Optical and Photonic Glasses

Lecture 3: Kinetics and Nucleation

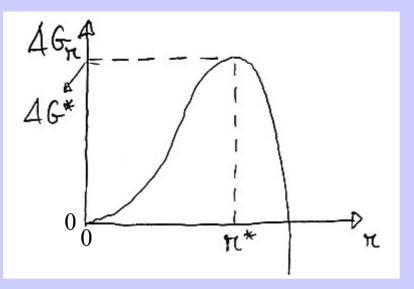
Professor Rui Almeida

International Materials Institute For New Functionality in Glass Lehigh University

C) Kinetic theory of glass formation

The basic postulate is that (in principle) any material can be made from the melt into as glass, if quenched quickly enough.

It is sufficient that the melt is cooled below T_g so quickly that crystallization is prevented (kinetic control).


A determination of the **rates of nucleation** and **crystallization from the melt** will lead to an estimate of a *critical cooling rate* necessary for glass formation in each case.

Nucleation and crystallization rates from the melt

A)Nucleation (homogeneous)

A liquid matrix/crystal nucleous interface is formed, with interfacial energy γ . For spherical nuclei with a radius r, the change in Gibbs free energy is:

 $\Delta G_r = 4 \pi r^2 \gamma + 4/3 \pi r^3 \Delta G_v$ (ΔG_v is the volume Gibbs energy change)

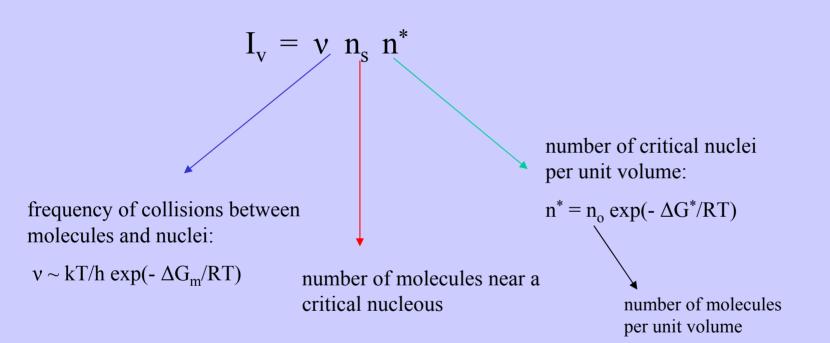
$$T = const. (< T_f)$$

r* is the critical radius (ca. 5 - 10 nm):

 $r = r^* \implies d\Delta G_r / dr = 0 \iff r^* = -2 \gamma / \Delta G_v \qquad (T < T_f \Longrightarrow \Delta G_v = G_{nuc} - G_{liq} < 0)$

and the activation energy for nucleation:

 $\Delta G^* = 16 \pi \gamma^3 / [3 \Delta G_v^2]$

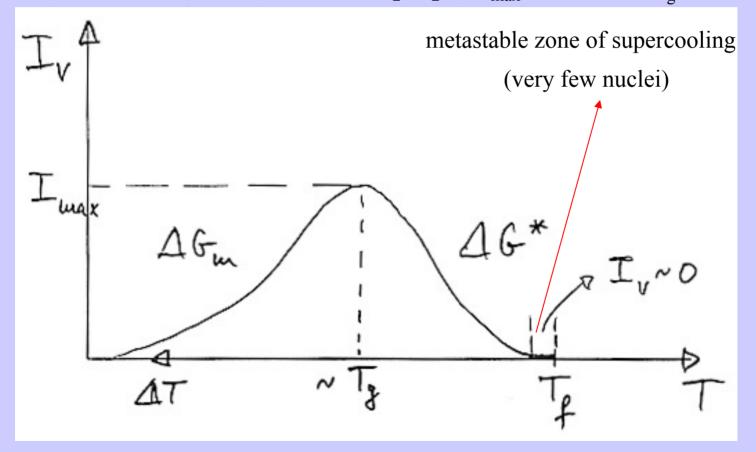

For a degree of supercooling $\Delta T = T_f - T$, it can be shown that:

$$\Delta G^* = 16 \pi \gamma^3 T_f^2 / [3 \Delta H_f^2 (\Delta T)^2]$$

Lecture 3

Homogeneous nucleation rate

The rate of homogeneous nucleation (or the number of supercritical nuclei formed per unit volume and per unit time) is then:

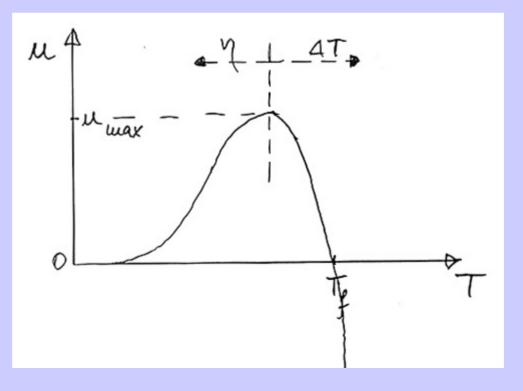


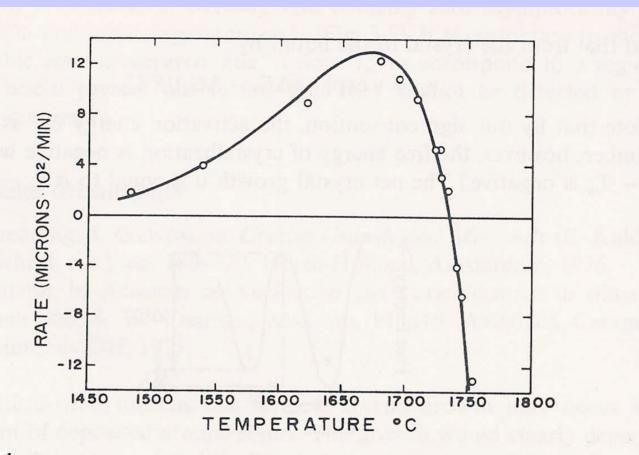
Therefore, the rate of homogeneous nucleation is:

 $I_v = I_o \exp\{-16 \pi \gamma^3 T_f^2 / [3 RT \Delta H_f^2 (\Delta T)^2]\} \exp(-\Delta G_m / RT)$ (m⁻³s⁻¹)

(This theoretical value of I_v is often << experimentally determined I_v). Spring 2005 Lecture 3

This is the typical shape of the homogeneous nucleation rate as a function of temperature. The maximum, I_{max} , occurs at a temperature which, for good glass forming systems (which crystallize incongruently and where *heterogeneous* nucleation is more likely to occur), may be well below T_g . For poor glass formers (which crystallize congruently, like 2 SiO₂.Li₂O), I_{max} occurs at ~ T_g .



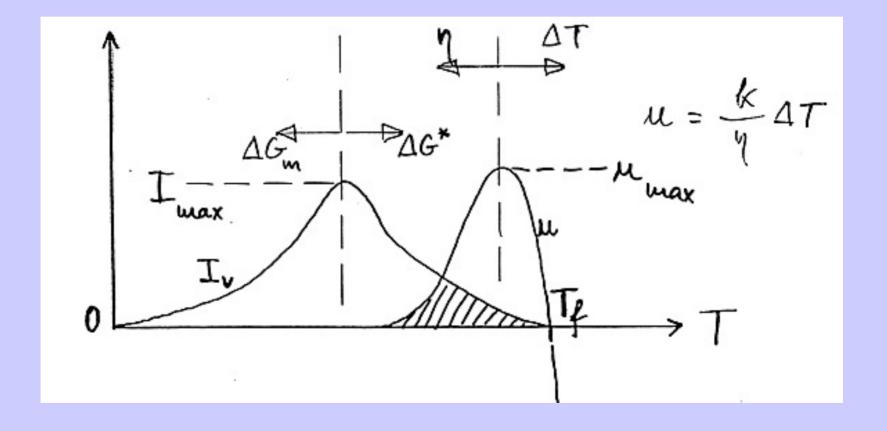

Rate of crystal growth from the melt

This is the rate (or velocity) of growth of supercritical nuclei, u:

 $u = \Delta H_f \Delta T / 3 \pi \lambda^2 T_f \eta N_o$ (m s⁻¹) (u ~ const. $\Delta T/\eta$)

where $\lambda \sim 0.2$ nm.

