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Relaxation Processes in Glass  

and Polymers, Lecture 3 Caveat 
Details that we would cover in more depth if time permitted: 

•  Conditions guaranteeing existence and uniqueness of the transforms 

•  Conditions on arguments in specific cases 

Supplementary reading 
•  Erwin Kreysig, Advanced Engineering Mathematics, 5th edition. 

•  Chapter 12:  Complex Numbers. Complex Analytic Functions 

•  Chapter 5: Laplace Transformation 

•  Gilbert Strang, Introduction to Applied Mathematics 

•  Section 4.3: Fourier Integrals 

•  George W. Scherer, Relaxation in Glass and Composite, 1992 

•  Appendix A: Laplace Transform 

•  Many internet resources, e.g. Wikipedia articles on the transforms.  Use multiple sources. 
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and Polymers, Lecture 3 3.1 Complex Exponential Function 
Outline: 

•  Complex numbers 

•  Definitions 

•  Arithmetic operations 

•  Properties 

•  Polar form 

•  Complex functions 

•  The exponential function 

•  Exercise set 1 

The shortest route between two truths in the real domain passes 
through the complex domain. 

 - Jacques Salomon Hadamard (1865-1963)  



C. L. Cox 
Relaxation Processes in Glass  

and Polymers, Lecture 3 Complex Numbers 
Representation of complex numbers: 

•  an ordered pair of real numbers: 

  (consisting of real part and imaginary part) 

•  using the imaginary unit: 

    where  

•  representation in the complex plane: 

   

€ 

z = x + iy

€ 

i2 = −1

€ 

z = x + iy

€ 

x

€ 

y

Real axis 

Im
ag

in
ar

y 
ax

is
 



C. L. Cox 
Relaxation Processes in Glass  

and Polymers, Lecture 3 Complex Numbers 
Arithmetic operations (given                           and                               ) 

•  addition and subtraction: 

   

•  multiplication: 

     

•  division: 

i.e. use the complex conjugate of the denominator 

€ 

z1 = x1 + iy1

€ 

z2 = x2 + iy2

€ 

z = z1 ± z2 = (x1 ± x2) + i(y1 ± y2)

€ 

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

€ 

z =
x1 + iy1
x2 + iy2

=
(x1 + iy1)
(x2 + iy2)

(x2 − iy2)
(x2 − iy2)

=
x1x2 + y1y2
x2
2 + y2

2 + i x2y1 − x1y2
x2
2 + y2

2
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x2 + iy2 = x2 − iy2
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Properties 

•  commutative and associative laws   

 for addition and multiplication         same as for real numbers 

•  distributive law 

   

Polar form 

•  modulus or absolute value: 

•  argument: 

•  principle value of the argument: 

€ 

z = x + iy = rcosθ + irsinθ = r(cosθ + isinθ)

€ 

z = r = x 2 + y 2 = z z 

€ 

θ = arg(z)

€ 

z = x + iy
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•  A function  f  defined on a set  S  of complex numbers assigns to each  z  in  S  a 
unique complex number  w,  and we write 

   where  u(x,y)  and  v(x,y)  are real functions, and are also 
   the real and imaginary parts of  z. 

•  Continuity, differentiability, and derivative of  f(z) are defined in an analogous 
manner to the properties of real functions. 

•  The rules of real differential calculus carry over to complex functions, e.g. 

•  The function  f(z) is analytic in a domain D if  f(z) is defined and differentiable at 
all points in z, and f(z)  is analytic at a point  z0  in D if f(z) is analytic in a 
neighborhood of  z0 . 

€ 

w = f (z) = u(x,y) + iv(x,y)

€ 

d
dz
(z3) = 3z2
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Theorem (Cauchy-Riemann equations) 

If function  f(z) = u(x,y) + iv(x,y) is defined and continuous in some neighborhood 
of a point z = x + iy and differentiable at  z,  then the first order partial derivatives 
of the components of f(z) exist and satisfy the Cauchy-Riemann equations: 

    and 

As a consequence, wherever the partial derivatives do not exist or the C-R 
equations are not satisfied, then f(z) is not analytic.  
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Definition: For the complex number z = x + iy, the exponential function is defined as 

        (1) 

Remarks: 

•  If  x = 0, then we have Euler’s formula, which says that for a real number y, 

•  Some sources begin with Euler’s formula, and derive (1) using the formula 

Properties: 

•  The polar form can now be written 

•  Periodicity:                                      for any integer  k 

 i.e.                     is periodic with the imaginary period  2πi 

€ 

ez = ex (cos y + isin y)

