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2.1 Maxwell Modell

Mechanical model consisting of a spring and a dash-pot in a series.

Continuous strain:

Constant elongation:

derived from:

The time constant τ=(A×η)/(D×d) is called relaxation time. 
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Basic viscoelastic models I: Maxwell Model

Mechanical model consisting of a spring and a dash-pot in a series.

Viscoelastic behaviour
according to the Maxwell-
model means that the material 
considered responds like an 
elastic body on short time 
scales and like a viscous fluid 
on long time scales. 

Continuous strain:

Constant elongation:

derived from:

The time constant τ=(A×η)/(D×d) is called relaxation time (force response to elongation). 
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2.1 Maxwell Modell

Mechanical model consisting of a spring and a dash-pot in a series.

Continuous strain:

Constant elongation:

derived from:

The time constant τ=(A×η)/(D×d) is called relaxation time. 

Basic viscoelastic models II: Kelvin-Voigt Model

Mechanical model consisting of a spring and a dash-pot in parallel.

Viscoelastic behaviour according to 
the Kelvin-Voigt-model means that 
the material responds like a rigid 
body on short time-scales and like an 
elastic body on long time-scales. 

Both the Maxwell and the Kelvin-Voigt 
model are necessary to describe 
glass.

The case of an instantaneous, fixed 
elongation may not be realised with a 
Voigt-model.

Continuous strain:

derived from:

The time constant τ=(A×η)/(D×d) is called retardation time (elongation response to force). 

xDFx ⋅=

dt
dy

d
AFy ⋅⋅= η

z
x

y

F

z

zyx ==

yxz FFF +=

zF
dt
dz

d
AzD =⋅⋅+⋅ η

( ))/()(1 η⋅⋅⋅−−⋅= ADdtz e
D
F

z



MITT Ulrich Fotheringham, SCHOTT AG: Relaxation Processes in Glass and Polymers, Lecture 5

Some exercises:

1. Consider “Basic viscoelastic models II: Kelvin-Voigt Model”. A Kelvin-Voigt Model acting 
together with the tyre as additional spring is what you find as damper in cars. 

Introduce numbers:

Spring:

Calculate τ of the Kelvin-Voigt Model.

2. Consider again “Basic viscoelastic models I: Maxwell Model”. At the bottom, it is said that the 
formula

giving Fz(T) for constant elongation follows from the homogeneous linear differential equation

Find the solution via Laplace-Transform. Write down the subsidiary equation.
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Shear Viscoelasticity and Bulk Viscoelasticity

Combining Maxwell- and Kelvin-Voigt-elements, one may describe the viscoelastic
behaviour of inorganic glasses and polymers. However, one has to distinguish between 
shear on one side and dilatation/compression on the other.

Shear

Mostly not the angle ε’ describing the change of γ’ is referred to but the angle ε
describing the change of γ. One has to introduce a factor of 2 for compensation.

Next step: drop the distinction between “x” and “y”. It is all in one.
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Relations for Maxwell- and Kelvin-Voigt-model in case of shear

For the simple Maxwell-model and constant shear stress this leads to:

J(t) is called compliance (describes strain response to stress). 

For the simple Maxwell-model and constant shear strain this leads to:

G(t) is the thus defined time-dependent shear modulus (stress response to strain).

For the simple Kelvin-Voigt-model and constant shear stress this leads to:

The combination of simple Kelvin-Voigt-model and constant shear strain does not exist.
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Visco-Elastic Characterization of Glass
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Shear relaxation experiments from Clemson University I

Kadali et al. have built a spring relaxometer as introduced by S. Rekhson et al. 
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II Creep Recovery Setup

6

Shear relaxation experiments from Clemson University II

To impose pure shear 
on a sample, torsion is 
an appropriate way. The 
elongation of a helical 
spring implies torsion 
of every cross-section 
=> spring elongation 
means shear. 

III Creep Testing on Helical 
Spring sample

7
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II Creep testing

8

An Example of an LVDT Result

9

Shear relaxation experiments from Clemson University III
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1st Realistic Picture of Shear Relaxation: Burger-Model

As we have seen, the behaviour of 
inorganic glasses is more complicated 
and cannot be described with either the 
Maxwell- or the Voigt-model alone. 

