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Outline 
•  Fourier transform solution of differential equations 

•  Brief review 

•  Ordinary differential equation  

•  Partial differential equation (heat equation) 

•  Laplace transform solution of differential equations 

•  Brief review 

•  Spring-mass equation 

•  System of equations 

•  Quiz (multiple-choice) 

Resources 
•  Erwin Kreysig, Advanced Engineering Mathematics, 5th edition. 

•  Chapters 5 (Laplace Transformation) & 12:  Complex Numbers. Complex Analytic Functions 
•  Gilbert Strang, Introduction to Applied Mathematics 

•  Section 4.3: Fourier Integrals 
•  George W. Scherer, Relaxation in Glass and Composite, 1992 

•  Appendix A: Laplace Transform 
•  Stanley J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover, 1993 

•  Lesson 12: The Fourier Transform and Its Application to PDEs 
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Some more historical background 

In 1811, Fourier submitted to the French Academy of Sciences a revised version of 
the rejected 1807 paper.  The new version won a prize but was still refused 
publication because some details were deemed unclear by the reviewers. 

The Fourier transform actually appeared in writings of Cauchy and Laplace, starting 
around 1782. 

Most of the 1822 results plus new results were finally published by Fourier in 1822. 

    -Peter V. O’Neil, Advanced Engineering Mathematics  

Lithograph of Joseph Fourier, 
1768-1830, by Jules Boilly, 1823, in 
the Academy of Sciences, Paris. 
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First let’s review some of the formulas we’ve seen and add a few more 
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Is this formula correct? 

 Let                                , and invoke the Fundamental Theorem of Calculus, 

 which tells us that                          .  It’s also true that  

 for any constant c.  We know by the Fourier transform rules that 

   so 

  Therefore 

€ 

g (t)dta
x∫ =

€ 

1
ik

ˆ g (k) + cδ (k)

€ 

h(x) = g(t)dta
x∫

€ 

h' (x) = g (x)

€ 

(h + c)' (x) = g (x)

€ 

(h + c)'= ik (h + c)

€ 

ik(h + c) = ˆ g 

€ 

ˆ h (k) =
ˆ g (k) − ˆ c 

ik
=

ˆ g (k)
ik

− 2π cδ (k) =
ˆ g (k)
ik

+c
1
δ (k)



C. L. Cox 
Relaxation Processes in Glass  
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 for Solving Differential Equations 

•  Primarily used for linear differential equations with constant coefficients 

•  General step in applying method: 

•  Choose the appropriate form of the transform* 
•  Apply FT to the differential equation 

•  Solve the resulting equation in the transform domain 

•  Invert the transform solution to find the solution of the original problem 

* Depending on the range of independent variable, other forms of the Fourier 
transform may be desirable.  For partial differential equations, the form of the 
boundary conditions may influence the decision. 

For example, if the domain is 0 < x <    , then a Fourier Cosine or Sine Transform 
may be better for the problem.  These are defined as 

                                                               and 

(we‘ll focus on problems making use of the FT as we originally defined it) € 

∞

€ 

ˆ f 
c

(k) = f (x) cos(kx)dx0
∞∫

€ 

ˆ f 
s
(k) = f (x) sin(kx)dx0

∞∫
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Example 1: An ordinary differential equation 

Consider the differential equation 

   

Take the Fourier transform term by term, using linearity and the derivative rule: 

Solve for          : 

Take the inverse transform to find          : 

Could we write the solution in terms of           rather than          ?   
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−
d2u
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Example 1 (continued) 

Look once more at the solution in the transform domain 

   

This is the product of            and the function               , which we’ll call           . 

Now we can write                                  ,    so at this point we know that           is a 
        convolution. 

If we can find          , then we can write          as an integral in          . 

We know that                                                       so 

and we can write           in terms of            as            
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Example 2: A partial differential equation – the heat equation 

Heat flow in an infinite rod with initial temperature            is governed by the initial 
value problem 

   

Taking the Fourier transform term by term with respect to x will turn the partial 
differential equation into a first order ordinary equation. 

Applying FT to the pde and the initial condition: 

 Keep in mind that      actually depends on k and t ,  but we can treat the 
problem in the transform domain as an ode. 
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∂u
∂t

= c 2 ∂
2u
∂x 2

, −∞ < x <∞, 0 < t <∞
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Example 2 (continued) 

Now we solve the transformed problem:                     ,                         for    . 

The solution is  

The final step is to find the inverse transform of     . 

We can use the convolution rule, writing                                    , if the inverse  

transform of                               can be found.  

