
Math 21 Fall 2005, Lehigh University, Exam III review solutions.

1. (i) Call the lengths on the base x and the height h. The volume is V = x2h and
thus h = V/x2. The material for the box consists of the top and bottom, each
with area x2 and the 4 sides, each with area xh. So the total material is M =
2x2 + 4xh. Substituting h = V/x2 we get M = 2x2 + 4x(V/x2) = 2x2 + 4V/x.
Then M ′ = 4x− 4V/x2. This is 0 when 4x = 4V/x2 ⇒ x3 = V . So x = 3

√
V is

a possible minimum. To observe that this is an absolute minimum (and hence
the answer) note that M ′′ = 4 + 8V/x3 is positive for all x > 0 so M is concave
up for all x > 0 and thus the the local minimum is an absolute minimum for
x > 0.

(ii) Call the width x so the base has dimensions x by 3x. Call the height h. The

volume is 8 = x(3x)h = 3x2h (cubic feet) so h =
8

3x2
. The top and bottom have

area 3x2 (square feet) and hence cost (3)(3x2) = 9x2 (dollars). Multiply by two
to get the cost of both top and bottom equal to 18x2. Two sides have area xh
and two have area 3xh for a total area of 2(xh) + 2(3xh) = 8xh (square feet)
and hence total cost for the sides is 8xh (dollars). So the cost is C = 18x2+8xh.

Substituting h = 8/(3x2) we get C = 18x2 + 8xh = 18x2 + 8x
8

3x2
= 18x2 +

64

3x
.

Then C ′ = 36x − 64

3x2
and C ′ = 0 when 36x =

64

3x2
⇒ x3 =

16

27
and hence

x =
2 3
√

2

3
. To observe that this is an absolute minimum (and hence the answer)

note that C ′′ = 36 + 192/x3 is positive for all x > 0 so C is concave up for all
x > 0 and thus the the local minimum is an absolute minimum for x > 0.

2. (i) The marginal cost is C ′(x) = 20 + 2x. The average cost is c(x) = C(x)/x =
100/x + 20 + x. To minimize average cost note that c′(x) = −100/x2 + 1 which
is 0 when x2 = 100 ⇒ x = ±10. Since we must have x > 0 we take x = 10. To
check that this is an absolute minimum for x > 0 note that c′′(x) = 200/x3 is
always positive for x > 0. Thus the average cost is concave up for x > 0 and
the local minimum at x = 10 is an absolute minimum. Thus the production
level to minimize average cost is x = 10.

(ii) Note the change to p(x) = 38 − 2x. We have revenue R(x) = xp(x) =
38x− 2x2 and profit P (x) = R(x)− C(x) = (38x− 2x2)− (100 + 20x + x2) =
−3x2 + 18x − 100. Then P ′(x) = −6x + 18 which is 0 when x = 3. Since
P ′′(x) = −6 we see that P (x) is always concave down and the local maximum
at x = 3 is also an absolute maximum.

(iii) The linear demand function contains the points (48, 12) and (64, 10) and
thus has slope (10−12)/(64−48) = −1/8. Then using the point slope equation



for a line we have
−1

8
=

p(x)− 10

x− 64
⇒ p(x) = 10 +

−1

8
(x − 64) =

−x

8
+ 18.

Then revenue is R(x) = xp(x) = −x2/8 + 18x and with C(x) = 6x (since
each of x widgets produced costs $6) we have profit P (x) = R(x) − C(x) =
−x2/8 + 18x − 6x = −x2/8 + 12x. Then P ′(x) = −x/4 + 12 which is 0 when
x = 48. To check that this a maximum for x > 0 note that P ′′(x) = −1/4 so
P (x) is always concave down and the local maximum at x = 48 is an absolute
maximum. The selling price for production level x = 48 that maximizes profit
is p(48) = −48/8 + 18 = 12 (dollars).

3. Use Newton’s method formula xn+1 = xn − f(xn)/f ′(xn) with x1 = 2, f(x) =
x2 − 8x and f ′(x) = 2x − 8. With f(2) = 22 − 8(2) = −12 and f ′(2) =
2(2) − 8 = −4 we get x2 = 2 − f(2)/f ′(2) = 2 − (−12)/(−4) = −1. Then
f(−1) = (−1)2 − 8(−1) = 9 and f ′(−1) = 2(−1) − 8 = −10 and x3 = x2 −
f(x2)/f

′(x2) = −1− f(−1)/f ′(−1) = −1− 9/(−10) = −1/10.