The simplest representation is by a Burger-model:
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Burger-Model (continued)

In case of constant stress one gets:

The case of constant strain is more complicated and requires a careful derivation:

λ+, λ- are the roots of the equation G1×G2+(G2×η2+G1×η2+G2×η1)×λ+η1×η2×λ2=0.
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Kohlrausch-Kinetics for Shear Relaxation

An even better coincidence of theoretical and 
experimental data than with the Burger model 
is obtained, if the single exponential function 
from above is replaced with a stretched 
exponential or Kohlrausch(-Williams-Watts)-
function.

For constant stress one gets:

J(t) is the time-dependent compliance; τd and bd are retardation parameters.

For constant strain one gets

G(t) is the time-dependent shear modulus; τx and bx are relaxation parameters.
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Boltzmann´s superposition principle, relaxation  retardation
In general (not only for shear) it is assumed that the stress effects arising from strain 
contributions imposed at different times overlay without interfering and vice versa:

One may write introducing relaxation function Ψ

and retardation function Φ

Laplace-Transform yields:

and

This allows the mutual conversion of relaxation and retardation parameters.
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Relaxation and Viscosity

Consider the special case of constant stress in the long-time limit. According to the 
nature of the Laplace-Transform

only the L-values belonging to small s-values are sensitive to things happening on a 
broad time scale. This means for the retardation formula: 

Replacing the low s, high t – limit of L(σ)/L(ε) with the expression that follows from the 
relaxation formula gives: 
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Addenda

Prony Series

For computational purposes, the Kohlrausch-function may be represented by a number 
of single exponentials (Prony-series):

In order to allow for the comparatively fast relaxation for t < τ and the comparatively slow 
relaxation for t > τ, the Prony-series must comprehend both τi < τ and τi > τ.

Temperature dependence of the relaxation times

As known, the temperature dependence of shear viscosity is well described by the 
Arrhenius law for a limited temperature range such as the one of glass transition: 

Consequently, it is also used for shear relaxation and retardation times:
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Some exercises:

1. Consider the correspondence of the Maxwell model with spring and dashpot and the behaviour
of a viscoelastic material. It has been said that F=D·x translates into σ=G·ε’=2·G·ε. Check 
dimensions in both cases (Newtons, Pascals etc.). Compare the dimensions of the right sides 
of both equations.

2. Consider the Burger model. What is ε(0) in case of constant stress and σ(0) in case of constant 
strain? 

3. Compare single-exponential and stretched-exponential (Kohlrausch) behaviour. If b=0.5, what 
is the amount of Exp(-t/τ) and Exp(-(t/τ)b) after t=0.1·τ, t=τ, t=10·τ?

4. Which are the three time domains of a constant stress experiment?

5. How is η/G0 related to the Kohlrausch-function Exp(-(t/τx)b)?
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Shear relaxation experiments from Clemson University IV

preliminary results

I. Obtain Strain-time curve through creep recovery experiment

III Characterization of glass in transition region
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Retardation Spectrum on log time scale at different 
temperatures
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Shear relaxation experiments from Clemson University V

preliminary resultsIII. Carryout curve fitting for the resultant retardation curve  to determine    

retardation parameters i.e. retardation times and retardation weights. 

• Retardation function (Prony Series) (m1 = 5 is the best fit)

• Determine Retardation weights •1j (j=1 to 5)  & Retardation weights  •1j (j=1 to 5) 

such that the resultant curve overlaps experimental curve

• A total of 10 parameters are obtained in this process 

Retardation Parameters
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Shear Retardation Parameters

•1j •1j
0.0011 0.0015
0.0124 1.9944
0.2187 2.4810
0.2532 8.6257
0.4939 45.9273
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Shear relaxation experiments from Clemson University VI

preliminary results

Shear Relaxation Parameters 
for Pyrex®

w1j •1j
0.01133 0.03766383145

0.052928 1.7626990852
0.148225 2.168046863
0.186358 6.930635274
0.191795 32.46922489
0.39312 220.6745301
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