         We know that 

         We can write this formula as 

 and recognize that by setting                   ,   we have             . 
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Example 2 (continued) 

Summarizing what we just found:  

 We know that the Fourier transform of the solution of our initial value problem 
has the form 

  with 

as long as we set                   , i.e.  

Therefore, 

and finally, 

Comment:   What we refer to as              is often called              , for Green’s function, 

and it has interesting interpretations from both physical and mathematical perspectives.  
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a)   Knowing that the Fourier transform of               is                and that the 

 Fourier transform of  cos(ax)  is   π(δ(k - a) +δ(k +a)), find the inverse Fourier 

 transform of 3ikπ(δ(k - 2) +δ(k +2)). 

b) If  u(x)  solves the differential equation                                       , find          , the 
Fourier transform of u(x). 

€ 

dg(x)
dx

€ 

ik ˆ g (k)

€ 

du(x)
dx

+ 3u(x) = δ (x)

€ 

ˆ u (k)
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Some more historical background 

The transform actually originates with Leonhard Euler (1707-1783), the Swiss 
mathematician.  The Italian-French mathematical physicist Joseph Louis 
Lagrange (1736-1813) used similar integrals for work in probability theory.  
This work influenced Laplace. 

- Paul J. Nahin, Behind the Laplace transform,   
  IEEE Spectrum, March 1991. 

Pierre-Simon Laplace (1749–1827). 
Posthumous portrait by Madame 
Feytaud, 1842. 
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Reviewing of some common        

  formulas: 

  Correction: 

€ 

F (s)
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g' (t) =
dg
dt
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sG (s) − g (0)
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G (v)dvs
∞∫
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e-as δ (t - a) 



C. L. Cox 
Relaxation Processes in Glass  

and Polymers, Lecture 4 Laplace Transform Method  
 for Solving Differential Equations 

•  Primarily used for linear differential equations with constant coefficients (same 
as Fourier Transform method 

•  General step in applying method: 

•  Transform the differential equation from the time domain to the frequency 
domain 

•  Solve the resulting algebraic equations for the transform solution 

•  Invert the transform solution to find the solution of the original problem 



C. L. Cox 
Relaxation Processes in Glass  

and Polymers, Lecture 4 Laplace Transform Method 
Example 1: An initial value problem for a  spring-mass system 

Consider the forced oscillations of a body attached at the lower end of an elastic 
spring whose upper end is fixed as shown in the picture. 

The position of the mass with respect to the      
equilibrium position is governed by the                
initial value problem 

 The mass of the body is 

 The driving force is 

 The spring modulus is 

 Prime notation (    ) denotes derivative with respect to t. 

The main part of the spring was drawn as a helix in Maple with the commands 

€ 

my' '+ky = K0 sin pt
y(0) = 0
y'(0) = 0

€ 

y

€ 

K0 sin pt

equilibrium 

€ 

m

€ 

K0 sin pt

€ 

k

€ 

'
with(plots); 
spacecurve([2*cos(t), 2*sin(t), t], t = 0 .. 32*Pi, numpoints = 1000, color = black, thickness = 1); 
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Example 1 (continued) 

Introduce the variables   and   and the original equation 

 simplifies to   

Taking the Laplace transform of this equation term-by-term results in the subsidiary 
equation 

which could potentially have two more terms if the initial conditions are nonzero. 

Solving for Y(s): 

€ 

my' '+ky = K0 sin pt
€ 

K =
K0

m

€ 

ω0 =
k
m

€ 

y' '+ω0
2 y = K sin pt

€ 

s2Y (s) +ω0
2Y (s) = K p

s2 + p2

€ 

Y (s) = Kp

s2 +ω0
2( ) s2 + p2( )
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Example 1 (continued) 

This looks like the product of two transforms, especially if we write 

and we can find the inverse transform using the convolution rule: 

Integration is simpler if we combine the terms in the integral, leaving: 

€ 

Y (s) = Kp

s2 +ω0
2( ) s2 + p2( )

=
K
ω
0

ω
0

s2 +ω0
2( )

p

s2 + p2( )

€ 

y(t) = K
ω
0

sinω0t ∗ sin pt = K
ω
0

sinω
0
(t − y) sin pydy0

t∫

€ 

y(t) = K
2ω

0

{cos[ω
0
(t − y) − py] −cos[ω

0
(t − y) + py]}dy0

t∫

€ 

= K
2ω

0

{cos[ω
0
t − (p +ω

0
)y ] −cos[ω

0
t + (p − ω

0
)y ]}dy0

t∫
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Example 1 (continued) 

Integrating 

 results in 

 and we’re done, UNLESS 

Suppose  .    Then simplifying the integrand, and evaluating the integral results 

   in the solution  

Now, instead of the superposition of two harmonic oscillations, we have the 
amplitude growing as t increases.  This is called resonance.  

