RNTHAACHEN UNIVERSITY

Fragility and its Relation to Other Glass Properties

Networks

Reinhard Conradt

April 6 & 8, 2010

conradt@ghi.rwth-aachen.de

What is "fragility"?

• Technologist call it the "length" of a glass; it determines the working range.

log η, η in dPa·s

- Fragility is a measure of deviation from an exponential T dependence of relaxation times and transport properties (deviation from Arrhenius behavior).
- Fragility may be quantified, e.g., by the slope for $T_g / T \rightarrow 1$ in the so-called Angell plot.
- The non-exponential T dependence is commonly represented by the KWW eq. $\tau \propto \exp B \cdot (T_g/T)^n$, by the VFT eq. $\tau \propto \exp B/(T T_0)$, etc.
- While the high-T branch reflects a universal feature of liquids, the fragility is likely to reflect the thermodynamics of the liquids.

the glassy "state"

matter in internal equilibrium:
state A: T^A, P^A, n^A_j
$$\rightarrow$$
 state B: T^B, P^B, n^B_j; n_j stands f or $\vec{n} = \begin{pmatrix} n_{j=1} \\ \vdots \\ n_{j=N} \end{pmatrix}$ (chemical composition)

• a state depends on variables T, P, n_j only; it is "path independent"; let Z = Z(T,P,n_j) be a property (a "function of state"), then $\int_{A}^{B} dZ = Z(B) - Z(A); \quad \oint dZ = 0$

matter at T^B, P^B, n^B, **not** in internal equilibrium:

- Z is no longer a function of (T^B,P^B,n^B_i) alone; it is path dependent;
- a path may be defined as $T^A \rightarrow T^B$, P = const., n_j = const. (e.g., a cooling process) $P^A \rightarrow P^B$, T = const., n_j = const. (e.g., an impact process) $n^A_j \rightarrow n^B_j$, T = const., P = const. (e.g., a polymerization process) or combinations of T. D. p. changes:

or as combinations of T, P, n_i changes;

- the value of T, P, n_j at which the system departs from internal equilibrium is termed fictive temperature T_f, fictive pressure P_f, or fictive composition n_{jf};
- Z is a function of $(T^{B}, T^{B}_{f}; P^{B}, P^{B}_{f}; n^{B}_{j}, n^{B}_{jf})$
- T^{B}_{f} , P^{B}_{f} , n^{B}_{jf} depend on the process time

temperature T

heat capacities

If you have only one chance to perform a measurement on a material, then measure c_P !

Ϋ́

Example: N₂(g) at boiling point

$$S(T) = \int_{0}^{T} \frac{c}{T} dT + \sum_{i} \frac{\Delta H_{i}}{T_{i}}, \quad T_{i} < T$$

T in K	comment	ΔS in J/(mol·K)
0 – 10	Debye integral	1.916
10 – 35.61	integration of c _P /T	25.246
at 35.61	polym. phase transition	6.427
35.61 – 63.14	integration of c _P /T	23.384
at 63.14	melting point T ^m	11.418
63.14 – 77.32	integration of c _P /T	11.414
at 77.32	boiling point T ^b	72.120
	sum for N ₂ (g) at T ^b	151.925
	calc. from partition function	152.236

Giauque & Clayton (1933), compiled by Wilks (1963) other examples: Ar, O_2 , Cl_2 , HCl, CH_4 , C_2H_4 , ...

Examples: CO and CH₃D

gas	S(T ^b) in J/(mol·K)					
	Scalc	S _{exp}	S _{calc} - S _{exp}			
CO at boiling point T ^b	160.33	155.64	4.69			
CH ₃ D at boiling point T ^b	165.23	153.64	11.59			

:C=O: a frozen-in random linear orientation would yield $\Delta S = -R \ln(\frac{1}{2}) = 5.76 J/(mol \cdot K)$

a frozen-in random position of D in the molecule would yield $\Delta S = R \ln(\frac{1}{4}) = 11.53 \text{ J/(mol·K)}$

CO: Clayton & Giauque (1932); CH_3D : Clusius et.al. (1937); compiled by Wilks (1963); other examples: NO, N₂O, H₂O, D₂O, ...

