"f4— + 2% +C.
SR =0 S T 9T et
6
(ii) The general antiderivative of f(x) = cos(z) — e* + ——— — 9 + sec?(z) is

241
F(z) =sin(x) — e* + 6tan"'(z) — 9z + tan(z) + C.
f f"(z) =8 then f'(x) =8x 4+ C and 4 = f'(2) =82)+C =4=16+C =
C = —12. So f'(z) = 8r — 12 and f(z) = 42? — 12z + D and 10 = f(2) =
4(22) —12(2) + D = 10 = -8 + D = D = 18. Thus f(z) = 422 — 12z + 18.
If §"(t) = a(t) = a then §'(t) = v(t) = at + C and vy = §'(0) = v(0) =
a(0) + C = C =vy. So §'(t) = v(t) = at + vy and s(t) = jat® + vot + D and
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so = s(0) = 302 + v9(0) + D = so = D. Thus s(t) = sat® + vt + So.

n n 2 n 2 3 3 2
Use > t=n Y i=""Tandy @=L Then
= i=1 =

6

n 6 2 n 6 .
sm (24 7) - Jlf?ozn@*n*m)
i=1 =1

2 6

24 +48<n +n> 24(2713—1—3712—i-n>
n3

) 24 12 6
= lim (24+(24—|—)+(8++2))
n—00 n non

= 244+24+0+8+0+0
= 56

The interval of width 6 = 8 — 2 is divided into 3 pieces of width 6/3 = 2 so the
right endpoints of the rectangles are 242 = 4,2+(2)(2) = 6,2+(2)(3) = 8. The
heights of the rectangles are f(4) = 43 = 64, f(6) = 6> = 216, f(8) = 8% = 512.
So the area is approximated by 2(64 4+ 216 + 512) = 1584.
Divide the interval of width 2 = 4 — 2 into n pieces of width 2/n. The i
rectangle has right endpoint 2 + 2i/n and height f(2+ 2i/n) = 3(2+ 2i/n)? so

2
we have the area equal to hm Z 721 <2 + ij) .

i=1

This is the area under 322 for 2 < x < 4 as in the previous problem.
Here are three possible solutions. For each, when we write down the expression
for the Reimann sum in the definition of the definite integral using right end-

"3 bY) 5
points and equal area rectangles the result is lim Z — (sin (7 + Z) (13 + Z) > :

fi %(s?nx + (6 + a:)3)3dx

fiz £(sin(=6 + x) + 2°) dw

f316/55(sm( z) + (64 22)%) da

We must evaluate the sum arising in problems 8, 10, 11 which by the answer to
8 1s 56.

The region under 2z for —5 < x < 5 is two triangles each with base length 5
and height 2-5 = 10. One is below the axis and one above so in the integral the
areas cancel. Thus fir) 2x dx = 0. The region under /25 — 2 for =5 < x < 5 1is

the upper half of a the circle of radius 5 centered at the origin. This semicircle
has area im5% = 7. Thus [°; V25 — 22 do = 7.



So [ 2¢ — /25 — 22 dw = [°; 22 dw — [°; /25 — 2% dw = 0 — BE.

15. For -1 <z <1lwehave 0 <2? <1s01<1+2?<2thus f(z) =1+ a2
has maximum value v/2 and minimum /1 = 1 on the interval —1 < z < 1.
(We could also determine the maximum and minimum values for f(x) on this
interval using methods of calculus as we have done previously.) Then since 1 <

1
V1+22 <+v2on —1<z<1wehave2=(1-(-1))(1) < / V1+a2de <
-1
(1—-(-1)(vV2) =2v2.
16. Tt would be more clear to state this as g(x) = [y t(t? + 7)? dt.
(i) Directly from Part I we get ¢'(z) = z(2® 4+ 7)°
t=x
(ii) Use substitution with u = t*> + 7 and du = 2tdt. So we get u’ du/2 =
=2
w107 (t2 + 7)10 t=x (x2 + 7)10 (22 + 7)10 (x2 + 7)10 1710 -
JEE— — _— = —_ = - . (]
20 |,_, 20 o 20 20 20 20
. . 22 10 10 . 22 9
derivative of { ;07) — s 10¢ ;07) (22 +0) —0=x(z*+7)°.

17. From part I of the fundamental theorem and the chain rule f'(x) = ((sin2?)* —
7(sinz?))(sinz?)" = ((sin2?)® — 7(sin 2*))(cos 2°)(2x).

