RWIH ACHEN UNVEESTIY

Fragility and its-Relation to Other Grass: Properties

conradt@ghi.rwth-aachen.de

structural aspects

Bragg's formula relates lattice spacing d and diffraction angle θ :

$$
d=\frac{X}{2 \cdot \sin \left(\frac{1}{2} \cdot 2 \cdot \theta\right)} ; X=0.154 \mathrm{~nm}(C u K \alpha)
$$

broadening B of diffraction peaks:

$$
B=\frac{1}{2} \cdot\left(2 \theta_{\max }-2 \theta_{\min }\right) \cdot \frac{\pi}{180} ; \quad(22 \pm 4)^{\circ} \Rightarrow B=0.0698
$$

interpretation: peak broadening $\mathrm{B} \Leftrightarrow$ range b of translational symmetry

$$
b=\frac{X}{B \cdot \cos \left(\frac{1}{2} \cdot 2 \theta\right)} ; \quad(22 \pm 4)^{\circ} \Rightarrow b=2 \mathrm{~nm}
$$

interpretation: peak broadening $B \Leftrightarrow$ fluctuation $\varepsilon=\delta \mathrm{d} / \mathrm{d}$ of lattice spacing

$$
\varepsilon=\frac{\delta d}{d}=\frac{B}{4 \cdot \tan \left(\frac{1}{2} \cdot 2 \theta\right)} ; \quad(22 \pm 4)^{\circ} \Rightarrow \varepsilon=9 \%
$$

1. random packing of length-correlated clusters

2.

silica glass


```
\[
\varepsilon= \pm 0.09
\]
```


$$
\varepsilon=0.09 ; \mathrm{d} \leq \varepsilon \cdot \sqrt{ } 2 \text { is accepted as bond }
$$

bond percolation
diffusion path percolation \longrightarrow

simulated 3D structure of $\mathrm{Na}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}$

Vessal et al. 1992

"Greaves channels" of Na^{+} transport in $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$ glasses

Greaves \& Ngai 1995

evaluate all distance correlations in the window 0.2-0.3 nm (O-Si-O distances)
evaluate all distance correlations in the window $0.2-0.3 \mathrm{~nm}$ (O-Si-O distances)

Distance [nm]

viscosity

illustration of the concept of configurational entropy

\longleftarrow traffic direction

state „traffic jam":

state „parking lot":

- no flow,
- fixed mean position of all elements,
- solid state-like degrees of freedom
- no translational symmetry -translational symmetry

Tammann's explanation of sudden transitions due to a continuously tightened constraint

example: $\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2}$ (diopside)

Robie et al. (1978); Martens et. al. (1987)
Richet \& Bottinga (1995)

Richet, Robie, Heminway (1986)

example: $\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2}$ (diopside)

example: $\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2}$ (diopside) low-T vibrational excess entropy:

configurational entropy:

configurational entropy:

diopside $\mathrm{CaMg}\left[\mathrm{Si}_{2} \mathrm{O}_{6}\right]$

$$
\begin{aligned}
& L=\log \eta=A+\frac{B}{T-T_{0}} \\
& A=-1.899 \\
& \mathrm{~T}_{\mathrm{g}}=70 \mathrm{a}^{\circ} \mathrm{C} \\
& \text { B }=2493.4 \\
& \mathrm{~T}_{0}=540.6 \\
& \pm \delta \log \eta=0.022 \\
& \left.\frac{\partial \log \eta}{\partial T_{g} / T}\right|_{T=T_{g}}=\frac{T_{g} \cdot B}{\left(T-T_{0}\right)^{2}}=m \\
& \Rightarrow \mathrm{~m}=63.3 \pm 0.6 \\
& m=(\underbrace{\left(L_{g}-L_{0}\right.}_{14.9}) \cdot\left(1+\frac{\Delta c_{G, L}}{S_{G}(0)}\right) \\
& \begin{array}{ll}
\mathrm{C}_{\mathrm{G}, \mathrm{~L}}\left(\mathrm{~T}_{\mathrm{g}}\right) & =254.6 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
\mathrm{C}_{\mathrm{x}}\left(\mathrm{~T}_{\mathrm{g}}\right) & =246.5 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K})
\end{array} \\
& 3 \cdot \mathrm{~N} \cdot \mathrm{R}=249.0 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
& \Delta \mathrm{C}_{\mathrm{G}, \mathrm{~L}}=80.0 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
& \mathrm{S}_{\mathrm{G}}(0)=24.8 \pm 3.0 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
& \Rightarrow \mathrm{m}=63.7 \pm 5.9
\end{aligned}
$$

C.A. Angell (2008)

What is "fragility"?