4. (i) With f(x) = x2 we have f ′(x) = 2x. Thus the slope of the tangent at (3, 9)
is f ′(3) = 2 · 3 = 6. Then an equation for the tangent line at (3, 9) is 6 = y−9

x−6
.

The x-intercept is where y = 0. Setting y = 0 in the tangent line equation and
solving for x we get 6 = 0−9

x−3
⇒ x = 9.

(ii) With f(x) = x2 we have f ′(x) = 2x. Thus the slope of the tangent at
(x1, x

2
1) is f ′(x1) = 2x1. Then an equation for the tangent line at (x1, x

2
1) is

2x1 =
y−x2

1

x−x1
. The x-intercept is where y = 0. Setting y = 0 in the tangent line

equation and solving for x we get 2x1 =
0−x2

1

x−x1
⇒ x = x1

2
.

(iii) The slope of the tangent at (x1, f(x1)) is f ′(x1). An equation for the tangent

line at (x1, f(x1)) is f ′(x1) = y−f(x1)
x−x1

. The x-intercept is where y = 0. Setting

y = 0 in the tangent line equation and solving for x we get f ′(x1) = 0−f(x1)
x−x1

⇒
x = x1 − f(x1)

f ′(x1)
.

This is just the Newton’s method formula.

5. (i) The general antiderivative of f(x) = 6
5
√

x7− 8

x3
+x−4/7 = 6x7/5−8x−3+x−4/7

is F (x) = 6
x7/5+1

7/5 + 1
− 8

x−3+1

−3 + 1
+

x−4/7+1

−4/7 + 1
+ C =

5

2
x12/5 +

4

x2
+

7

3
x3/7 + C.

(ii) The general antiderivative of f(x) = cos(x) − ex +
6

x2 + 1
− 9 + sec2(x) is

F (x) = sin(x)− ex + 6 tan−1(x)− 9x + tan(x) + C.

6. If f ′′(x) = 8 then f ′(x) = 8x + C and 4 = f ′(2) = 8(2) + C ⇒ 4 = 16 + C ⇒
C = −12. So f ′(x) = 8x − 12 and f(x) = 4x2 − 12x + D and 10 = f(2) =
4(22)− 12(2) + D ⇒ 10 = −8 + D ⇒ D = 18. Thus f(x) = 4x2 − 12x + 18.

7. If s′′(t) = a(t) = a then s′(t) = v(t) = at + C and v0 = s′(0) = v(0) =
a(0) + C ⇒ C = v0. So s′(t) = v(t) = at + v0 and s(t) = 1

2
at2 + v0t + D and



s0 = s(0) = 1
2
02 + v0(0) + D ⇒ s0 = D. Thus s(t) = 1

2
at2 + v0t + s0.

8. Use
n∑

i=1

1 = n,
n∑

i=1

i =
n2 + n

2
and

n∑

i=1

i2 =
2n3 + 3n2 + n

6
. Then

lim
n→∞

n∑

i=1

6

n

(
2 +

2i

n

)2

= lim
n→∞

n∑

i=1

6

n

(
4 +

8i

n
+

4i2

n2

)

= lim
n→∞

24

n

n∑

i=1

1 +
48

n2

n∑

i=1

i +
24

n3

n∑

i=1

i2

= lim
n→∞

24

n
(n) +

48

n2

(
n2 + n

2

)
+

24

n3

(
2n3 + 3n2 + n

6

)

= lim
n→∞

(
24 + (24 +

24

n
) + (8 +

12

n
+

6

n2
)
)

= 24 + 24 + 0 + 8 + 0 + 0

= 56

9. The interval of width 6 = 8− 2 is divided into 3 pieces of width 6/3 = 2 so the
right endpoints of the rectangles are 2+2 = 4, 2+(2)(2) = 6, 2+(2)(3) = 8. The
heights of the rectangles are f(4) = 43 = 64, f(6) = 63 = 216, f(8) = 83 = 512.
So the area is approximated by 2(64 + 216 + 512) = 1584.

10. Divide the interval of width 2 = 4 − 2 into n pieces of width 2/n. The ith

rectangle has right endpoint 2 + 2i/n and height f(2 + 2i/n) = 3(2 + 2i/n)2 so

we have the area equal to lim
n→∞

n∑

i=1

2

n
3

(
2 +

2i

n

)2

.

11. This is the area under 3x2 for 2 ≤ x ≤ 4 as in the previous problem.

12. Here are three possible solutions. For each, when we write down the expression
for the Reimann sum in the definition of the definite integral using right end-

points and equal area rectangles the result is lim
n→∞

n∑

i=1

3

n

(
sin

(
7 +

5i

n

)
+

(
13 +

5i

n

)3
)

.