18. (i) From the net change theorem it is the increase in the child’s weight in pounds
between the ages of 5 and 10.

(ii) From the net change theorem it is the increase in revenue when production
is increased from 1000 to 5000 units.
125 1 125 3023 3(125)2%  3(21)¥* 75

19.(1)/ 3dx:/ x—l/sdx:[:l? ] _ 3(125)%°  3(27) _ o
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27
— =24
2

27 1
(ii) / i dx does not exist because is not continuous on [—8, 27] since it
-8 Jx

1
| Vz
is not defined at x = 0.
(iii) /Wsinﬁ df = [—cosb]" = —cos(m) — (—cos(—m)) = —(—=1) + (—1) = 0.

(iv) / " cos6 df = [sin(8)]"_ = sin(r) — sin(—m) = 0 — 0 = 0.

—T

(v) /_ 7266190 — [62]7, = (6)(7) — (6)(—2) = 42 + 12 = 54.
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R/ _ B2 h 772 102
(i) [ (hby+b> dy:[hbijLby] :<hb};+bh>—<hb()2+(b)(0)>:

—bh? bh
bh = —.
2 + 2
2 d d
(viii) / ™ does not exist because — s not continuous on [1,2]
1 (3x —5)2 (3x —5)2

since it is not defined at x = 5/3.

A similar problem not on the review sheet for which the integral exists is

3 dx 3 dx *=3 du /3
———. Let u =3z — du = 3dxz. Th / —_— :/
/2 Bz —5) et u=3x—5sodu=3dx en ) (32 —5)? T

x=3 ¢, 2 e —1
= du= | ——— —
/222 3 [ 31 3u

=2

==3 -1 7 -1 -1
o=2 3(3:1:—5) T 309-5) 36-5)
1
Z.

el
ix) / 2T e is example 9 section 5.5.

1

T

(
(x) Assume that a > 0. Let u = 2% + a® so du = 2z dz and xdr = du/2 When

x = a we have u = a? +a = 2a? andwhenx—Owehaveu—Oz—Zi—a = a?. Then
2a2 4,1/2 3/272@ 9242)3/2
/ Va2 +a?dr = / \/_du/2 / v du = lu ] ( a3)
CL2

2 3
(o P

3 3 3
(i) /6dx:6x+(}.

(ii) /tanQdQ is example 6 of section 5.5.

(iii) For the first term let u = 523+9 then du = 152* dz, for the second and third

terms let u = e then du = e®dz. Separating terms and writing e** = (e%)?

in the last term we get = /2x2e5$3+9 dr + /lixdx + /dex =

2d 2¢52°+9
/ “ /1 du—l—/1 =—+ln|u|~|—tan "(u)+C = ‘ +

15 15
ln]ex\—i-tan Y )+C’

(iv) Let u = 3+ 9¢ then du = 3t*+9 so du/3 = t* + 3. Then /(t2 +3) cos(t* +

9t)dt:/cos(u)6?:81§<u)+czw+a

(v) Write z* = (22)? and let u = 2% so du = 2xdz. Then = /L dr =
1+ (x2)?



du/2  tan~'(u) tan~!(z?)
re- s 0T 5 FO
6ax

i) Let u = 2a2*+16 so du = 4ax dx and 3du/2 = 6ax dr. Then / ——dr =
) / / / V2a2® + 16

3du/2 3u~t/s 3 5ut/? 15 5 4 15 ,

= == = (2 16)4/° — 29 (2ar2 + 16)4

/\% / 5 du 24+C 8(a:c+6) +C 8(ax+6)+
C.
(vii) Let u = cos(t?) so (using the chain rule) du = —sin(#?)(2t)dt. Also
writing cos®(t?) = (cos(t?))° we get = /2t sin(t?)(cos(t?))® dt = /u5 (—du) =

ub cos®(t?)
——+C=- C.

6 * 6 *

(viii) Let u = 247 so du = 2z dz and also 22 = u—7. Then /a:3(x2+7)4 dr =

Jdu ub Tut ub o Tud
2/, 2 4 _ _ _ o7 - 4 —
/a:(:z +7)(1:d:v)—/(u 7)u2 /(2 2>du + +C
(1’2—1—7)6+7($2+7)5

