Lecture 15:The Tool-Narayanaswamy-Moynihan Equation Part II and DSC

 March 9, 2010Dr. Roger Loucks
Alfred University
Dept. of Physics and Astronomy
loucks@alfred.edu

We used

$$
\left.\begin{array}{c}
p(T, t)=p_{v}(T)+p_{s}(T, t) \\
p(T)=p_{e q}\left(T_{0}\right)+\alpha_{L}\left(T_{f}-T_{0}\right)+\alpha_{g}\left(T-T_{f}\right) \\
\frac{d p}{d t}=\frac{p_{e q}-p}{\tau}
\end{array}\right\} \longrightarrow \begin{gathered}
\frac{d T_{f}}{d t}=\frac{T_{f}-T}{\tau} \\
\text { Tool's eq. }
\end{gathered}
$$

these three equation.

Initially Tool used $\tau=K \eta=\tau_{0} e^{-A T} \quad$ where η_{0} and A are constants.

Tool quickly realized that this did not account for the data. He postulated that η must depend on the Fictive temperature T_{f}.

If a liquid were cooled quickly, it would have a larger T_{f} than a slower cooled liquid. This larger T_{f} would correspond to a more "open" structure which would reduce the η. If the liquid were cooled slower, then the T_{f} would be smaller and the structure is "closer" together and would have a larger η. To account for this, Tool (1946) assumed that a better choice of η would be

$$
\eta=\eta_{0} e^{-\left(A_{1} T+A_{2} T_{1}\right)} \longrightarrow \quad \tau=\tau_{0} e^{-\left(A_{1} T+A_{2} T_{0}\right)} \quad \text { where } \eta_{0} \text { and } \mathrm{A}_{1} \text { and } \mathrm{A}_{2} \text { are constants. }
$$

Tool's equation becomes $\frac{d T_{f}}{d t}=\left(\frac{T_{f}-T}{\tau_{0}}\right) e^{\left(A_{I} T+A_{2} T_{f}\right)}$

As clever as Tool's equation is, it can not account for the cross over experiments of Ritland. The reason for this lack of agreement is the single relaxation time.

Thermorheological Simplicity
Define the relaxation response at a temperature T as $\quad R \equiv \frac{p(T, t)-p(T, \infty)}{p(T, 0)-p(T, \infty)}$
The range of R is 1 to 0 , i.e. if $t=0, R=1$ and if $t=\infty, R=$ 0 .

The response R can typically be described by the stretched exponential

$$
R=e^{-\left(\frac{t}{\tau_{\text {mep }}}\right)^{b}} \approx \sum_{n=1}^{N} a_{n} e^{-\frac{t}{\tau_{n}}}
$$

where $\tau_{\text {exp }}$ is an experimentally determined parameter, $0<b<1$. Stretched exponentials can be approximated by the Prony series where the a_{n} 's sum to 1 .

If all the τ_{n} 's have the same mathematical dependence on temperature then TRS results. To see this, rewrite the $\tau_{n} R$ in the Prony series as τ / λ_{n} so R becomes

$$
R=\sum_{n=1}^{N} a_{n} e^{-\frac{h_{n} t}{\tau}}=\sum_{n=1}^{N} a_{n} e^{-\lambda_{n} \beta} \quad \text { where } \quad \frac{t}{\tau} \equiv \beta
$$

If the R for a system were measured at any value of T and then graphed as R vs. β, all of the R^{\prime} s at various T's would lie on top of one another, i.e. there would be one Master graph.

Since there is one Master graph of R, define a reference temperature T_{r} at which the Master graph would be measured. Call the time associated with this reference temperature ξ. Since the same graph would result at any temperature T , we can conclude that

$$
\beta=\frac{\xi}{\tau_{r}}=\frac{t}{\tau} \quad \text { or more simply } \quad \xi=\frac{\tau_{r}}{\tau} t \quad \text { where } \xi \text { is called the reduced time. }
$$

We can view ξ in the following way. If a system relaxes by some amount at temperature T in a time t, ξ is the time that is needed for the system to relax the same amount at temperature T_{r}, i.e.

$$
R(t, T)=R\left(\xi, T_{r}\right) \longrightarrow R=\sum_{n=1}^{N} a_{n} e^{-\frac{n_{t} t}{\tau}}=\sum_{n=1}^{N} a_{n} e^{-\lambda_{n} \beta}=\sum_{n=1}^{N} a_{n} e^{-\lambda_{n} \xi t}
$$

How can we extend this to temperature changes ?

Defining a new response function $M_{p}(t) \equiv \frac{p\left(T_{2}, t\right)-p\left(T_{2}, \infty\right)}{p\left(T_{2}, 0\right)-p\left(T_{2}, \infty\right)} \quad$ for T changes

M has the same range as R, i.e. $t=0, M_{p}=1$ and if $t=\infty, M_{p}=0$.

