Lecture 15: The Tool-Narayanaswamy-Moynihan Equation Part II and DSC

March 9, 2010

Dr. Roger Loucks

Alfred University Dept. of Physics and Astronomy

loucks@alfred.edu

Thank you for taking me home ! My eyes are completely open now ! I understand the glass transition very well !!!!

Initially Tool used $\tau = K\eta = \tau_{o}e^{-AT}$ where η_{0} and A are constants.

Tool quickly realized that this did not account for the data. He postulated that η must depend on the Fictive temperature T_f.

If a liquid were cooled quickly, it would have a larger T_f than a slower cooled liquid. This larger T_f would correspond to a more "open" structure which would reduce the η . If the liquid were cooled slower, then the T_f would be smaller and the structure is "closer" together and would have a larger η . To account for this, Tool (1946) assumed that a better choice of η would be

 $\eta = \eta_0 e^{-(A_1T + A_2T_f)}$ $\tau = \tau_0 e^{-(A_1T + A_2T_f)}$ where η_0 and A_1 and A_2 are constants.

Tool's equation becomes

$$\frac{dT_f}{dt} = \left(\frac{T_f - T}{\tau_0}\right) e^{(A_1T + A_2T_f)}$$

As clever as Tool's equation is, it can not account for the cross over experiments of Ritland. The reason for this lack of agreement is the single relaxation time.

Thermorheological Simplicity

Define the relaxation response at a temperature T as

$$R \equiv \frac{p(T,t) - p(T,\infty)}{p(T,0) - p(T,\infty)}$$

The range of R is 1 to 0, i.e. if t = 0, R = 1 and if $t = \infty$, R = 0.

The response R can typically be described by the stretched exponential

$$R = e^{-\left(\frac{t}{\tau_{exp}}\right)^{b}} \approx \sum_{n=1}^{N} a_{n} e^{-\frac{t}{\tau_{n}}}$$

where τ_{exp} is an experimentally determined parameter, 0 < b < 1. Stretched exponentials can be approximated by the Prony series where the a_n 's sum to 1.

If all the τ_n 's have the same mathematical dependence on temperature then TRS results. To see this, rewrite the τ_n R in the Prony series as τ/λ_n so R becomes

$$R = \sum_{n=1}^{N} a_n e^{-\frac{\lambda_n t}{\tau}} = \sum_{n=1}^{N} a_n e^{-\lambda_n \beta} \quad \text{where} \quad \frac{t}{\tau} \equiv \beta$$

If the R for a system were measured at any value of T and then graphed as R vs. β , all of the R's at various T's would lie on top of one another, i.e. there would be one Master graph.

Since there is one Master graph of R, define a reference temperature T_r at which the Master graph would be measured. Call the time associated with this reference temperature ξ . Since the same graph would result at any temperature T, we can conclude that

$$\beta = \frac{\xi}{\tau_r} = \frac{t}{\tau}$$
 or more simply $\xi = \frac{\tau_r}{\tau}t$ where ξ is called the reduced time

We can view ξ in the following way. If a system relaxes by some amount at temperature T in a time t, ξ is the time that is needed for the system to relax the same amount at temperature T_r, i.e.

$$R(t,T) = R(\xi,T_r) \longrightarrow R = \sum_{n=1}^{N} a_n e^{-\frac{\lambda_n t}{\tau}} = \sum_{n=1}^{N} a_n e^{-\lambda_n \beta} = \sum_{n=1}^{N} a_n e^{-\lambda_n \frac{\xi}{\tau_r}}$$

How can we extend this to temperature changes ?

Defining a new response function $M_p(t) = \frac{p(T_2, t) - p(T_2, \infty)}{p(T_2, 0) - p(T_2, \infty)}$ for T changes

M has the same range as R, i.e. t = 0, $M_p = 1$ and if t = ∞ , $M_p = 0$.

Using
$$p(T) = p_{eq}(T) + \alpha_s(T_f - T) = p(T_1) + \alpha_L(T - T_1) + \alpha_s(T_f - T)$$

And the conditions: t = 0, $T_f(0) = T_1$ and $T_f(\infty) = T_2 M_p$ we becomes $M_p(t) = \frac{T_f(t) - T_2}{T - T_2}$

Narayanaswamy assumed that $M_p(t)$ obeys TRS ! How ?