€ 

y(t) = K
2ω

0

{cos[ω
0
t − (p +ω

0
)y] −cos[ω

0
t + (p − ω

0
)y]}dy0

t∫

€ 

y(t) = K

p2 − ω
0
2

p
ω
0

sinω
0
t − sin pt

 

 
 

 

 
 

€ 

p2 − ω
0
2 = 0

€ 

p = ω
0

€ 

y(t) = K

2ω
0
2
sinω

0
t − ω

0
t cosω

0
t( )
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Example 2: An initial value problem with variable coefficients in the differential 
equation 

 Solve this IVP: 

First consider the Laplace transform of         :  

Similarly 

So the differential equation becomes 

Gathering terms results in the equation 

€ 

t y' '+(4t − 2)y'−4y = 0
y(0) =1

€ 

t y' '

  

€ 

L t y''{ } = −
d
ds

L y''{ } = −
d
ds

s 2Y − sy(0)− y'(0) 
 
 

 
 
 = −(2sY + s2Y '−y(0))

  

€ 

L t y'{ } = −
d
ds

L y'{ } = −
d
ds

sY − y(0)( ) = −Y − sY '

€ 

(s2 + 4s)Y '+(4s+ 8)Y = 3
€ 

−(2sY + s2Y '−y(0)) − 4(Y + sY ') − 2(sY − y(0)) − 4Y = 0
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Example 2 (continued) 

We have a first order differential equation in          : 

This is a linear first order differential equation that can be solved using an integrating 
factor. 

The solution turns out to be 

where C is an arbitrary constant. 

With some additional work (e.g. using the method of partial fractions before finding 
the inverse transform), the solution is found to be 

€ 

Y '+ (4s+ 8)
(s2 + 4s)

Y =
3

(s2 + 4s)
€ 

Y (s)

€ 

Y (s) =
s

(s+ 4)2
+

6

(s+ 4)2
+

C

s2(s+ 4)2

€ 

y(t) = e−4 t + 2te−4 t + C −
1
32

+
1
16
t +

1
16
te−4 t +

1
32
e−4 t
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Example 3: A system of equations for 2 masses on three springs 

Consider the system shown in the picture, where each spring    
 has spring modulus    , and the masses and displacements  
 from equilibrium are as specified in the picture.  Masses             
 of the springs and damping effects are neglected. 

The initial value problem to solve for this system of springs is 

€ 

y1' '= −ky1 + k(y2 − y1)
y2 ' '= −k(y2 − y1) − ky2
y1(0) = 0, y2(0) =1

y1'(0) = 3k , y2 '(0) = − 3k

€ 

y1

equilibrium 
€ 

k

€ 

k

€ 

y2

equilibrium 
€ 

k

€ 

k

€ 

m1 =1

€ 

m2 =1
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Example 3 (continued) 

Applying Laplace transforms term by term, incorporating the    
 initial conditions, results in the algebraic system 

To complete the solution procedure: 

 - Combine terms to write as a matrix system 

 in the two transforms 

 - Solve the matrix system 

 - Find the inverse transforms, using partial fractions
    or convolution 

Final answer: 

€ 

s2Y1 − s− 3k = −kY1 + k(Y2 −Y1)

s2Y2 − s+ 3k = −k(Y2 −Y1) − kY2

€ 

y1

equilibrium 
€ 

k

€ 

y2

equilibrium 
€ 

k

€ 

k

€ 

m1 =1

€ 

m2 =1

€ 

y1(t) = cos k t + sin 3k t

y2(t) = cos k t − sin 3k t
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a)   Knowing that the Laplace transform of                           is G(s – a) and that the 

Laplace transform of  t  is      , find the inverse Laplace transform of               . 

b) If  y(t)  solves the initial value problem       ,  

find the Laplace transform Y(s) of y(t).  When you type your answer you can 

   use ‘^’ for powers, e.g.        can be written as               or              .   

€ 

eatg(t), a > 0,

€ 

1

s2

€ 

2

(s − 3)2

€ 

y' '+y = 2sin t, y(0) = 0, y'(0) = 0

€ 

1

s2

€ 

1/s^2

€ 

s^(−2)