Using $\quad p(T)=p_{e q}(T)+\alpha_{s}\left(T_{f}-T\right)=p\left(T_{1}\right)+\alpha_{L}\left(T-T_{1}\right)+\alpha_{s}\left(T_{f}-T\right)$

And the conditions: $\mathrm{t}=0, \mathrm{~T}_{\mathrm{f}}(0)=\mathrm{T}_{1}$ and $\mathrm{T}_{\mathrm{f}}(\infty)=\mathrm{T}_{2} \mathrm{M}_{\mathrm{p}}$ we becomes $\quad M_{p}(\mathrm{t})=\frac{T_{f}(\mathrm{t})-T_{2}}{T_{1}-T_{2}}$

Narayanaswamy assumed that $\mathrm{M}_{\mathrm{p}}(\mathrm{t})$ obeys TRS! How ?
$d \xi=\frac{\tau_{r}}{\tau[T(t)]} d t \quad$ Integrating this from 0 to t yields $\quad \xi=\int_{0} \frac{\tau_{r}}{\tau\left[T\left(t^{\prime}\right)\right]} d t^{\prime}=\tau_{r} \int_{0} \frac{d t^{\prime}}{\tau\left[T\left(t^{\prime}\right)\right]}$
M_{p} in terms of the reduced time $\xi \quad M_{p}(t)=\frac{T_{f}(t)-T_{2}}{T_{1}-T_{2}} \longrightarrow M_{p}(\xi)=\frac{T_{f}(\xi)-T_{2}}{T_{1}-T_{2}}$

$$
T_{f}(\xi)-T_{2}=-M_{p}(\xi) \Delta T
$$

While

$$
\begin{array}{r}
p(T, t)=p_{e q}(T)+\alpha_{s}\left(T_{f}(t)-T\right) \longrightarrow p(T, \xi)=p_{e q}(T)+\alpha_{s}\left(T_{f}(\xi)-T\right) \\
\downarrow \\
p\left(T_{2}, \xi\right)=p\left(T_{2}, \infty\right)-\alpha_{s} \Delta T M_{p}(\xi)
\end{array}
$$

Episode III: Revenge of the ξ

To complete the derivation, imagine that the temperature is changed from some initial value of T_{0} to some final value T in a series of N steps, i.e.

$$
T=T_{0}+\Delta T_{1}+\Delta T_{2}+\ldots+\Delta T_{N}=T_{0}+\sum_{i=1}^{N} \Delta T_{i}
$$

$\begin{array}{lll}t_{1} & t_{2} & t_{3}\end{array}$

How can be extend $T_{f}(\xi)$ and $p(T, \xi)$ to multiple temperature steps ?

$$
p\left(T_{2}, \xi\right)=p\left(T_{2}, \infty\right)-\alpha_{s} \Delta T M_{p}(\xi)
$$

$$
\begin{aligned}
& p(T, \xi)=p(T, \infty)-\alpha_{s} \Delta T_{1} M_{p}\left(\xi-\xi_{1}\right)+\ldots-\alpha_{s} \Delta T_{N} M_{p}\left(\xi-\xi_{N}\right) \\
& p(T, \xi)=p(T, \infty)-\sum_{i=1}^{N} \alpha_{s} \Delta T_{i} M_{p}\left(\xi-\xi_{i}\right)
\end{aligned}
$$

Using the chain rule and rewriting ΔT_{i} in terms of ξ yields

$$
\begin{gathered}
\Delta T_{i}=\frac{\Delta T(\xi)}{\Delta \xi_{i}} \Delta \xi_{i} \rightarrow d T=\frac{d T}{d \xi} d \xi \\
p(T, \xi)=p(T, \infty)-\sum_{i=1}^{N} \alpha_{s} \Delta T_{i} M_{p}\left(\xi-\xi_{i}\right) \\
p(T, \xi)=p(T, \infty)-\sum_{i=1}^{N} \alpha_{s} M_{p}\left(\xi-\xi_{i}\right) \frac{\Delta T(\xi)}{\Delta \xi_{i}} \Delta \xi_{i} \\
p(T, \xi)=p(T, \infty)-\int_{0} \alpha_{s} M_{p}\left(\xi-\xi^{\prime}\right) \frac{d T}{d \xi^{\prime}} d \xi^{\prime}
\end{gathered}
$$

Likewise, the equation for fictive temperature becomes

$$
\begin{gathered}
T_{f}(\xi)-T_{2}=-M_{p}(\xi) \Delta T \\
T_{f}=T-\sum_{i=1}^{N} \Delta T_{i} M_{p}\left(\xi-\xi_{i}\right) \\
T_{f}=T-\sum_{i=1}^{N} M_{p}\left(\xi-\xi_{i}\right) \frac{\Delta T(\xi)}{\Delta \xi_{i}} \Delta \xi_{i} \\
\downarrow \\
T_{f}=T-\int_{0}^{\infty} M_{p}\left(\xi-\xi^{\prime}\right) \frac{d T}{d \xi^{\prime}} d \xi^{\prime}
\end{gathered}
$$