∫ 12
7

3
5
(sin x + (6 + x)3) dx∫ 18

13
3
5
(sin(−6 + x) + x3) dx

∫ 36/5
21/5 (sin(5

3
x) + (6 + 5

3
x)3) dx

13. We must evaluate the sum arising in problems 8, 10, 11 which by the answer to
8 is 56.

14. The region under 2x for −5 ≤ x ≤ 5 is two triangles each with base length 5
and height 2 ·5 = 10. One is below the axis and one above so in the integral the
areas cancel. Thus

∫ 5
−5 2x dx = 0. The region under

√
25− x2 for −5 ≤ x ≤ 5 is

the upper half of a the circle of radius 5 centered at the origin. This semicircle
has area 1

2
π52 = 25π

2
. Thus

∫ 5
−5

√
25− x2 dx = 25π

2
.



So
∫ 5
−5 2x−√25− x2 dx =

∫ 5
−5 2x dx− ∫ 5

−5

√
25− x2 dx = 0− 25π

2
.

15. For −1 ≤ x ≤ 1 we have 0 ≤ x2 ≤ 1 so 1 ≤ 1 + x2 ≤ 2 thus f(x) =
√

1 + x2

has maximum value
√

2 and minimum
√

1 = 1 on the interval −1 ≤ x ≤ 1.
(We could also determine the maximum and minimum values for f(x) on this
interval using methods of calculus as we have done previously.) Then since 1 ≤√

1 + x2 ≤
√

2 on −1 ≤ x ≤ 1 we have 2 = (1 − (−1))(1) ≤
∫ 1

−1

√
1 + x2dx ≤

(1− (−1))(
√

2) = 2
√

2.

16. It would be more clear to state this as g(x) =
∫ x
2 t(t2 + 7)9 dt.

(i) Directly from Part I we get g′(x) = x(x2 + 7)9

(ii) Use substitution with u = t2 + 7 and du = 2tdt. So we get
∫ t=x

t=2
u9 du/2 =

[
u10

20

]t=x

t=2

=

[
(t2 + 7)10

20

]t=x

t=2

=
(x2 + 7)10

20
− (22 + 7)10

20
=

(x2 + 7)10

20
− 1110

20
. The

derivative of (x2+7)10

20
− 1110

20
is 10 (x2+7)9

20
(2x + 0)− 0 = x(x2 + 7)9.

17. From part I of the fundamental theorem and the chain rule f ′(x) = ((sin x2)3−
7(sin x2))(sin x2)′ = ((sin x2)3 − 7(sin x2))(cos x2)(2x).

18. (i) From the net change theorem it is the increase in the child’s weight in pounds
between the ages of 5 and 10.
(ii) From the net change theorem it is the increase in revenue when production
is increased from 1000 to 5000 units.

19. (i)
∫ 125

27

1
3
√

x
dx =

∫ 125

27
x−1/3 dx =

[
3x2/3

2

]125

27

=
3(125)2/3

2
− 3(27)2/3

2
=

75

2
−

27

2
= 24.

(ii)
∫ 27

−8

1
3
√

x
dx does not exist because

1
3
√

x
is not continuous on [−8, 27] since it

is not defined at x = 0.

(iii)
∫ π

−π
sin θ dθ = [− cos θ]π−π = − cos(π)− (− cos(−π)) = −(−1) + (−1) = 0.

(iv)
∫ π

−π
cos θ dθ = [sin(θ)]π−π = sin(π)− sin(−π) = 0− 0 = 0.

(v)
∫ 7

−2
6 dx = [6x]7−2 = (6)(7)− (6)(−2) = 42 + 12 = 54.

(vi)
∫ r

0
π(r2−x2) dx = π

[
r2x− x3

3

]r

0

= π

((
(r2)(r)− r3

3

)
−

(
(r2)(0)− 03

3

))
=

π

(
r3 − r3

3

)
=

2πr3

3
.



(vii)
∫ h

0

(−b

h
y + b

)
dy =

[−b

h

y2

2
+ by

]h

0

=

(−b

h

h2

2
+ bh

)
−

(−b

h

02

2
+ (b)(0)

)
=

−bh2

2
+ bh =

bh

2
.

(viii)
∫ 2

1

dx

(3x− 5)2
does not exist because

dx

(3x− 5)2
is not continuous on [1, 2]

since it is not defined at x = 5/3.

A similar problem not on the review sheet for which the integral exists is∫ 3

2

dx

(3x− 5)2
. Let u = 3x− 5 so du = 3 dx. Then

∫ 3

2

dx

(3x− 5)2
=

∫ x=3

x=2

du/3

u2
=

∫ x=3

x=2

u−2

3
du =

[
−u−1

3

]x=3

x=2

=
[−1

3u

]x=3

x=2
=

[ −1

3(3x− 5)

]3

2

=
−1

3(9− 5)
− −1

3(6− 5)
=

1

4
.