If c_P data are available for a glass and its isochemical crystal from very low T up to T^m, then the following relations hold:

$$\int_{0}^{T^{m}+\delta T} \frac{c_{G,L}}{T} dT = S_{L}(T^{m}) - S_{G}(0) \qquad \text{for the glass,}$$

$$\int_{0}^{T^{m}+\delta T} \frac{c_{X}}{T} dT = S^{m} + S_{X}(T^{m}) = S_{L}(T^{m}) \quad \text{for the crystal.}$$

At T = T^m + δ T, both crystal and glass assume the state of eq. liquid. Thus

example: CaO· MgO· 2SiO₂ (diopside)

Richet & Bottinga (1995); Courtial et. al. (2000)

glasses, melts, and the crystalline reference system

temperature T

$$\begin{split} \mathbf{G}_{\mathcal{P},P}^{n} &= \begin{pmatrix} -c_{P}/T & +V \cdot \alpha_{V} \\ +V \cdot \alpha_{V} & -V \cdot \kappa \end{pmatrix} \\ c_{P} &= -T \cdot \left(\frac{\partial^{2} G}{\partial T^{2}} \right)_{P} \\ \kappa &= -\frac{1}{V} \cdot \left(\frac{\partial^{2} G}{\partial P^{2}} \right)_{T} \\ \alpha_{V} &= +\frac{1}{V} \cdot \left(\frac{\partial^{2} G}{\partial T \partial P} \right) \end{split}$$

for phases in internal equilibrium:

$$\det(G)_{T,P} = c_P \cdot \kappa \cdot \rho - (\alpha_V)^2 \cdot T > 0$$

for the glass transition:

$$\Delta c_P \cdot \Delta \kappa \cdot \rho - \left(\Delta \alpha_V\right)^2 \cdot T > 0$$

material property (T,P)

- One-component glasses and glass melts are described in relation to a crystalline reference state by the following data set: H^{fus}, S^{fus}, T_{lia}; H^{vit}, S^{vit}, Δc_P , T_a
- The set is redundant: Only 4 out of 7 quantities are independent.
- H^{fus}, S^{fus}, T_{liq} are path-independent equilibrium properties, while H^{vit}, S^{vit}, Δc_P , T_g are path-dependent; they depend on the direction of the path in the (T,P, n_j) space and on the time required to move from state I to state II.

A data set for a one-component glass-forming system thus reads:

Н°	= standard enthalpy (298 K, 1bar
	for the Xtal stable at T = T _g ,

- S° = standard entropy (s.a.)
- $c_{P}(T) = A + B \cdot T + C/T^{2}$
- H^{fus} = enthalpy of fusion
- **S**^{fus} = entropy of fusion
- T_{liq} = liquidus temperature
- H^{vit} = vitrification enthalpy
- Svit = vitrification entropy (zero Kelvin entropy)
- T_g = glass transition temperature
- Δc_P = jump of the heat capacity at T_g

S^{fus} = H^{fus} / T_{liq} two independent quantities

 $\begin{array}{l} \mathsf{H}^{\mathsf{vit}} \approx \mathsf{H}^{\mathsf{fus}} - \Delta \mathsf{c}_{\mathsf{P}} \cdot (\mathsf{T}_{\mathsf{liq}} - \mathsf{T}_{\mathsf{g}}) \\ \mathsf{S}^{\mathsf{vit}} \approx \mathsf{S}^{\mathsf{fus}} - \Delta \mathsf{c}_{\mathsf{P}} \cdot \mathsf{ln}(\mathsf{T}_{\mathsf{liq}}/\mathsf{T}_{\mathsf{g}}) \\ \mathsf{two independent quantities;} \\ \mathsf{H}^{\mathsf{vit}}, \, \mathsf{S}^{\mathsf{vit}}, \, \mathsf{T}_{\mathsf{g}}, \, \Delta \mathsf{c}_{\mathsf{P}} \, \mathsf{are functions of } \mathsf{T}_{f} \end{array}$

short excursion: viscosity

configurational entropy:

$$S_{C}(T) = S^{vit} + \int_{T_{g}}^{T} \frac{c_{liq}(T) - c_{X}(T)}{T} dT$$
$$\approx S^{vit} + \Delta c \cdot \ln \frac{T}{T_{g}}$$