Recall in the last lecture, we stated that the fundamental flaw in Tool's equation is that it only has one relaxation time. Let's pretend that $M_{p}(\xi)$ is given by only one relaxation time, i.e.

$$
M_{p}(\xi)=e^{-\frac{\xi}{t_{r}}}
$$

Substituting this M into Narayanaswamy's equation for the evolution of T_{f} yields

$$
\begin{aligned}
& T_{f}=T-\int_{0} M_{p}\left(\xi-\xi^{\prime}\right) \frac{d T}{d \xi^{\prime}} d \xi^{\prime}=T-\int_{0}^{\int_{0}^{-\left(\xi-\xi^{\prime}\right)} e^{\tau_{r}}} \frac{d T}{d \xi^{\prime}} d \xi^{\prime} \\
& \text { or }
\end{aligned}
$$

$$
T-T_{f}=\int_{0} e^{\left.-\frac{(\xi-\xi)}{\tau_{f}}\right)} \frac{d T}{d \xi} d \xi^{\prime}
$$

Taking the derivative with respect to ξ gives $\quad \frac{d T_{f}}{d \xi}=\frac{1}{\tau_{r}} \int_{0}^{-\left(\frac{(\xi-\xi)}{\tau_{r}}\right.} \frac{d T}{d \xi^{\prime}} d \xi^{\prime}$

$$
\frac{d T_{f}}{d \xi}=\frac{T-T_{f}}{\tau_{r}} \quad \text { Tool's eq. }
$$

What did Narayanaswamy use for τ ?

$$
\begin{gathered}
\tau_{p}=\tau_{0} \exp \left[\frac{x \Delta H}{R T}+\frac{(1-x) \Delta H}{R T_{f}}\right\rfloor \quad \text { where } 0<\mathrm{x}<1
\end{gathered}
$$

Arrhenius term $\quad A T_{f}$ dependence just like Tool!

The Tool-Narayanaswamy-Moynihan equations are

$$
p(T, \xi)=p(T, \infty)-\int_{0} \alpha_{s} M_{p}\left(\xi-\xi^{\prime}\right) \frac{d T}{d \xi^{\prime}} d \xi^{\prime} \quad \text { and } \quad T_{f}=T-\int_{0} M_{p}\left(\xi-\xi^{\prime}\right) \frac{d T}{d \xi^{\prime}} d \xi^{\prime}
$$

and some form for t_{p} such as $\quad \tau_{p}=\tau_{0} \exp \left\lfloor\frac{x \Delta H}{R T}+\frac{(1-x) \Delta H}{R T_{f}}\right\rfloor$

DSC: Differential Scanning Calorimetry as a "Black Box". By a "black box", I mean 1) what are the inputs and 2) what is the output. Ignore the details of how the apparatus works.

How does a DSC work ? The "philosophy" of the device.

$$
\text { output } \frac{\Delta Q}{\Delta t}
$$

thermocouple

Sealed Al pans containing the samples

The Empty Al pan acts as the reference sample

Chris Willoughby
Senior Technical Representative

TA Instruments - Waters LLC 159 Lukens Drive
New Castle, Delaware 19720, USA
585.872 .7505 telephone
302.427.4070 applications hotine
302.427 .4050 service hotline
cwilloughby@tainstruments.com
www.tainstruments.com

Before we explain how to measure T_{f} and T_{g} using a DSC, lets first examine some typical C_{p} vs T results
A) C_{p} vs. T for a linear cooled liquid i.e. a "down scan"

T

$$
\alpha_{g}=\alpha_{v}=\frac{d H}{d T}=C_{p}^{g}<C_{p}^{L}
$$

B) Linear heating a glass that was linearly cooled i.e. an "up scan"

As the glass is relaxing toward the super cooled equilibrium line, heat is given off i.e. H is decreasing so this region is exothermic.
C) A liquid cooled by a down quench

D) A linear up scan on an annealed glass

What information does a C_{p} vs T graph provide ?
Recall that $C_{p}=\frac{d H}{d T} \longrightarrow\left\{\begin{array}{l}C_{p} d T=d H \\ \int_{T_{1}}^{T_{p}} C_{p} d T=\int_{T_{1}}^{T_{2}} d H=H_{2}-H_{1}=\Delta H\end{array}\right.$

If the system is a glass T_{1} and a liquid at T_{2}, then $\Delta H=H_{L}-H_{g}$.

How can we use this to find T_{f} and T_{g} ? For example, how do you measure the T_{f} and T_{g} of a quenched glass ?