€ 

eiy = cos y + isin y

€ 

ex+ iy = exeiy

€ 

z = x + iy = rcosθ + irsinθ = r(cosθ + isinθ) = reiθ

€ 

reiθ = rei(θ +2kπ )

€ 

z = reiθ
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More Properties 

•  Multiplication and Division: For complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 

•  Powers:  

•  De Moivre’s formula 

•  For the modulus 

•  Derivative € 

(cosθ + isinθ)n = cosnθ + isinnθ

€ 

d
dz
(ez ) = ez

€ 

z1z2 = r1r2e
i(θ1 +θ 2 )

€ 

z1
z2

=
r1
r2
ei(θ1−θ 2 ) z2 ≠ 0

€ 

zn = (x + iy)n = rneinθ

€ 

ez = ex+ iy = ex

€ 

eiy =1

€ 

d
dt
(e(a+bi)t ) = (a + bi)e(a+bi)t
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and Polymers, Lecture 3 Exercise Set 1 
a) For z1 = 2 + 3i  and  z2 = 4 – 5i,  find z1 / z2. 

b) For z = 2 + 5πi, find the value of ez. 

c)   True or False?  The function                               is nowhere analytic. 

 Hint:  Cauchy-Riemann 

€ 

f (z) = z = x − iy
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Outline: 

•  Motivation/background 

•  Definition 

•  Some common transforms 

•  Properties/rules 

•  Derivatives, integrals, and shifts 

•  Exercise set 2 

Jean Baptiste Joseph Fourier 

Born: 21 March 1768 in Auxerre, Bourgogne, France 
Died: 16 May 1830 in Paris, France 
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Motivation – applications 

•  Solving linear differential equations and partial differential equations 
by translating them into algebraic equations, for example 

•  Electrical engineering – analysis of voltage and currents 

•  Digital signal and image processing 

•  Origin of the concept:  Théorie analytique de la chaleur (Analytical  
  Theory of Heat), which Fourier published in 1822. 

 (The paper Fourier submitted to the French Academy of Science in 
  1807 on the problem of heat conduction was rejected for its lack of
  rigor, according to Ahmed I. Zayed, in Handbook of function and 
 generalized function transformations) 
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Definition  

•  Let the function  f  be integrable on the real line, i.e. 

Then the Fourier transform of f  is a function          (depending on angular 
 frequency k ) defined as the improper integral   

•  inverse Fourier transform 

•  Other forms 

    (symmetric forms) 

    (using oscillation frequency k ) 

•  Other common notations  F(k), F(ξ), Φξ(f(x)) 

€ 

f (x) dx−∞
∞∫ < ∞

€ 

ˆ f (k)

€ 

ˆ f (k) = f (x)e− ikxdx−∞
∞∫

€ 

f (x) =
1

2π
ˆ f (k)eikxdk−∞

∞∫

€ 

ˆ f (k) = f (x)e−2πikxdx−∞
∞∫

€ 

f (x) = ˆ f (k)e2πikxdk−∞
∞∫

€ 

f (x) =
1
2π

ˆ f (k)eikxdk−∞
∞∫

€ 

ˆ f (k) =
1
2π

f (x)e−ikxdx−∞
∞∫
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Some common transforms 

      sign function 

      step function 

The dirac delta function, δ (x), for our purposes, is defined by its effect when it 
appears in a product in an integrand:     

€ 

δ (x)e−ikxdx−∞
∞∫ =1

€ 

ˆ f (k)

€ 

f (x)

1 

δ (x) 

2πδ (k) 

cos(ax) π(δ (k - a) +δ (k +a))  
sin(ax) iπ(δ (k + a) - δ (k - a))  

€ 

2
i k

-iπsgn(k) 

€ 

1
x

€ 

sgn(x) =
1 x > 0
−1 x < 0
 
 
 

€ 

u(x) =
1 x > 0
0 x < 0
 
 
 

€ 

πδ (k) +
1
i k

€ 

δ (x − a) f (x)dx−∞
∞∫ = f (a)
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Properties/rules 

•  Linearity 

•  Convolution 

•  Transform 

•  Product 

         real even function   real even function 

          real odd function           imaginary odd function 

Parseval‘s theorem: 

Plancheral theorem: 

€ 

ˆ f (k)

€ 

f (x)

€ 

ag(x) + bh (x)

€ 

a ˆ g (k) + b ˆ h (k)

€ 

(g ∗ h)(x) = g (x − y)h (y)dy−∞
∞∫

€ 

ˆ g (k) ˆ h (k)