Experimental Crystal growth rate of cristobalite from fused silica as a function of temperature.


(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

(Adapted from: *Fundamentals of inorganic glasses*, A.K. Varshneya, Academic Press, 1994) Maximum Crystal Growth Velocities and Viscosities of Glass-Forming Liquids^a (from experiment)

Materials	Melting point (°C)	Maximum crystallization velocity (cm/s)	Temperature of maximum u (°C)	Log viscosity at m.p. (P)
Vitreous silica, SiO ₂	1,734	2.2(10)-7	1,674	7.36
Vitreous germania, GeO ₂	1,116	4.2(10) ⁻⁶	1,020	5.5
Phosphorous pentoxide P ₂ O ₅	580	1.5(10)-7	561	6.7
Sodium disilicate Na ₂ O-2SiO ₂	878	1.5(10) ⁻⁴	762	3.8
Potassium disilicate K ₂ O·2SiO ₂	1,040	3.6(10) ⁻⁵	930	
Barium diborate BaO·2B ₂ O ₃	910	4.3(10) ⁻³	849	1.7
Lead diborate PbO-2B ₂ O ₃	774	1.9(10) ⁻⁴	705	1.0
1,2-Diphenylbenzene	55.5	$2.5(10)^{-3}$	38	-0.46
1,3,5-Tri-α- naphthylbenzene	197	9.3(10) ⁻⁵	175	0.24
Glycerol	18.3	$1.8(10)^{-4}$	-6.7	-0.34 1.0
Salol	43	$6.4(10)^{-3}$	20	1.0
Polyethylene adipate	55	9.5(10) ⁻⁶	26	
Toluene	-95	> 0.5		
Ethyl ether	-166	>0.13		
Methyl alcohol	- 98	> 0.09		

(1 Pa.s = 10 P P \rightarrow poise)

The combined curves for the rates of homogeneous nucleation and crystal growth from the melt as a function of temperature present two maxima at different temperatures:

In order to obtain a glass, one has to quench the melt below T_f at a **cooling rate** above a **critical** value, such that the supercooled liquid does not have enough time to crystallize. This implies that the temperature range where the crystal growth rate is appreciable has to be crossed quickly enough.

For example, for v-SiO₂, the value of $u_{max} \sim 2.2$ nm/s.

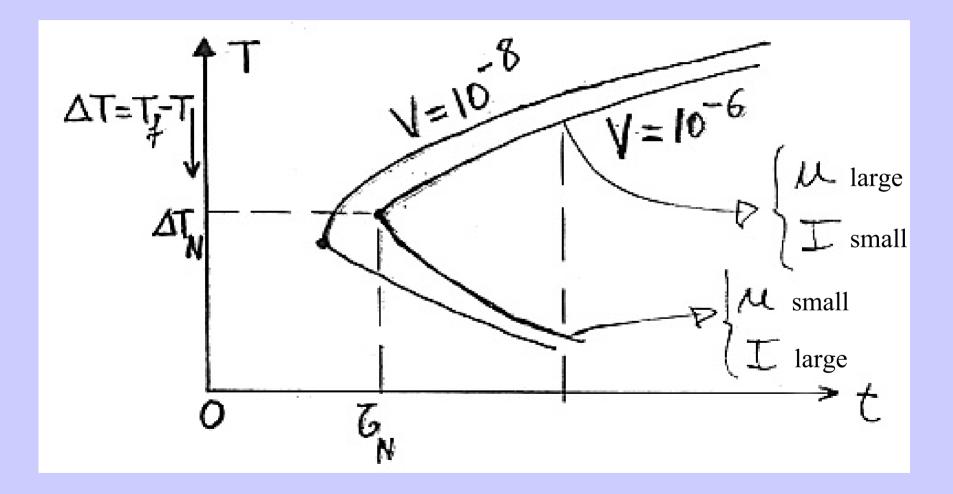
The **critical cooling rate** for a given glass-forming system may be estimated based on the Johnson-Mehl-Avrami theory of crystallization.