Yuanzheng Yue's Enthalpy-Matching Method

1) Make a glass and quench it. The cooling rate and T_{f} are unknown. What is the T_{f} of this quenched glass ?
2) Place a sample of the quenched glass into a DSC and heat the sample up to the liquid state at some fixed linear rate say $20^{\circ} \mathrm{C} / \mathrm{min}$ or $10^{\circ} \mathrm{C} / \mathrm{min}$. Call the C_{p} for this first "upscan" $\mathrm{C}_{\mathrm{p}}{ }^{1}$.
3) Cool the liquid at the the same linear rate, i.e. say $20^{\circ} \mathrm{C} / \mathrm{min}$, to room temperature.
4) Reheat the cooled glass sample using at the same linear rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ back up to the liquid state. Call the C_{p} for this second "upscan" $C_{p}{ }^{2}$. The graph for $C_{p}{ }^{2}$ will not have a severe of a "dip" since the glass has relaxed.
5) Graph of $C_{p}{ }^{1}$ and $C_{p}{ }^{2}$ vs. T curves.

Applying Yue's technique is easy in practice. We'll set it up in steps. Why the technique works requires more effort. I'll explain what to do first before I give the explanation.

First, calculate the integral $A \equiv \int_{T_{c}}^{T_{T}}\left(C_{p}^{2}-C_{p}^{1}\right) d T$

C_{p}

This "dip" will deepen if T_{f} is higher since the glass will relax more on the first upscan.

Second, calculate the integral $B \equiv \int_{\tau_{s}}^{T_{T}}\left(C_{p, L}-C_{P, s}\right) d T$
The $C_{P, g}$ is the C_{p} curve for the glass. It is found by extrapolating the $C_{P}{ }^{2}$ curve before T_{g}. To extrapolate the $\mathrm{C}_{\mathrm{P}, \mathrm{g}}$ curve use the following fit

$$
C_{p, g}=a+b T+\frac{c}{T^{2}}+\frac{d}{T^{0.5}} \quad \begin{aligned}
& \text { where the } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { and } \mathrm{d} \text { are constants that } \\
& \text { must be determined experimentally }
\end{aligned}
$$

It turns out that integrals A and B are equal

$$
\begin{gathered}
A=B \\
\int_{T_{c}}^{T}\left(C_{P}^{2}-C_{P}^{1}\right) d T=\int_{r_{g}}^{\tau_{c}}\left(C_{P, L}-C_{P, g}\right) d T
\end{gathered}
$$

To find T_{f}, change the upper limit in the right integral until the two integrals are equal. When they equal, that value is T_{f} !

WHY ????

To understand why these two integrals are equal, let's examine each integral separately. Start with B.

$$
\begin{aligned}
& B \equiv \int_{T_{s}}^{T_{S}}\left(C_{p, L}-C_{p, s}\right) d T \\
& B \equiv \int_{\tau_{s}}^{T_{T}} C_{p, s} d T=\Delta H_{s \text { struaree }}
\end{aligned}
$$

Recall from previous lectures that $\alpha_{p}-\alpha_{g}=\alpha_{s}$ where $\alpha_{p}=C_{p}$ and $\alpha_{\mathrm{g}}=\mathrm{C}_{\mathrm{g}}$ in our case. The structure/configuartion of the liquid that is quenched will change from T_{f} to the T_{g}. Past T_{g} the relax times are too large for any appreciatable relaxation to occur. Above T_{f} the liquid is still in equilibrium.

Further, $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{p} \Delta \mathrm{V}$ and most of $\Delta \mathrm{H}$ comes from $\Delta \mathrm{E}$ since $\Delta \mathrm{V}$ is small compared so

$$
\Delta H_{\text {strucure }} \cong \Delta E_{\text {strucurere }}
$$

Now let's consider the left integral A.

$$
A \equiv \int_{T_{c}}^{T}\left(C_{p}^{2}-C_{p}^{1}\right) d T \quad \begin{aligned}
& \text { Below } T_{c} \text { both } C_{p}^{1} \text { and } C_{p}{ }^{2} \text { are identical. Recall that the slopes of } p \text { vs } \\
& \text { identical since they are in the both liquids. }
\end{aligned}
$$

The vibrational contributional to $\mathrm{C}_{\mathrm{p}}{ }^{1}$ and $\mathrm{C}_{\mathrm{p}}{ }^{2}$ are identical at a given T . Therefore, the vibrational contributions cancel and all that is left is the contribution from structural changes. Note that if the upper limit of this integral was extended to T_{f}, the integral would not since $C_{p}{ }^{1}=C_{p}{ }^{2}$ in the liquid region.

Therefore, A is also equal to $\Delta H_{\text {structure }}$.

$$
\therefore \mathrm{A}=\mathrm{B} \quad \underline{\text { Yue }} \text { is very clever! }
$$

This is an active area of work !!!!!!!