(ix)
∫ e

1

ln x

x
dx is example 9 section 5.5.

(x) Assume that a > 0. Let u = x2 + a2 so du = 2x dx and x dx = du/2. When
x = a we have u = a2+a2 = 2a2 and when x = 0 we have u = 02+a2 = a2. Then
∫ a

0
x
√

x2 + a2 dx =
∫ 2a2

a2

√
u du/2 =

∫ 2a2

a2

u1/2

2
du =

[
u3/2

3

]2a2

a2

=
(2a2)3/2

3
−

(a2)3/2

3
=

2
√

2a3

3
− a3

3
=

a3

3
(2
√

2− 1).

20. (i)
∫

6 dx = 6x + C.

(ii)
∫

tan θ dθ is example 6 of section 5.5.

(iii) For the first term let u = 5x3+9 then du = 15x2 dx, for the second and third
terms let u = ex then du = ex dx. Separating terms and writing e2x = (ex)2

in the last term we get =
∫

2x2e5x3+9 dx +
∫ ex

1 + ex
dx +

∫ ex

1 + (ex)2
dx =

∫
eu 2du

15
+

∫ 1

1 + u
du+

∫ 1

1 + u2
du =

2eu

15
+ ln |u|+tan−1(u)+C =

2e5x3+9

15
+

ln |ex|+ tan−1(ex) + C.

(iv) Let u = t3 + 9t then du = 3t2 + 9 so du/3 = t2 + 3. Then
∫

(t2 + 3) cos(t3 +

9t) dt =
∫

cos(u)
du

3
=
− sin(u)

3
+ C =

− sin(t3 + 9t)

3
+ C.

(v) Write x4 = (x2)2 and let u = x2 so du = 2x dx. Then =
∫ x

1 + (x2)2
dx =



∫ du/2

1 + u2
=

tan−1(u)

2
+ C =

tan−1(x2)

2
+ C.

(vi) Let u = 2ax2+16 so du = 4ax dx and 3du/2 = 6ax dx. Then
∫ 6ax

5
√

2ax2 + 16
dx =

∫ 3du/2
5
√

u
=

∫ 3u−1/5

2
du =

3

2

5u4/5

4
+C =

15

8
(2ax2+16)4/5+C =

15

8
5

√
(2ax2 + 16)4+

C.

(vii) Let u = cos(t2) so (using the chain rule) du = − sin(t2)(2t) dt. Also

writing cos5(t2) = (cos(t2))5 we get =
∫

2t sin(t2)(cos(t2))5 dt =
∫

u5 (−du) =

−u6

6
+ C = −cos6(t2)

6
+ C.

(viii) Let u = x2 +7 so du = 2x dx and also x2 = u−7. Then
∫

x3(x2 +7)4 dx =
∫

x2(x2 + 7)4(x dx) =
∫

(u − 7)u4du

2
=

∫ (
u5

2
− 7u4

2

)
du =

u6

12
+

7u5

10
+ C =

(x2 + 7)6

6
+

7(x2 + 7)5

10
+ C.

(ix)
∫ (

2
9
√

x7 − 5

x12

)
dx =

∫ (
2x7/9 − 5x−12

)
dx =

2x16/9

16/9
− 5x−11

−11
+ C =

9x16/9

8
+

5

11x11
+ C.

(x) Assume that a 6= −1 and c 6= 0. Let u = b + cxa+1 so du = c(a +

1)xa dx and
du

c(a + 1)
= xa dx. Then

∫
xa
√

b + cxa+1 dx =
∫ √

u
du

c(a + 1)
=

∫
u1/2 du

c(a + 1)
=

2u3/2

3c(a + 1)
+ C =

2(b + cxa+1)3/2

3c(a + 1)
+ C.

21. (i) The line between (−2, 2) and (6, 6) has slope
6− 2

6− (−2)
=

4

8
=

1

2
and hence

equation
1

2
=

y − 2

x− (−2)
⇒ y =

1

2
x + 3. Similarly, we get the line between

(−2, 2) and (3,−3) to be y = −x and the line between (3,−3) and (6, 6) to be
y = 3x− 12.

Using vertical rectangles the area is divided into two parts depending on the

bounding lines and is given by the integral
∫ 3

−2

(
(
1

2
x + 3)− (−x)

)
dx+

∫ 6

3

(
(
1

2
x + 3)− (3x− 12)

)
dx.

