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Shear Viscoelasticity and Bulk Viscoelasticity

As it has been said in the previous lecture, one has to distinguish between shear on one 
side and dilatation/compression (bulk viscoelasticity) on the other.

Bulk

The factor „3“ enters to allow for the fact that the bulk modulus does not relate the stress 
to the strain in one dimension but to the one in three dimensions, i.e. the volume change.

For the simple Kelvin-Voigt-model one gets assuming constant stress:
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1st Realistic Picture of Bulk Relaxation: Kelvin-Voigt + Spring

The simple Kelvin-Voigt-model, however, does not contain all features to be observed 
during the volume change of an inorganic glass being under pressure. It contains the 
delayed strain occurring at high temperatures, but not the instantaneous effect which is 
observable at all temperatures. The simplest suited model is the series of a Kelvin-Voigt-
model and a spring. (Compared to the Burger-model, the second dashpot is missing 
which takes into account that in contrast to shear, creep is not possible.)

Compare the 
damper in a car!

For constant stress, one gets:

For constant strain, one gets:
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Kohlrausch-Kinetics for Bulk Relaxation

Again, an even better coincidence of 
theoretical and experimental data than with the 
Burger model is obtained, if the single 
exponential function from above is replaced 
with a stretched exponential or Kohlrausch(-
Williams-Watts)-function.

For constant stress one gets:

J(t) is the time-dependent compliance; τd and bd are retardation parameters.

For constant strain one gets

K(t) is the time-dependent bulk modulus; τx and bx are relaxation parameters.
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Boltzmann´s superposition principle
In general it is assumed that the stress effects arising from strain contributions imposed 
at different times overlay without interfering and vice versa:

One may write introducing relaxation function Ψ

and retardation function Φ
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Relaxation Retardation

Laplace-Transform yields:

and

This allows the mutual conversion of relaxation and retardation parameters.

Prony Series

For computational purposes, the Kohlrausch-function may again be represented by a 
number of single exponentials (Prony-series):

Temperature dependence of the relaxation and retardation times

Again, an Arrhenius ansatz is made: TR
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Some exercises:

1. Consider the combination of a Kelvin-Voigt model and a spring as 1st realistic representation 
of bulk viscoelasticity. Consider constant strain. What is σ(0)?

2. Consider the relaxation function in case of single-step strain, ε(t) = ε0·Θ(t), Θ: Heaviside
function. Calculate σ(t) from the below formula (with the script of Prof. Cox, it is very simple!)

3. Consider the Arrhenius law. With H = 8380 J/mole and the gas constant R = 8.38 J/(mole K), 
which temperature step is necessary to double relaxation time τ (start temperature: 600°C)? 
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Bulk relaxation experiments by University of Erlangen-Nürnberg, 
Clemson-University, Bayrisches Geoinstitut, and SCHOTT AG I
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Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinsitut, SCHOTT II

Glasses

crown glass

flint glass

red

blue

crown glass

flint glass

red

blue

crown flint



MITT Ulrich Fotheringham, SCHOTT AG: Relaxation Processes in Glass and Polymers, Lecture 6

Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinstitut, SCHOTT III

Multi-Anvil-
Device
experiments:

Pressure in
the Gigapascal
range

Samples are wrapped
in Iridium foil

Heating
element
in the
octa-
eder

Thermocouple Tungsten carbide
cubes with one
corner cut off

Hydraulic press
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Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinstitut, SCHOTT IV
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Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinstitut, SCHOTT V

Multi-Anvil-
Device
experiments:

Density
measurements:

when and how Pressure

3rd measurement after relaxation
in forced convection furnace

Density measurement after Archimedes in 
Nekal solution (Nekal: tenside from BASF)
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sample preparation

2nd measurement after
densification
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Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinstitut, SCHOTT VI
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Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinstitut, SCHOTT VII

Hot Isostatic
Press
experiments:

Samples and
device

polished sample
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Experimental conditions for the sample glasses in HIP
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Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinstitut, SCHOTT VIII

Hot Isostatic Press experiments: - temperature and pressure load for N-LaSF9

- time-dependent compliance of N-LaSF9
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Density evolution over treatment time with change in fictive temperature 
Tf of N-LaSF 9 (HIP) (compressed:7-9; reference: 10-12).

Recorded data of HIP compression experiment for N-LaSF 9.
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Bulk relaxation experiments by Erlangen-Nürnberg, Clemson, Bayrisches Geoinstitut, SCHOTT IX

Results


