Relaxation in Glass

Lecture 12: The Glass Transition as a Kinetic Transition

Enthalpy Changes in the Glass Transition Range

- H(T) decreases continuously with cooling
- Slope of the H(T) curve is the heat capacity which changes from liquid-like to solid-like values in the transition region
- Change in heat capacity at the glass transition ∆Cp(Tg) measures the differences between the liquid and solid (glassy) Cp values
- Sub-Tg annealing and relaxation can occur if liquid is given sufficient time to relax to lower enthalpy state

Entropy Changes in the Glass Transition Range

Gibb's Free-Energy Changes in the Glass Transition Range

G = H - TS

Gibbs' Free-Energy change at Tm is continuous, there is no "Latent Free-Energy Change" as is the case for the enthalpy and entropy

 $G_{liquid} = G_{crystal}$

Below the melting point

$$G_{liquid} > G_{crystal}$$
 and
 $\Delta G_{crystallization} < O$

Above the melting point

$$G_{\text{liquid}} > G_{\text{crsytal}}$$

 $\Delta G_{\text{melting}} < O$

(

$$\left(\frac{\partial G(T)}{\partial T}\right)_P = -S(T)$$

Gibb's Free-Energy Changes in the Glass Transition Range

- Glasses then "fall off" the liquid line at progressively lower temperatures the slower the cooling rate
- Gibbs' Free-Energy of the glass behaves more like the crystal than the liquid
- Glass transition range is the range of T where the Gibb's Free-Energy changes from "liquid-like" values to "solid-like" values

Fundamentals of the Glass Transition

- The Glass Transition is a Kinetic Transition
 - Continuous changes in structure and properties
 - Structure and properties are continuous with temperature
 - Structures and properties can be changed continuously by changing the kinetics of the cooled or reheated liquid

Time and Temperature Dependence of Properties

Temperature dependence of the internal time scale

 While the external time scale, ∆t most often does not change,

 $\overset{\bullet}{T} = \Delta T / \Delta t$

 The internal timescale can be strongly temperature dependent,

- Rearrangement of the liquid requires breaking of bonds between atoms (ions)
- This requires thermal energy
- The relative magnitude of the energy barrier to motion, ∆E_{act} to the available thermal energy, kT determines the probability of "getting over" the energy barrier

$$\tau(T) = \tau_o \exp\left[\frac{\Delta E_{act}}{kT}\right]$$

 Arrhenius temperature dependence of the "relaxation time" Temperature dependence of the internal relaxation time

• For
$$\Delta E_{act} > 0$$

 $\tau(T) / \tau_0 = \exp\left[\frac{\Delta E_{act}}{kT}\right]$

■ 0 ≤ 1

- It is a thermal "probability" of motion
- High T, kT ~ ∆E_{act}, high probability of motion
- Low T, kT << ∆E_{act} low probability of motion

$$\frac{\tau(T)}{\tau_o} = \exp\left[\frac{\Delta E_{act}}{kT}\right]$$

Temperature dependence of the internal relaxation time

• For
$$\Delta E_{act} > 0$$
 $\log_{10} \left(\frac{\tau(T)}{\tau_o} \right) = \frac{\Delta E_{act}}{2.303kT}$

■ 0 ≤ 1

- It is a thermal "probability" of motion
- High T, kT ~ ∆E_{act}, high probability of motion
- Low T, kT << ∆E_{act} low probability of motion

- Glass formation is a kinetic transition, therefore, it depends upon the kinetics of the process
 - The internal timescale, τ, for the process is controlled by the atomic or ionic bonding between atoms or ions
 - Strong and numerous bonding increases the viscosity
 - Weak and limited bonding decreases the viscosity
 - Viscosity ∞ relaxation time, $\eta = G\tau$
 - □ The external timescale, Δt , is controlled by the experiment or process, i.e., how fast is the liquid cooled
 - Is it purposefully quenched very fast? Δt is short
 - Is it just allowed to cool naturally under prevailing conditions?
 - Or is it "insulated" and allowed to cool very slowly, Δt is long

Assume that the "relaxation" following a temperature jump is also "exponential"

$$\varphi(t) = \exp\!\left(\frac{-t}{\tau(T)}\right)$$

Note that ~ 5 relaxation time are required for nearly complete relaxation

$$\exp\left(\frac{-5\tau}{\tau}\right) = \exp(-5) = 0.007 \sim 0.01 \sim 1\%$$

- Note that 99% of change has occurred
- Now consider

$$\Delta E_{act} \sim 50,000 \text{ J/mol}, \tau_0 \sim 10^{-13} \text{ sec}$$

Arrhenius Temperature dependence of tau

- Now consider an example:
- Consider starting at a temperature, T₀ above Tm where the viscosity is low and the relaxation time τ is short compared to an experimental time step Δt following a temperature step ΔT:

 $V(T_0, t_0) \equiv V_0$

$$V(T, t_0 + \Delta t) = V_0 + V_0 \Delta T \alpha(T) = V_0 (1 + \Delta T \alpha(T))$$

 Now, for the second step suppose the relaxation time τ is still short compared to an experimental time step Δt following a temperature step ΔT:

 $V(T, t_0 + 2\Delta t) = V_0(1 + \Delta T\alpha(T))(1 + \Delta T\alpha(T))$

$$..V(T, t_0 + n\Delta t) = V_0(1 + \Delta T\alpha(T))^n$$

Now consider the case where the extent of relaxation depends upon the time it takes for relaxation to occur:

$$\varphi(t) = \exp\left(\frac{-t}{\tau(T)}\right)$$

The amount of relaxation:

$$1 - \varphi(t) = 1 - \exp\left(\frac{-t}{\tau(T)}\right)$$

• $\tau \rightarrow 0 \rightarrow 1 - \varphi(-t/0) = 1$ complete change

•
$$\tau \rightarrow \infty \rightarrow 1 - \varphi(-t/\infty) = 0$$
, no change

Relaxation, therefore depends upon the τ and Δt relationship:

$$V(T_0, 0) \equiv V_0$$

$$V(T_1, \Delta t_1) = V_0 + V_0 \Delta T_1 \alpha(T_1) \left(1 - \exp\left(\frac{-\Delta t_1}{\tau(T_1)}\right) \right) = V_0 \left(1 + \Delta T_1 \alpha(T_1) \left(1 - \exp\left(\frac{-\Delta t_1}{\tau(T_1)}\right) \right) \right)$$
The original volume
The instantaneous volume change
due to ΔT_1 change to T_1

The extent of relaxation after Δt_1 time step at T_1 with relaxation time $\tau(T_1)$

 \mathbf{a}

Temperature and Time Dependent Volume

After two time steps...

$$\begin{split} &V(T_0, t_0) \equiv V_0 \\ &V(T_1, 0 + \Delta t) = V_0 \Biggl(1 + \Delta T_1 \alpha(T_1) \Biggl(1 - \exp\Biggl(\frac{-\Delta t}{\tau(T_1)} \Biggr) \Biggr) \Biggr) \\ &V(T_1, \Delta t) = V_0 \Biggl(1 + \Delta T \alpha(T_1) \Biggl(1 - \exp\Biggl(\frac{-\Delta t}{\tau(T_1)} \Biggr) \Biggr) \Biggr) \\ &V(T_2, 2\Delta t) = V(T_1, \Delta t) + V(T_1, \Delta t) \Delta T_2 \alpha(T_2)) \Biggl(1 - \exp\Biggl(\frac{-\Delta t}{\tau(T_2)} \Biggr) \Biggr) \\ &V(T_2, 2\Delta t) = V_0 \Biggl(1 + \Delta T \alpha(T_1) \Biggl(1 - \exp\Biggl(\frac{-\Delta t}{\tau(T_1)} \Biggr) \Biggr) \Biggr) + \\ &V_0 \Biggl(1 + \Delta T \alpha(T_1) \Biggl(1 - \exp\Biggl(\frac{-\Delta t}{\tau(T_1)} \Biggr) \Biggr) \Delta T_2 \alpha(T_2)) \Biggl(1 - \exp\Biggl(\frac{-\Delta t}{\tau(T_2)} \Biggr) \Biggr) \Biggr) \end{split}$$

swmartin@iastate.edu

Exercises.....

- Δt = 1 second
- $\tau_0 = 10^{-13}$ seconds
- $\Delta E_{act} = 5,000 \text{ cal/mole}$
- τ(300K) ?
- Fully relaxed
- τ(80K)?
- not relaxed
- τ(60K)?

- For $\Delta E_{act} = 50,000$ cal/mole
- τ(300K) ?

- Not relaxed
- For $\Delta E_{act} = 50,000$ cal/mole
- τ(1000K)?
- Relaxed

$$\tau(T) = \tau_o \exp\left[\frac{\Delta E_{act}}{RT}\right]$$
$$R = 1.987 cal / mole - K$$

Exercises.....

- Now consider the "elastic" volume change
- Take $V_0 \sim 35$ ml/mol
- Take $\alpha_{\text{liquid}} \sim 400 \text{ ppm/K}$
- Take △T = 1 K
- Start at 1200 K
- What is V at 1170K?

What is V at 800K?

• What is τ at 800K?

What is ~ Tg?

What is τ at 1170K?

$$V(T, t_0 + n\Delta t) = V_0 (1 + \Delta T \alpha(T))^n$$

Exercises...

- Now add relaxation component...
- Take V₀ ~ 35 ml/mol
- Take $\alpha_{\text{liquid}} \sim 400 \text{ ppm/K}$
- Take $\Delta T = 1 K$
- Take ∆t = 1 second
- Start at 1200 K
- What is V at 1199K, 1 second?
- What is τ at 1198K, 2 seconds?

- What about at 1170K?
- What about 1100K?

$$\varphi(t) = \exp\left(\frac{-t}{\tau(T)}\right)$$

$$\tau(T) = \tau_o \exp\left[\frac{\Delta E_{act}}{RT}\right]$$

$$R = 1.987 cal / mole - K$$

$$V(T_1, \Delta t_1) = V_0(1 + \Delta T_1 \alpha(T_1)) \left(1 - \exp\left(\frac{-\Delta t_1}{\tau(T_1)}\right) \right)$$

The Glass Transition from Arrhenius T dependence of tau and exponential relaxation

Volume vs. Temperature

Homework...

- Reconstruct Glass Transition cooling behavior using -10 C/second cooling rate, Arrhenius temperature dependence of relaxation time and exponential relaxation function.
- Extra Credit…
- Reconstruct faster (1000 C/sec) and slower cool (1 C/sec) cooling rates
- Extra Extra Credit…
- Construct reheating curve for -10 C/second cooling curve at a reheat rate of + 10C/second
- Extra Extra Extra Credit, Construct reheating curve for -1 and -1000 C/second cooling curves at a reheat rate of + 10C/second

swmartin@iastate.edu