For horizontal rectangles we first rewrite the equation of each line for x in terms
of y getting x = 2y − 6, x = −y and x = 1

3
y + 4. The area is given by the

integral
∫ 2

−3

(
(
1

3
y + 4)− (−y)

)
dy +

∫ 6

2

(
(
1

3
y + 4)− (2y − 6)

)
dy.



(ii) The line between (0, 0) and (c, h) has equation x =
c

h
y and the line be-

tween (c, h) and (b, 0) has equation x =
c− b

h
y + b. (These can be determined

as in part (i).) Using horizontal rectangles the area is given by the integral∫ h

0

(
(
c− b

h
y + b)− (

c

h
y)

)
dy =

∫ h

0

(−b

h
y + b

)
dy. The value of this integral

was determined in 4(vii) to be
bh

2
.

22. (i) The curves intersect when 9x2 = x4 ⇒ 9 = x2 ⇒ 3 = x since x ≥ 0. So

they intersect at the point (3, 81). Using vertical rectangles the area is
∫ 3

0
(9x2−

x4) dx =

[
3x3 − x5

5

]3

0

= (3(33)− 35

5
)−(3(03)− 05

5
) = (81− 243

5
)−(0−0) =

162

5
.

For horizontal rectangles rewrite the bounding curves as x = y1/4 and x =

y1/2/3. Then the area is
∫ 81

0
(y1/4−y1/2/3) dy =

[
4y5/4

5
− 2y3/2

9

]81

0

=
4(81)5/4

5
−

2(81)3/2

6
=

4(35)

5
− 2(93)

9
=

4(243)

5
− 162 =

162

5
.

(ii) The curves intersect when x2 − 4 = 2x + 4 ⇒ x2 − 2x − 8 = 0 ⇒
(x − 4)(x + 2) = 0 ⇒ x = 4,−2. Using vertical rectangles the area is
∫ 4

−2

(
(2x + 4)− (x2 − 4)

)
dx =

∫ 4

−2
(−x2 + 2x + 8) dx =

[−x3

3
+ x2 + 8x

]4

−2

=

(
−(43)

3
+42+8(4))−(

−(−2)3

3
+(−2)2+8(−2)) = (

−64

3
+16+32)−(

8

3
+4−16) =

36.

23. (i)

(ii) Using vertical rectangles
∫ 27

0
(3− x1/3) dx.

Using horizontal rectangles
∫ 3

0
y3 dy.

(iii) Rotate about y = 0 (x-axis): washers -
∫ 27

0
(π32 − π(x1/3)2) dx: shells -

∫ 3

0
2πy(y3) dy.

Rotate about y = 3: washers -
∫ 27

0
π(3− x1/3)2 dx: shells -

∫ 3

0
2π(3− y)(y3) dy.

Rotate about y = 5: washers -
∫ 27

0

(
π(5− x1/3)2 − π(5− 3)2

)
dx: shells -

∫ 3

0
2π(5− y)(y3) dy.



Rotate about x = 0 (y-axis): washers -
∫ 3

0
π(y3)2 dy: shells -

∫ 27

0
2πx(3 −

x1/3) dx.

Rotate about x = −3: washers -
∫ 3

0

(
π(y3)2 − π32

)
dy: shells -

∫ 27

0
2π(x +

3)(3− x1/3) dx.

Rotate about x = 27: washers -
∫ 3

0

(
π272 − π(27− y3)2

)
dy: shells -

∫ 27

0
2π(27−

x)(3− x1/3) dx.

24. (i) To get the cone rotate the triangle with vertices (0, 0), (0, h) and (r, 0)

(bounded by the x-axis, the y-axis and the line y =
−h

r
x + h) about the y-

axis. Using shells the volume is
∫ r

0
2πx(

−h

r
x+h) dx = 2π

∫ r

0
(
−h

r
x2 +hx) dx =

2π

[−h

3r
x3 +

h

2
x2

]r

0

= 2π(
−hr3

3r
+

hr2

2
− 0) = 2πh(

r2

3
+

r2

2
) = 2πh(

r2

6
=

πr2h

3
.

Using disks we would evaluate the integral
∫ h

0
π(
−r

h
y + r)2 dy.

(ii) Rotating as described in the problem and using disks the volume is
∫ r

−r
π(
√

r2 − x2)2 dx =

π
∫ r

−r
(r2−x2) dx = π

[
r2x− x3

3

]r

−r

= π

((
r2(r)− r3

3

)
−

(
r2(−r)− (−r)3

3

))
=

π

(
2r3

3
− −2r3

3

)
=

4πr3

3
.

25.