see, e.g., the Adam-Gibbs equation:

$$L = L_{\infty} + \frac{C}{T \cdot S_C(T)}; \quad L \equiv \log \eta$$

$$= L_{\infty} + \frac{\mathbf{\xi}_g - L_{\infty} \underbrace{}_T^T}{1 + \frac{\Delta c}{S^{vit}} \cdot \ln \frac{T}{T_g}}$$

viscosity slope for $T \rightarrow T_q$:

$$\frac{\partial L}{\partial (T_g / T)} \bigg|_{T = T_g} = \P_g - L_\infty \left(1 + \frac{\Delta c}{S^{vit}} \right)$$

high-T limit of diffusion: $D_k^* = \frac{\lambda^2}{3} \cdot \frac{kT}{h}$ Stokes-Einstein: $D_k^* = \frac{kT}{6\pi \cdot \eta \cdot \lambda} \implies \eta_\infty = \hbar / \lambda^3$

the crystalline reference system

reflections of solid state phase relations clearly seen in the properties of high-T liquids:

$$\begin{aligned} H_{glass}^{\circ} &= \sum_{k} n_{k} \cdot (H_{k}^{\circ} + H_{k}^{vit}) \\ H_{1673,liq}^{\circ} &= \sum_{k} n_{k} \cdot H_{1673,liq,k}^{\circ} \\ S_{glass}^{\circ} &= \sum_{k} n_{k} \cdot (S_{k}^{\circ} + S_{k}^{vit}) \\ S_{1673,liq}^{\circ} &= \sum_{k} n_{k} \cdot S_{1673,liq,k}^{\circ} \\ c_{P,liq} &= \sum_{k} n_{k} \cdot c_{P,liq,k} \\ H_{T,liq} &= H_{1673,liq}^{\circ} + c_{P,liq} \cdot (T - 1673) \\ S_{T,liq} &= S_{1673,liq}^{\circ} + c_{P,liq} \cdot ln(T / 1673) \\ \Delta H_{T,liq} &= H_{T,liq} - H_{glass}^{\circ} \\ ln \ a_{j} &= \sum_{k} \left[A_{jk} \cdot \frac{G_{k}^{\circ}}{RT} \right] - \frac{G_{j}^{\circ}}{RT} \end{aligned}$$

k	-H°	S°	H ^{vit}	S ^{vit}	-H 1673,liq	S _{1673,liq}	C P,liq
P ₂ O ₅ ·3CaO	4117.1	236.0	135.1	51.5	3417.1	898.7	324.3
P ₂ O ₅	1492.0	114.4	18.2	9.5	1138.5	586.6	181.6
Fe ₂ O ₃	823.4	87.4	45.2	17.2	550.2	370.3	142.3
FeO·Fe ₂ O ₃	1108.8	151.0	82.8	31.4	677.8	579.9	213.4
FeO·SiO ₂	1196.2	92.8	36.7	13.8	962.3	342.7	139.7
2FeO·SiO ₂	1471.1	145.2	55.2	20.5	1118.8	512.1	240.6
MnO·SiO ₂	1320.9	102.5	40.2	15.1	1085.3	345.2	151.5
$2ZnO\cdot SiO_2$	1643.1	131.4	82.4	31.4	1261.1	494.5	174.5
$ZrO_2 \cdot SiO_2$	2034.7	84.5	86.6	32.6	1686.2	381.2	149.4
CaO·TiO ₂	1660.6	93.7	67.4	25.5	1365.7	360.2	124.7
BaO·Al ₂ O ₃ ·2SiO ₂	4222.1	236.8	130.5	95.4	3454.3	1198.3	473.2
BaO·2SiO ₂	2553.1	154.0	81.6	26.8	2171.1	533.5	241.4
BaO·SiO ₂	1618.0	104.6	56.5	41.0	1349.8	361.1	146.4
$Li_2O \cdot Al_2O_3 \cdot 4SiO_2$	6036.7	308.8	184.1	12.1	5235.4	1173.2	498.7
$Li_2O \cdot SiO_2$	1648.5	79.9	16.7	6.3	1416.7	339.7	167.4
$K_2O \cdot Al_2O_3 \cdot 6SiO_2$	7914.0	439.3	106.3	29.3	6924.9	1559.4	765.7
$K_2O \cdot Al_2O_3 \cdot 2SiO_2$	4217.1	266.1	80.4	22.1	3903.7	666.5	517.6
K ₂ O·4SiO ₂	4315.8	265.7	26.4	21.3	3697.8	983.7	410.0
$K_2O \cdot 2SiO_2$	2508.7	190.6	12.6	23.9	2153.1	595.4	275.3
Na ₂ O·Al ₂ O ₃ ·6SiO ₂	7841.2	420.1	125.0	28.4	6870.1	1512.5	648.1
$Na_2O \cdot Al_2O_3 \cdot 2SiO_2$	4163.5	248.5	92.0	27.9	3614.1	856.9	423.8