- Technologist call it the „length" of a glass; it determines the working range.
- Fragility is a measure of deviation from an exponential T dependence of relaxation times and transport properties (deviation from Arrhenius behavior).
- Fragility may be quantified, e.g., by the slope for $\mathrm{T}_{\mathrm{g}} / \mathrm{T} \rightarrow 1$ in the so-called Angell plot.
- The non-exponential T dependence is commonly represented by the KWW eq. $\tau \propto \exp B \cdot\left(T_{g} / T\right)^{n}$, by the VFT eq. $\tau \propto \exp B /\left(T-T_{0}\right)$, etc.
- While the high-T branch reflects a universal feature of liquids, the fragility is likely to reflect the thermodynamics of the liquids.

„It appears that at the same point in T at which the non-Arrhenius regime is entered from above glass-forming systems develop heterogeneities in their dynamics.

The heterogeneities are such that, for a limited period of time, one set of particles will lock together while an adjecent set will become loose will support string-like motions of the patticles, perhaps along the boundaries between nano-regions.

Within each nano-region, relaxation appears to be exponential, and it is therefore that the distribution of nano-reagions (which determines the deviation from exponentiality) is seen in the macroscopic relaxation function.

The string-like particles might lie on the Eigenvectors of the low-frequency (or Boson peak) modes of the system, by means of which relaxation occurs."

```
non-exponentiality }\Leftrightarrow\mathrm{ development of heterogeneities
    \Leftrightarrow nano-regimes
    \Leftrightarrow Boson peak, low ccexcess of the glass
```

C.A. Angell (2008), using findings by Richert (2002), Kob et al. (1998),

Weeks et al. (2000), Brito et al. (2007)

CINEMA

absence of translational symmetry and occurrence of M.R.O. may by caused by

- frustration (entaglement) of polymeric structures or
- by frustration of spherical packing

C.A. Angell (2008)

SUMMARY OF VISCOSITY MODELS:

Arrhenius
atomic mobility
Vogel-Fulcher-Tamman (VFT) $\quad L=L_{\infty}+\frac{B}{T-T_{0}}$
free volume
$\begin{aligned} & \text { Williams-Landel-Ferry (WLF) } \\ & \text { free volume }\end{aligned} \quad L=L_{g}+\frac{C_{1}}{\ln 10} \cdot \frac{T-T_{g}}{C_{2}+T-T_{g}}$
Adam-Gibbs
configurational entropy

Avramov
Kohlrausch relaxation

$$
L=L_{\infty}+b / T
$$

$$
L=L_{g}+\frac{C_{1}}{\ln 10} \cdot \frac{T-T_{g}}{C_{2}+T-T_{g}}
$$

$$
L=L_{\infty}+\left(L_{g}-L_{\infty}\right) \cdot \frac{T_{g} / T}{1-a_{0} \cdot \ln \left(T_{g} / T\right)}
$$

$$
L=L_{\infty}+\left(\frac{T_{g}}{T}\right)^{\alpha}
$$

Mauro et. al $L=L_{\infty}+\left(L_{g}-L_{\infty}\right) \cdot \frac{T_{g}}{T} \cdot \exp \left[\left(\frac{m}{L_{g}-L_{\infty}}-1\right) \cdot\left(\frac{T_{g}}{T}-1\right)\right]$

SUMMARY OF LINEARIZED EQUATIONS:

Adam-Gibbs $\quad L=\beta_{0}+\beta_{1} \cdot \frac{x}{1-a \cdot \ln x}$
modified

$$
L=\beta_{0}+\beta_{1} \cdot \frac{x}{1-a \cdot x \cdot \ln x}
$$

VFT; WLF

$$
L=\beta_{0}+\beta_{1} \cdot \frac{(1-a) \cdot x}{1-a \cdot x}
$$

Avramov
$L=\beta_{0}+\beta_{1} \cdot x^{a}$
Mauro

$$
L=\beta_{0}+\beta_{1} \cdot x \cdot \exp (a \cdot(x-1))
$$

CONCLUSION:

- All established viscosity-temperature functions $L=\log \eta(T)$ are 3-parameter plots of $x=T_{g} / T$.
- All functions L contain a kind of „structural parameter" a allowing to generate a linear plot.
- The high- T limits $L_{\infty}=\beta_{0}$ for $x=T_{g} / T \rightarrow 0$ differ significantly.

Adam-Gibbs plot, basalt melts

networks again

under-constrained: one floppy motion in addition to 3 rigid body motions
perfectly constrained: all bonds maintain their natural length; no floppy modes

rigid and „floppy"

isostatically rigid
(a floppy motion is a motion that costs no energy)
J.C. Phillips et al
P. Boolchand et al
M.F. Thorpe et al.
R. Keding et al.

rigid and stressed
over-constrained:
all bonds are deformed; one bond is redundant

Consider a system of N atoms, classified into groups of N_{r} atoms with coordination number r :

$$
N=\sum_{r} N_{r}
$$

The mean coordination number r_{m} is

$$
r_{m}=\sum_{r} r \cdot N_{r} / \sum_{r} N_{r}
$$

An unconstrained atom in 3D space has 3 positional degrees of freedom; an unconstrained system of N atoms thus has
$N_{F}=3 \cdot N$
positional degrees of freedom. Let N_{C} be the number of positional constraints. Then

$$
N_{0}=N_{F}-N_{C}
$$

denotes the number of zero frequency („floppy") modes allowing particles to change position at zero energy.