C.
6 10 +

' 0 5 /0 1 21.16/9 5x—11

(ix) /(2\/?—x12> dr = /(Zx/ — bz )dx = 69~ -1 + C =

91,16/9 5

C.
8 T 11zt o
(x) Assume that @ # —1 and ¢ # 0. Let u = b+ cz*™! so du = c(a +
d d
1)z% dx and Y~ 2%dz. Then /xa\/b+cm“+1 dr = v
cla+1) +1)
/ e du 2u3/? Lo— 2(b + cxt1)3/2 e
cla+1)  3c(a+1) 3c(a+1)
6 —2 4 1
. (i) The line between (—2,2) and (6, 6) has slope 6-(—2) =33 and hence
1 -2 1
equation — = J = y = —x + 3. Similarly, we get the line between

2~ - (-2 2
(—2,2) and (3,—3) to be y = —z and the line between (3, —3) and (6,6) to be
y =3x —12.
Using vertical rectangles the area is divided 1nt0 two parts dependmg on the
bounding lines and is given by the mtegral/ ( —r+3) — ) da:'—i—/ ( —r+3)— (3x — 12))

For horizontal rectangles we first rewrite the equatlon of each line for z in terms
of y getting r = 2y — 6, x = —y and = = 3y + 4. The area is given by the

mtegral/ ( —y+4)— )dy—i—/ ( —y+4)— (2y—6)) dy.
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23.

(ii) The line between (0,0) and (¢, h) has equation z = %y and the line be-

—b
tween (c, h) and (b,0) has equation x = CTy + b. (These can be determined

as in part (i).) Using horizontal rectangles the area is given by the integral

hif c—b c h (—b o
/ ( y+b)—(-y) | dy = / —1y +b | dy. The value of this integral
0 h h 0 h

was determined in 4(vii) to be 5
(i) The curves intersect when 922 = 2% = 9 = 2% = 3 = x since * > 0. So

3
they intersect at the point (3,81). Using vertical rectangles the area is / (92% —
0

2t dr = [3x3 - 1’5]3 = il 0 243 = @
5 Jo

For horizontal rectangles rewrite the bounding curves as z = y'/* and = =
81 4574 23/2 81 4(81 5/4

y'/2/3. Then the areais/ (y*—y"%/3) dy = [ y__4 ] _ 48D
0

5 9 D
A8V 4(3%) _20%) _4(243) | 162
6 5 9 5 T 57
(i) The curves intersect when z°> —4 = 2r +4 = 22 — 2z — 8 = 0 =
(x —4)(x+2) = 0 = x = 4,—2. Using vertical rectangles the area is

/_42 ((2x—|—4)—(m2—4)) dx:/42

0

3 4
(—x2+2x+8)dx:[3x+x2+8x1 =
—2

(_(;13)+42+8(4))—(_(;2)3+(—2)2+8(—2)) — (_364+16+32)—(§+4_16) _
36.

(1)

27
(ii) Using vertical rectangles / (3 —z'3) dx.
0

3
Using horizontal rectangles / v dy.
0

27
(iii) Rotate about y = 0 (x-axis): washers - / (732 — w(x3)?) dx: shells -
0

/ 21y (y

2
Rotate about y = 3: washers - /

. 3
7(3 — 2'/%)? da: shells - / 21(3 —y)(y°) dy.
0 0

27
Rotate about y = 5: washers - / (7?(5 — 23?2 — (5 — 3)2> dx: shells -
0
3
| 26 =) ay.
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25.

3 27
Rotate about x = 0 (y-axis): washers - / 7(y*)* dy: shells - / 21z (3 —
0 0

23 dx.
3

27
(7r(y3)2 - 7r32) dy: shells - / 2m(x +

Rotate about £ = —3: washers - /
0

0
3)(3 — 2'/%) du.

3 27
Rotate about = 27: washers - / <7T272 — (27 — y3)2) dy: shells - / 27 (27—
0 0

z)(3 — 2'/%) du.
(i) To get the cone rotate the triangle with vertices (0,0), (0,h) and (r,0)

—h
(bounded by the z-axis, the y-axis and the line y = —az + h) about the y-
r

T —h r —h
axis. Using shells the volume is / 2re(—ax+h)dr = 27r/ (— a2+ ha)dr =
r o

0
h ] " —hr3  hr? r2  r? r?  arih
57 .

= 2m( +7—0):27Th(—+5):27rh(—:

. 3r 2 6

h
o | ——
W[BT:E + =

Using disks we would evaluate the integral / h y +7)%dy.

(ii) Rotating as described in the problem and using disks the volume is / T(Vr2 —22)?dx =

w/r P —a?) de = [7“ z— ;]_ =7 ((7"2(7") _ 7;) - (7’2(—7“) _ (_5“)3)) _

2r3 — 473
T — — = )
3 3