kJ/mol; J/(mol∙K)

k	-H°	S°	H ^{vit}	Svit	-H 1673,liq	S 1673,liq	C P,liq	kJ/mol:
B_2O_3	1273.5	54.0	18.2	11.3	1088.7	271.1	129.7	l/(mol·K)
$Na_2O \cdot B_2O_3 \cdot 4SiO_2$	5710.9	270.0	42.7	21.1	4988.0	1090.2	637.6	
Na ₂ O·4B ₂ O ₃	5902.8	276.1	58.3	40.1	4986.7	1275.5	704.2	
$Na_2O\cdot 2B_2O_3$	3284.9	189.5	48.8	26.6	2735.9	780.3	444.8	
$Na_2O \cdot B_2O_3$	1958.1	147.1	43.6	19.5	1585.7	538.7	292.9	
$2MgO \cdot 2Al_2O_3 \cdot 5SiO_2$	9113.2	407.1	135.8	41.4	7994.8	1606.2	1031.8	
MgO·SiO ₂	1548.5	67.8	46.6	13.6	1318.0	296.2	146.4	
2MgO·SiO ₂	2176.9	95.4	61.4	11.0	1876.1	402.9	205.0	
CaO·MgO·2SiO ₂	3202.4	143.1	92.3	25.7	2733.4	621.7	355.6	
2CaO·MgO·2SiO ₂	3876.9	209.2	106.7	32.0	3319.2	775.3	426.8	
$CaO \cdot Al_2O_3 \cdot 2SiO_2$	4223.7	202.5	103.0	37.7	3628.8	791.2	380.7	
$2CaO \cdot Al_2O_3 \cdot SiO_2$	3989.4	198.3	129.9	49.4	3374.0	787.8	299.2	
$3AI_2O_3 \cdot 2SiO_2$	6820.8	274.9	188.3	71.5	5816.2	1231.8	523.4	
CaO·SiO ₂	1635.1	83.1	49.8	18.8	1382.0	329.7	146.4	
2CaO·SiO ₂	2328.4	120.5	101.3	38.5	1868.2	509.2	174.5	
Na ₂ O·2SiO ₂	2473.6	164.4	29.3	13.2	2102.5	588.7	261.1	
Na ₂ O·SiO ₂	1563.1	113.8	37.7	9.8	1288.3	415.1	179.1	
Na ₂ O·3CaO·6SiO ₂	8363.8	461.9	77.3	20.5	7372.6	1555.6	786.6	
Na ₂ O·2CaO·3SiO ₂	4883.6	277.8	57.7	13.4	4240.9	990.4	470.3	
$2Na_2O \cdot CaO \cdot 3SiO_2$	4763.0	309.6	87.0	22.6	4029.6	1107.9	501.2	
SiO ₂	908.3	43.5	6.9	4.0	809.6	157.3	86.2	

prediction of G^{*f*} for 4 mineral fibre compositions

 SiO_2 - TiO_2 - AI_2O_3 - Fe_2O_3 -FeO- P_2O_5 -MgO-CaO- Na_2O - K_2O

	G ^f el [k	J/mol]	G ^f ox [kJ/mol]		
	exp	calc	exp	calc	
glass a	-852.0	-849.6	-12.9	-10.6	
glass b	-865.0	-867.2	-35.4	-37.7	
glass c	-880.8	-881.8	-34.0	-35.0	
glass d	-885.4	-852.7	-44.1	-41.4	

experiments by Richet et al.