While
$$p(T,t) = p_{eq}(T) + \alpha_s(T_f(t) - T) \longrightarrow p(T,\xi) = p_{eq}(T) + \alpha_s(T_f(\xi) - T)$$

 $p(T_2,\xi) = p(T_2,\infty) - \alpha_s \Delta TM_p(\xi)$

Episode III: Revenge of the ξ

To complete the derivation, imagine that the temperature is changed from some initial value of T_0 to some final value T in a series of N steps, i.e.

$$T = T_{0} + \Delta T_{1} + \Delta T_{2} + \dots + \Delta T_{N} = T_{0} + \sum_{i=1}^{N} \Delta T_{i}$$

 $p(T,\xi) = p(T,\infty) - \alpha_{s} \Delta T_{M_{p}}(\xi - \xi_{1}) + \dots - \alpha_{s} \Delta T_{N}M_{p}(\xi - \xi_{N})$

$$p(T,\xi) = p(T,\infty) - \sum_{i=1}^{N} \alpha_{s} \Delta T_{i} M_{p}(\xi - \xi_{i})$$

Using the chain rule and rewriting ΔT_i in terms of ξ yields

$$\Delta T_{i} = \frac{\Delta T(\xi)}{\Delta \xi_{i}} \Delta \xi_{i} \rightarrow dT = \frac{dT}{d\xi} d\xi$$

$$\downarrow$$

$$p(T,\xi) = p(T,\infty) - \sum_{i=1}^{N} \alpha_{s} \Delta T_{i} M_{p} (\xi - \xi_{i})$$

$$p(T,\xi) = p(T,\infty) - \sum_{i=1}^{N} \alpha_{s} M_{p} (\xi - \xi_{i}) \frac{\Delta T(\xi)}{\Delta \xi_{i}} \Delta \xi_{i}$$

$$p(T,\xi) = p(T,\infty) - \int_{0}^{\xi} \alpha_{s} M_{p} (\xi - \xi') \frac{dT}{d\xi'} d\xi'$$

Likewise, the equation for fictive temperature becomes

$$T_{f}(\xi) - T_{2} = -M_{p}(\xi)\Delta T$$

$$T_{f} = T - \sum_{i=1}^{N} \Delta T_{i}M_{p}(\xi - \xi_{i})$$

$$T_{f} = T - \sum_{i=1}^{N} M_{p}(\xi - \xi_{i}) \frac{\Delta T(\xi)}{\Delta \xi_{i}} \Delta \xi_{i}$$

$$T_{f} = T - \int_{0}^{\xi} M_{p}(\xi - \xi') \frac{dT}{d\xi'} d\xi'$$

Recall in the last lecture, we stated that the fundamental flaw in Tool's equation is that it only has one relaxation time. Let's pretend that $M_p(\xi)$ is given by only one relaxation time, i.e.

$$M_{p}(\xi) = e^{-\frac{\zeta}{\tau_{r}}}$$

Substituting this M into Narayanaswamy's equation for the evolution of T_f yields

$$T_{f} = T - \int_{0}^{\xi} M_{p} \left(\xi - \xi'\right) \frac{dT}{d\xi'} d\xi' = T - \int_{0}^{\xi} e^{-\frac{(\xi - \xi')}{\tau_{r}}} \frac{dT}{d\xi'} d\xi'$$
or

$$T - T_{f} = \int_{0}^{\xi} e^{-\frac{(\xi - \xi')}{\tau_{r}}} \frac{dT}{d\xi'} d\xi'$$

Taking the derivative with respect to $\boldsymbol{\xi}$ gives

$$\frac{dT_{f}}{d\xi} = \frac{1}{\tau_{r}} \int_{0}^{\xi} e^{-\frac{(\xi-\xi')}{\tau_{r}}} \frac{dT}{d\xi'} d\xi'$$

$$\int_{0}^{0} \frac{dT_{f}}{d\xi} = \frac{T-T_{f}}{\tau_{r}}$$
Tool's eq.

What did Narayanaswamy use for τ ?

$$\tau_{p} = \tau_{0} \exp\left[\frac{x\Delta H}{RT} + \frac{(1-x)\Delta H}{RT_{f}}\right] \quad \text{where } 0 < x < 1$$

Arrhenius term A T_f dependence just like Tool !

The Tool-Narayanaswamy-Moynihan equations are

$$p(T,\xi) = p(T,\infty) - \int_{0}^{\xi} \alpha_{s} M_{p}(\xi - \xi') \frac{dT}{d\xi'} d\xi' \quad \text{and} \quad T_{f} = T - \int_{0}^{\xi} M_{p}(\xi - \xi') \frac{dT}{d\xi'} d\xi'$$

and some form for t_p such as

$$\tau_{p} = \tau_{0} \exp\left[\frac{x\Delta H}{RT} + \frac{(1-x)\Delta H}{RT_{f}}\right]$$

DSC: Differential Scanning Calorimetry as a "Black Box". By a "black box", I mean 1) what are the inputs and 2) what is the output. Ignore the details of how the apparatus works.

How does a DSC work ? The "philosophy" of the device.