The minimum volume fraction of crystals which can be detected in a glass is typically:

 $V \sim 10^{-6}$

Under isothermal conditions, the Avrami theory yields the following expression for V, as function of time, t:

V = 1 - exp [- (
$$\pi/3$$
) I_v u³ t⁴] ~ ($\pi/3$) I_v u³ t⁴


for time-independent, 3-D crystal growth and for short transformation times.

On the basis of this equation, one can construct a so-called T-T-T (time-temperature-% transformation) curve.

Spring 2005

Lecture 3

Generic T-T-T curves for melts with nucleation and crystal growth rates I and u, respectively and glasses with maximum volume fractions of crystals V (1 and 0.01 ppm):

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Tm **T-T-T** curve for 1700 silica (based on isothermal 1650 heat treatments) TO 200 x 10° at T = 1696 °C 1600 TEMPERATURE (C) 1550 Tn 1500 1450 1400-2 tn 14 x 10⁶ 10 12 6 8 0 4 HEAT TREATMENT TIME (sec) Time-temperature-transformation diagram for silica corresponding

Time-temperature-transformation diagram for silica corresponding to a volume fraction crystallized of 10^{-6} . (After D. Uhlmann, J. Non-cryst. Sol. 7, 337 (1972). Reproduced with permission of Elsevier Science Publishers.)

Lecture 3

For a given, selected value of V (in fact, it makes little difference whether this is 10^{-6} or 10^{-8} , for example), the T-T-T curve is built by calculating, for each temperature in a range of interest, the time which a fraction V takes to crystallize at a temperature T (at which the nucleation and growth rates are I_v and u, respectively).

The "nose" of the curve, which has the coordinates (t_n, T_n) , defines the **critical cooling rate**, $(dT/dt)_c$, as the *slope* of the line drawn between T_m and the "nose":

$$(dT/dt)_{c} \sim \Delta T_{n} / t_{n}$$

which means that, when the melt reaches T_n after a cooling time $t_n (\Delta T_n = T_m - T_n)$, the crystallized fraction will not exceed the chosen value of V. Actual continuous cooling conditions correspond to lower real values of V and easier vitrification.

Another empirical criterion is: $(dT/dt)_c \sim 10^5 / \eta_f$ (°C/s)

where η_f is the melt viscosity at T_m , in Pa.s .

Note that the "melting" temperature, T_m , may actually be well over T_L .

Spring 2005

In general, **glass formation** will be favored by: (1) a cooling rate as high as possible; (2) a high viscosity at the nose of the T-T-T curve (and at T_m); (3) absence of heterogeneous nucleation sites; (4) a large liquid-crystal interfacial energy γ ; (5) in multicomponent systems, a large compositional change between liquid and crystalline phase formed (in such systems, glass formation is also favored by a *deep eutectic*, at "low T", where the melt viscosity is higher).

Material	Homogeneous	Heterogeneous nucleation contact angle (deg)			
	Homogeneous nucleation	100	60	40	
SiO ₂ glass ^a	9×10^{-6}	10^{-5}	8×10^{-3}	2×10^{-1}	
GeO ₂ glass ^a	3×10^{-3}	3×10^{3}	1	20	
$Na_2O \cdot 2SiO_2$ glass ^a	6×10^{-3}	8×10^{-3}	10	$3 \times 10^{+2}$	
Salol	10				
Water	107				
Ag	10 ¹⁰				
Typical metal ^a	9×10^{8}	9×10^{9}	1010	5×10^{10}	

^a After P. I. K. Onorato and D. R. Uhlmann, J. Non-Cryst. Sol., 22(2), 367-378 (1976).

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

Lecture 3