
Relaxation in Glass: Review of Thermodynamics

Lecture 11: Thermodynamics in the Glass Transition 
Region



Thermodynamic Functions… 1st Derivatives

 Temperature Dependence of the Entropy
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Thermodynamic Functions… 1st Derivatives

 Temperature dependence of the Gibb’s Free-Energy
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Thermodynamic Functions…  1st Derivatives

 Vs < Vl < Vg
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Homework Exercise for next time:
 Derive an expression for the following quantity in 

terms of easily measured quantities and apply it to 
li id B O li htl b it lti i t dliquid B2O3 slightly above its melting point and 
crystalline B2O3 slightly below its melting point
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The Enthalpy as a function of temperature, H(T)

 The heat capacity Cp measures how much heat it takes to 
raise the temperature of the system by one degreep y y g
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 The enthalpy can be calculated from the heat capacity for a large change in 
temperature
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 If the Cp(T) of solid TiO2 is  17.97 + 0.28 x 10-3T - 4.35 x 10-5/T2 cal/mole-K, the Hmelt is 16 kcal/mole, 
and the Cp(T) for the liquid is 21.4 cal/mole-K, plot the Cp(T), H(T) and calculate 

how much heat is required to heat 10 lbs. TiO2 from room temperature up to 2500 K?

swmartin@iastate.edu MITT: Relaxation in Glass - Lecture 11 Thermodynamics in the Glass Transition Region 6



Enthalpy function for glass forming liquids

 Now consider the temperature dependence of the 
Enthalpy for a liquid cooled from above its melting point 
to room temperature along two cooling paths:to room temperature along two cooling paths:
 First assume thermodynamic equilibrium holds and 

the liquid readily crystallizes at its melting (freezing) 
point to form the equilibrium crystalline phase and 
then continues to cool to room temperature

 Second assume kinetics holds and the liquid by Second, assume kinetics holds and the liquid by-
passes the equilibrium crystallization and super-cools 
to the glassy state.

swmartin@iastate.edu MITT: Relaxation in Glass - Lecture 11 Thermodynamics in the Glass Transition Region 7



Enthalpy Changes in the Glass Transition Region

 H(T) decreases continuously 
with cooling supercooled

 Slope of the H(T) curve is the 
heat capacity which changes 
from liquid-like to solid-like 
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Heat Capacity changes at Tg: Cp(Tg)

 The change in slope in enthalpy 
at Tg is a measure of the 
diff b t h t
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Heat Capacity changes at Tg: Cp(Tg)

 Exercise: What would the 
enthalpy curve look like in the 

i f T if th h i
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Heat Capacity changes at Tg:Cp(Tg)

 Glass transition occurs when:
 Thermal energy, heat, being input into the glass has 

filled all the available thermal degrees of freedom, 
vibrations, in the glass

 The vibrational states are essentially filled and at The vibrational states are essentially filled and at 
maximum amplitude

 Additional heat supplied to the glass must be 
accommodated by other degrees of freedom

 Rotational and translational degrees of freedom now 
become available and as such Cp >> Cpbecome available and as such, Cpliquid >> Cpglass
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Heat Capacity Changes at Tg: Cp(Tg)

 Covalently bonded liquids exhibit “strong” rigidly held 
structures (SiO2, for example)

G ll hibit hi h l t iti t t Generally exhibit higher glass transition temperatures 
and smaller Cp(Tg) values

 Molecular, or ionic salt liquids exhibit “fragile”, weaklyMolecular, or ionic salt liquids exhibit fragile , weakly 
held structures (sucrose, for example)
 Generally exhibit lower glass transition temperatures 

d l C (T ) land larger Cp(Tg)  values
 Behaviors can be interchanged by chemically changing 

the liquidthe liquid
 Depolymerizing covalent liquids through non-bridging 

oxygens
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Temperature dependence of the Entropy, S(T)

 Entropy measures the disorder in the system
 It is always positive and always increases with It is always positive, and always increases with 

temperature
 Hot things are always more disordered than cool things

 Entropy can go to zero at 0 K
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• If the Cp(T) of solid TiO2 is  17.97 + 0.28 x 10-3T - 4.35 x 10-5/T2 cal/mole-K, the 
Hmelt is 16kcal/mole, and the Cp(T) for the liquid is 21.4 cal/mole-K plot the S(T) 
and calculate the change in entropy when 10 lbs. TiO2 is cooled from 2000 K to 
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Temperature Dependence of the Entropy S(T)
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Entropy Changes below Tm

 Entropy is intimately linked to 
liquid state behavior

Highly disordered liquid being Highly disordered liquid being 
reversibly ordered at the 
freezing point to the the 
crystalline phases
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 Corresponding reversible 
change in entropy, H(Tm)/Tm
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Kauzmann Paradox

 If entropy curve continued along 
meta-stable equilibrium liquid line
 At some temperature below Tg, the 

entropy of the liquids would appear 
to decrease below that of the 
crystal ta

lcrystal
 How could a liquid, with its inherent 

structural disorder, have an entropy 
lower than that of the iq
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d
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corresponding crystal

 The Kauzmann temperature, TK, is 
the temperature where the entropy 
of the liquid would intersect that of

S
l

of the liquid would intersect that of 
the equilibrium crystal

 Glass at this temperature is often 
called an “ideal glass” Temperature

Slow

TK Tm
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Kauzmann Paradox

 Simultaneous to rapidly 
decreasing entropy

Viscosity is increasing Viscosity is increasing
 Structural relaxation time is 

rapidly increasing
 Time required for the liquid to ta

l ity
)

q q
continue to follow the 
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 Liquid falls out of equilibrium at 
a temperature above the 
Kauzmann temperature 
because the time required for it 
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to remain in equilibrium simply 
becomes much longer than  the 
experimental time scale
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Excess Entropy Sexcess of the Supercooled Liquid

 The important quantity is the 
extra entropy the liquid has 
above that of the crystal at theabove that of the crystal at the 
same supercooled temperature
 Equilibrium liquids above the 

melting point have no excess st
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melting point have no excess 
entropy
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S
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 At TK the liquid has lost all of 
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Excess Entropy Sexcess of the Supercooled Liquid
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Vanishing Excess Entropy Sexcess at TK
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Gibb’s Free-Energy Change at Tg

 G = H - TS
 Gibbs’ Free-Energy change at Tm 
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Gibb’s Free-Energy Change at Tg

 Glasses then “fall off” the liquid 
line at progressively lower 
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