Sealed Al pans containing the samples

Chris Willoughby Senior Technical Representative

TA Instruments – Waters LLC 159 Lukens Drive New Castle, Delaware 19720, USA

585.872.7505 telephone 302.427.4070 applications hotline 302.427.4050 service hotline cwilloughby@tainstruments.com

www.tainstruments.com

The Empty Al pan acts as the reference sample

Before we explain how to measure T_f and T_g using a DSC, lets first examine some typical C_p vs T results

B) Linear heating a glass that was linearly cooled i.e. an "up scan"

As the glass is relaxing toward the super cooled equilibrium line, heat is given off i.e. H is decreasing so this region is exothermic.

D) A linear up scan on an annealed glass

What information does a $C_{\rm p}\,vs\,T\,graph$ provide ?

Recall that
$$C_p = \frac{dH}{dT}$$
 \longrightarrow $C_p dT = dH$
 $\int_{T_1}^{T_2} C_p dT = \int_{T_1}^{T_2} dH = H_2 - H_1 = \Delta H$

If the system is a glass T_1 and a liquid at T_2 , then $\Delta H = H_L - H_g$.

How can we use this to find T_f and T_g ? For example, how do you measure the T_f and T_g of a quenched glass ?

Yuanzheng Yue's Enthalpy-Matching Method

1) Make a glass and quench it. The cooling rate and T_f are unknown. What is the T_f of this quenched glass ?

2) Place a sample of the quenched glass into a DSC and heat the sample up to the liquid state at some fixed linear rate say 20°C/min or 10°C/min. Call the C_p for this first "upscan" C_p^{-1} .

- 3) Cool the liquid at the the same linear rate, i.e. say 20^oC/min, to room temperature.
- 4) Reheat the cooled glass sample using at the same linear rate of 20° C/min back up to the liquid state. Call the C_p for this second "upscan" C_p². The graph for C_p² will not have a severe of a "dip" since the glass has relaxed.

5) Graph of C_p^1 and C_p^2 vs. T curves.

Applying Yue's technique is easy in practice. We'll set it up in steps. Why the technique works requires more effort. I'll explain what to do first before I give the explanation.

Clearly, this is just the area between the second and first upscans.

This "dip" will deepen if T_f is higher since the glass will relax more on the first upscan. Second, calculate the integral $B \equiv \int_{T_s}^{T_c} (C_{p,L} - C_{P,g}) dT$

The $C_{p,g}$ is the C_p curve for the glass. It is found by extrapolating the C_p^2 curve before T_g . To extrapolate the $C_{p,g}$ curve use the following fit

It turns out that integrals A and B are equal

$$A = B$$

$$\int_{T_{c}}^{T} (C_{p}^{2} - C_{p}^{1}) dT = \int_{T_{g}}^{T_{c}} (C_{p,L} - C_{p,g}) dT$$

To find T_f , change the upper limit in the right integral until the two integrals are equal. When they equal, that value is T_f !

WHY ????

To understand why these two integrals are equal, let's examine each integral separately. Start with B.

$$B \equiv \int_{T_s}^{T_c} \left(C_{P,L} - C_{P,g} \right) dT$$

Recall from previous lectures that $\alpha_p - \alpha_g = \alpha_s$ where $\alpha_p = C_p$ and $\alpha_g = C_g$ in our case. The structure/configuration of the liquid that is quenched will change from T_f to the T_g . Past T_g the relax times are too large for any appreciatable relaxation $B \equiv \int_{T_g}^{T_f} C_{P,S} dT = \Delta H_{structure}$ the relax times are too large for any appreciatable to occur. Above T_f the liquid is still in equilibrium.

Further, $\Delta H = \Delta E + p\Delta V$ and most of ΔH comes from ΔE since ΔV is small compared so

$$\Delta H_{\rm structure} \cong \Delta E_{\rm structure}$$

Now let's consider the left integral A.

$$A \equiv \int_{T_c}^{T} \left(C_p^2 - C_p^1 \right) dT$$

Below T_c both C_p^{-1} and C_p^{-2} are identical. Recall that the slopes of p vs T graphs for low T were all identical ! Above T_e , both C_p^{-1} and C_p^{-2} are identical since they are in the both liquids.

The vibrational contributional to C_p^{-1} and C_p^{-2} are identical at a given T. Therefore, the vibrational contributions cancel and all that is left is the contribution from structural changes. Note that if the upper limit of this integral was extended to T_f , the integral would <u>not</u> since $C_p^{-1} = C_p^{-2}$ in the liquid region.

Therefore, A is also equal to $\Delta H_{structure}$.

 \therefore A = B <u>Yue</u> is very clever !

This is an active area of work !!!!!!!