The positional constraints of distance L_{ij} between particles i and j , and of angles θ_{ijk} between bonds $\mathrm{i}-\mathrm{j}$ and $\mathrm{j}-\mathrm{k}$, stem from the deviations $\Delta \mathrm{L}_{\mathrm{ij}}$ and $\Delta \theta_{\mathrm{ijk}}$ from the equilibrium positions in the interparticle potential V :

$$
V=\frac{\alpha}{2} \cdot \sum_{i j} \Delta L_{i j}^{2}+\frac{\beta}{2} \cdot \sum_{i j k} \Delta \theta_{i j}^{2}
$$

It is true, V is a simple harmonic potential $\left(\mathrm{V} \propto \Delta \mathrm{L}_{\mathrm{ij}}{ }^{2}, \propto \Delta \theta_{\mathrm{ijk}}{ }^{2}\right)$ with simple force constants α and β. But as a constraint fixes a position against very small virtual displacements $\delta L_{i j}$ or $\delta \theta_{i j k}$, the actual shape of V is irrelevant.
We have two types of constraints, namely related to interparticle distance variations $\Delta \mathrm{L}$, and to bond-to-bond angle variations $\Delta \theta$. In a system with N atoms, the corresponding numbers of constraints are $\mathrm{N}_{\mathrm{C}, \Delta L}$ and $\mathrm{N}_{\mathrm{C}, \Delta \theta}$, respectively:

$$
N_{C}=N_{C, \Delta L}+N_{C, \Delta \theta}
$$

constraints related to distance variations $\Delta \mathrm{L}$:

one constraint associated with one bond
=
1/2 constraints per bond for each end member;
for an end member with coordination number r,
$n_{r, \Delta L}=r / 2$

$$
N_{C, \Delta L}=\sum_{r} n_{r, \Delta L} \cdot N_{r}=\sum_{r} \frac{r}{2} \cdot N_{r}
$$

constraints related to angular variations $\Delta \theta$:

$r=2 \Rightarrow$
only one angular constraint:
$n_{r, \Delta \theta}=1$

$r=3 \Rightarrow$
two additional constraints because two angles relative to two existing bonds have to be specified: $n_{r}=3$

The total number of constraints thus amounts to

$$
N_{C}=\sum_{r} \frac{r}{2} \cdot N_{r}+\sum_{r}(2 \cdot r-3) \cdot N_{r}
$$

The total number of zero frequency (,floppy") modes is

$$
\begin{aligned}
N_{0} & =N_{F}-N_{C}=3 \cdot \sum_{r} N_{r}-\sum_{r} \frac{r}{2} \cdot N_{r}-\sum_{r}(2 \cdot r-3) \cdot N_{r} \\
& =\sum_{r}\left(6-\frac{5}{2} r\right) \cdot N_{r}
\end{aligned}
$$

Let us calculate the fraction $f_{0}=\mathrm{N}_{0} /(3 \cdot \mathrm{~N})$ of „floppy" modes:

$$
f_{0}=\frac{N_{0}}{3 \cdot N}=\frac{\sum_{r}\left(6-\frac{5}{2} r\right) \cdot N_{r}}{3 \cdot \sum_{r} N_{r}}=2-\frac{5}{6} r_{m} \rightarrow 0 \text { for } r_{m}=2.4
$$

summary: constraint counting

$\mathrm{N}=$ number of nodes in the network (e.g., number of Si atoms)
$r_{m}=$ mean number of constraining bonds per node (e.g., number of bridging oxygens per Si atom)

number of	3 D network
degrees of freedom N_{F}	$3 \cdot N$
constraints N_{C}	$\left(\frac{5}{2} \cdot r_{m}-3\right) \cdot N$
floppy modes $\mathrm{N}_{0}=\mathrm{N}_{\mathrm{F}}-\mathrm{N}_{\mathrm{C}}$	$\left(6-\frac{5}{2} \cdot r_{m}\right) \cdot N$
$\mathrm{~N}_{0} \rightarrow 0$ for	$r_{m}=2.4$

Avramov 2009

Consider $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$ glasses:

$$
x \mathrm{Na}_{2} \mathrm{O} \cdot(1-x) \mathrm{SiO}_{2} \Rightarrow \mathrm{Na}_{2 x} \mathrm{Si}_{1-x} \mathrm{O}_{2-x}
$$