structural aspects

maybe Thursday

Bragg's formula relates lattice spacing d and diffraction angle θ :

$$d = \frac{X}{2 \cdot \sin(\frac{1}{2} \cdot 2 \cdot \theta)} ; X = 0.154 nm (Cu K\alpha)$$

broadening B of diffraction peaks:

$$B = \frac{1}{2} \cdot \mathbf{Q} \cdot \theta_{\max} - 2 \cdot \theta_{\min} \stackrel{\mathbf{>}}{=} \frac{\pi}{180}; \quad (22 \pm 4)^{\circ} \Longrightarrow B = 0.0698$$

interpretation: peak broadening $B \Leftrightarrow$ range b of translational symmetry

$$b = \frac{X}{B \cdot \cos(\frac{1}{2} \cdot 2 \cdot \theta)}$$
; $(22 \pm 4)^{\circ} \Longrightarrow b = 2nm$

interpretation: peak broadening B \Leftrightarrow fluctuation ϵ = δ d/d of lattice spacing

$$\varepsilon = \frac{\delta d}{d} = \frac{B}{4 \cdot \tan \left(\frac{1}{2} \cdot 2\theta \right)} \quad (22 \pm 4)^{\circ} \Longrightarrow \varepsilon = 9 \%$$

random packing of length-correlated clusters

2. crystalline silica $\bigvee_{i \in S_i \in S_i} f_{i \in G_i} f_{i \in G_i}$

$\epsilon = 0.09$; d $\leq \epsilon \sqrt{2}$ is accepted as bond

evaluate all distance correlations in the window 0.2 - 0.3 nm (O-Si-O distances)

evaluate all distance correlations in the window 0.2 - 0.3 nm (O-Si-O distances)

evaluate all distance correlations in the window 0.2 - 0.3 nm (O-Si-O distances)

QUIZ

1.

The c_P of a condensed phase is determined by

- the vibrational and rotational degrees of freedom of its molecular units.
- the vibrational, rotational, and configurational degrees of freedom of its molecular units.
- electrons may contribute to c_P.
- More than one answer is correct.

2.

In the glass transition, we observe

- a jump of the heat capacity and the thermal expansion coefficient to higher values.
- a jump of the compression modulus to lower values.
- Both answers are correct.

3.

The c_P of a glass at very low T

- shows an excess over the c_P of the isochemical crystal.
- steadily approaches the value of the isochemical crystal.
- may be larger or smaller than the c_P of the isochemical crystal, depending on the chemical composition.

4.

The properties of frozen-in phases

- are functions of state.
- are unpredictable.
- depend well-defined additional parameters.

QUIZ continued

5.

The c_P jump in the glass transition

- reflects the gain of additional degrees of freedoms.
- influences the fragility of a glass forming system.
- None of thes answers is correct.

6.

Multi-component oxide melts above T^m

- are in perfect disorder.
- still contain quasi-crystalline entities (micro-crystals).
- reflect the constitutional relations found in the crystalline state.

7.

The entropy of condensed phases for $T \rightarrow 0$

- is always zero.
- is zero if the phases are in internal equilibrium.
- can be assessed unequivocally by calorimetry.
- The issue is a yet unresolved controversy of condensed matter physics.

8.

Industrial glasses at 298 K obtained at normalized cooling rates

- cannot be described by thermochemical standard values.
- can be described by the thermochemical standard values of the corresponding crystalline state plus two additional quantities.
- can be described by the thermochemical standard values only if they are onecomponent systems.

Homework

Derive the enthalpy and entropy (T = 298 K) of a glass of composition (in wt. %)

65 SiO₂, 15 Al₂O₃, 20 CaO.

Compare the result to the values of the isochemical (polycrystalline) equilibrium state.

What is the Gibbs energy difference at 298 K?

With a value of T_g = 760 °C and H^{fus} = 475 kJ/kg given, what estimate do you derive for Δc_P ?

What is the expected fragility slope?

Thank you for your attention