€ 

ˆ g (x)

€ 

2π g (−k)

€ 

g(x)h(x)

€ 

1
2π

( ˆ g ∗ ˆ h )(k)

€ 

2π f (x)g (x)dx−∞
∞∫ = ˆ f (k) ˆ g (k)dk−∞

∞∫

€ 

2π f (x) 2 dx−∞
∞∫ = ˆ f (k) 2

dk−∞
∞∫
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Derivatives, integrals, and shifts 

€ 

ˆ f (k)

€ 

f (x)

€ 

d ng(x)

dxn

€ 

(ik)n ˆ g (k)

€ 

g(x − a)

€ 

e−iak ˆ g (k)

€ 

eixag(x)

€ 

ˆ g (k − a)
€ 

g (t)dta
x∫

€ 

1
ik

ˆ g (k) + cδ (k)

€ 

i n d n ˆ g (k)

dkn

€ 

xng(x)
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a)   Find the Fourier transform of  f(x) =e2xiδ(x) 

b)  Find the inverse Fourier transform of 

c)   Find the Fourier transform of  

€ 

F (k) =
2

i (k − 3)

€ 

f (x) = cos(x − y) sin(y)dy−∞
∞∫
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Outline: 

•  Background 

•  Definition 

•  Some common transforms 

•  Properties/rules 

•  Derivatives, integrals, and shifts 

•  Exercise set 3 

Pierre-Simon Laplace (1749-1827) 
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Applications 

•  Solving differential equations (ODE‘s and PDE‘s) by converting them to 
algebraic equations 

•  analysis of dynamical systems 

•  electrical circuits 

•  Evaluating integrals of certain forms 

•  The Laplace transform sees a lot of use in probability theory, where 
Laplace first found it. 

   - Paul J. Nahin, Behind the Laplace transform, 
    IEEE Spectrum, March 1991. 
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Definitions  

•  For a function f(t) which is defined for all           , the (unilateral) Laplace 
 transform is defined as the improper integral 

      for those (possibly complex) values of  s  for which the integral makes sense. 

•  Inverse Laplace transform – not as straightforward to define as for the Fourier 
transform, because it is an integral over the complex plane.  For completeness, 
we provide a definition, though the formula is not widely used directly.  The 
inverse Laplace transform of F(s) is defined as 

  with conditions placed on the real number c. 

•  Other common notations:       F(s) = L{f(t)}= f*(s)          f (t) =L-1{F(s)}      

€ 

F (s) = e−st f (t)dt0
∞∫

€ 

t ≥ 0

€ 

f (t) = estF (s)dsc− i∞
c+ i∞∫
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Some common transforms 

€ 

F (s)

€ 

f (t)

e-as 

cos(ωt) 

sin(ωt) 

€ 

1
s

€ 

1

s2
t 

€ 

n!

sn + 1tn 

δ (t - a) 

1 

€ 

s

s2 +ω2

€ 

ω

s2 +ω2
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Properties/rules 

       linearity 

     convolution 
   (note limits on integral) 

       time scaling 

continuous periodic 
       function  

€ 

F (s)

€ 

f (t)

€ 

ag(t) + bh (t)

€ 

aG (s) + bH (s)

€ 

(g ∗ h)(t) = g(t − y)h(y)dy0
t∫

€ 

g(at), a > 0

€ 

G (s)H (s)

€ 

1/a( )G s /a( )

€ 

g(t) = g (t + p)

€ 

1

1− e− ps
e−st f (t)dt0

p∫ , s > 0
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Derivatives, integrals, and shifts 

(prove using integration 
    by parts) 

€ 

F (s)

€ 

f (t)

€ 

′ g (t) =
dg
dt

€ 

sG (s) − g (0)

€ 

g(n ) (t) =
d ng

dt n
  

€ 

snG (s) − sn − 1g (0) − sn − 2 ′ g (0) −

  

€ 

− g(n − 1) (0)

€ 

g (y)dy0
t∫

€ 

1
s
G (s)

€ 

eatg(t)

€ 

G (s − a)

€ 

g(t − a)ua (t) =
0 t < a

g(t − a) t > a
 
 
 

€ 

e−asG (s)

€ 

tg(t)

€ 

− ′ G (s)

€ 

F (v)dvs
∞∫

€ 

g(t)
t
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a)   Find the Laplace transform of f(t) = 3t + 4 

b)   Find the inverse Laplace transform of   

c)    Find the inverse Laplace transform of  

€ 

1

s3 + 4s

€ 

4(1− e−3s)
s