- Mean coordination number b_{m} per network node (each Si in one node):
$b_{m}=4$ for SiO_{2} as the only network former
- Mean number q_{m} of modified („broken") bonds per network node:

$$
q_{m}=\frac{2 x}{1-x} \quad \quad N a_{2 x} S i_{1-x} O_{2-x}
$$

- Mean number r_{m} of constrained bonds per network node:

$$
r_{m}=b_{m}-q_{m}=4-\frac{2 x}{1-x}=\frac{4-6 x}{1-x}
$$

The average number of constraining bonds (or: constraints) per node is:

$$
r_{m}=\frac{4-6 x}{1-x}
$$

glass N-C-S (mol \%)	modifier N $\mathbf{r}_{\mathrm{m}}=$
$50.0 \mathrm{~N}+50.0 \mathrm{~S}$	2.00
$44.4 \mathrm{~N}+55.6 \mathrm{~S}$	2.40
$33.3 \mathrm{~N}+66.7 \mathrm{~S}$	3.00

Does a glass composition with $55.6 \mathrm{~mol}-\% \mathrm{SiO}_{2}$ stand out in any way?

"chemical structure" of the binary system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$

„chemical structure" and chemical potentials are equivalent concepts both quantifying the chemical interaction of components

species coexistence is a feature of liquids in general \Rightarrow „chemical structure"
aqueous SiO_{2} solution at $25^{\circ} \mathrm{C}$

$\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$ melt at $1400^{\circ} \mathrm{C}$

"chemical structure" of the binary system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$

mean number of „,modified" bonds in the binary system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{SiO}_{2}$

$$
L=L_{\infty}+\frac{C}{T \cdot S_{C}(T)} ; L \equiv \log \eta
$$

M. Toplis (2001)

QUIZ

1. The fragility of a glass is a measure of

- its practical strength.
- the activation energy in an Arrhenius plot.
- the over-exponential increase of relaxation times when approaching T_{g}.

2. Clusters formation

- and random network formation are strictly antagonistic concepts.
- is rather supported than discouraged by random network concepts.
- is a structural feature exclusively found in metallic glasses.

3. The heat capacities of a glass and its isochemical crystal

- are essentially the same since c_{P} is dominated by short-range order.
- are usually quite different because the crystal is highly ordered while the glass is not.
- deviate in the low-T regime.
- None of these answers is correct.
- More than one answer is correct.

4. The c_{P} in the glass transition

- is of the order of 3R per g-atom.
- is approx. (3/2)R per g-atom.
- is very different for different glasses depending on their fragility.
- depends on the absolute value of T_{q}.

5. The viscosity of a glass-forming melt:

- The viscosity-temperature relation essentially depends on thermodynamic properties.
- The viscosity-temperature relation is a kinetic property and as such has no relation to thermodynamics.
- The viscosities of glass-forming melts at liquidus temperature are of the same order of magnitude.
- More than one answer is correct.

6. Floppy modes in a 3D random network

- occur if the average bond per network node exceeds a threshold value of approx. 2.4.
- decrease the critical undercooling of a glass melt.
- Both answers are correct.

7. The "chemical structure" of a glass

- reflects true structural entities.
- is a merely stoichiometric concept which has no real correspondence to the glass structure.
- is based on a nanocrystalline concept of the glassy state.

8. The different 3-parameter viscosity models

- although based on different scientific concepts yield - in practical terms the same results of the viscosity-temperature function.
- agree well within limited temperature ranges, but disagree significantly at very high temperatures and at $\mathrm{T}<\mathrm{T}_{\mathrm{g}}$.
- yield considerably different results within the entire T range.

Homework

Use the simplified form of the Adam-Gibbs relation

$$
\log \eta=\log \eta_{\infty}+\frac{C}{T \cdot S_{C}(T)}=L_{\infty}+\frac{\left(L_{g}-L_{\infty}\right) \cdot y}{1-a \cdot \ln y}=\beta_{0}+\beta_{1} \cdot f(y)
$$

with abbreviations

$$
\log \eta \equiv L ; \frac{\Delta c}{S^{v i t}} \equiv a ; \frac{T_{g}}{T} \equiv y .
$$

Use the „structural parameter" a as an adjustable parameter to generate a linear fit to the following experimental viscosity data of diopside (viscosity in dPas):

T in ${ }^{\circ} \mathrm{C}$	$\log \eta$
708	≈ 13.0
1375	1.087
1400	0.992
1450	0.881
1500	0.678
1550	0.559
1600	0.465

The experimental value of $\Delta \mathrm{c}_{\mathrm{p}}$ is $80.0 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$. Derive an estimate for the conventional entropy of vitrification $\mathrm{S}^{\text {vit }}$. Conclusion?

Thank you

for your attention

