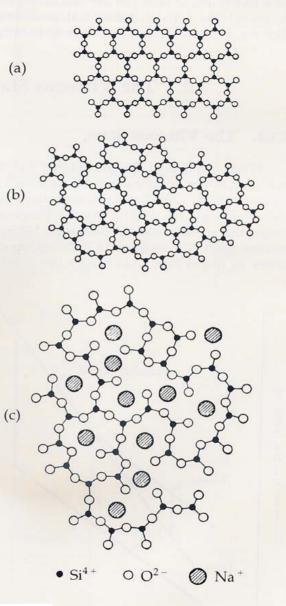
Optical and Photonic Glasses

Lecture 2:

Glass Types and Theories of Formation


Professor Rui Almeida

International Materials Institute For New Functionality in Glass Lehigh University

In a multicomponent material like the SiO_2 -Na₂O glass (c), the question of the **region of glass formation** arises: how much Na₂O can be added to SiO_2 , while still keeping the glass forming ability of the system?

(Adapted from: *Optical glass*, T.S. Izumitani, Hoya Corporation, 1986)

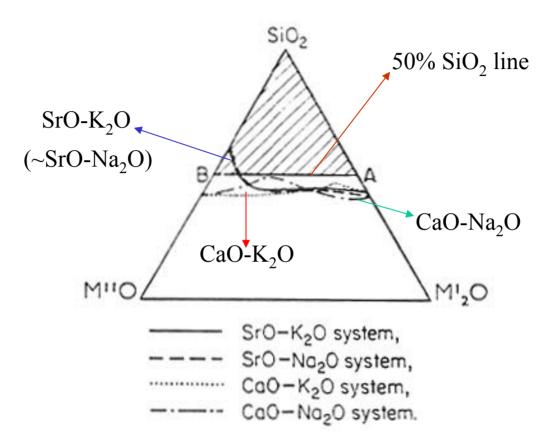
1.3. Network structure of SiO_4^{4+} tetrahedrons: (a) quartz crystal, (b) quartz glass, (c) sodium silicate glass (Ref. 5).

What is the region of glass formation ?

Rui M. Almeida

Lecture 2

Regions of glass formation in oxide glasses (prepared by melting)


I) Alkali silicates:

$SiO_2 - Li_2O$	~	0-36	mol% Li ₂ O
$SiO_2 - Na_2O$	~	0-58	mol% Na ₂ O
$SiO_2 - K_2O$	~	0-55	mol% K ₂ O
- Rb ₂ O		"	mol% Rb ₂ O
- Cs ₂ O		"	mol% Cs ₂ O

Glasses with > 50 mol% R_2O (< 50 mol% SiO_2) are sometimes called "invert glasses".

Spring 2005

II) Ternary alkali - alkaline earth silicates

Glass-formation regions in various ternary silicate glasses. M' is a monovalent atom, and M" is a divalent atom. (After M. Imaoka, *Adv. in Glass Tech.*, Part I, p. 149. Plenum Press, New York, 1962. Reproduced with permission of the publisher.)

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

Lecture 2

III) Phosphate

glasses

Regions of Glass Formation in Binary Phosphate Systems"

	Maximum percentage of modifier (mole per cent)			
Modifier	Elyard et al. ^b	Imaoka°		
K ₂ O		47		
Na ₂ O		60		
Li ₂ O		60		
BaO	57	58		
SrO	56	56		
CaO	58	56		
MgO	65	60		
BeO		66		
Ag ₂ O		66		
Tl_2O		50		
ZnO	71	64		
CdO	66	57		
PbO	66	62		

" After Rawson.

^b Melted on scale of approximately 20 mg on electrically heated platinum alloy wire. Melt quenched by switching off the heating current. C. A. Elyard, P. L. Baynton, and H. Rawson, *Glastech. Ber.*, 32K, V, 36–43 (1960).

^c Melted on scale of 1–3 g in platinum crucible. Melt cooled in the crucible. M. Imaoka, in "Advances in Glass Technology, Part I", pp. 149–164, Plenum Press, New York (1962).

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Lecture 2

IV) **Tellurite** glasses

(Note: pure TeO_2 is difficult to obtain as a glass).

Range of Glass Formation in Tell- urite Systems ^{a,b}			
Metal oxide	Range (mol %)		
Li ₂ O	12.2-34.9		
Na ₂ O	5.5-37.8		
K ₂ O	6.5-19.5		
Rb ₂ O	5.6-21.0		
BeO	15-27		
MgO	11-35		
CaO			
SrO	9.2-13.1		
BaO	8.0-35.7		
ZnO	17.3-37.2		
Al_2O_3	7.6-16.8		
Tl ₂ O	13.0-38.4		
PbO	12.8-22.6		
Nb ₂ O ₅	2.2-24.0		
Ta ₂ O ₅	1.4-15.3		
WO ₃	8.5-44		
La_2O_3	4.5-9.5		
TiO ₂	6.2-18.9		
ThO ₂	5.2-11.0		

0.01

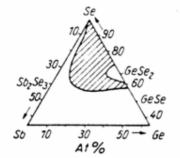
~

~ 11

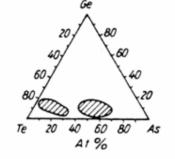
^a From W. Vogel, H. Bürger, B. Müller, G. Zerge, W. Müller, and K. Fortel, *Silikattechnik*, **25**(6), 205–209 (1974).

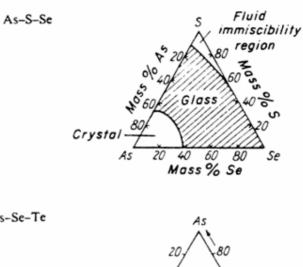
 b 20–100 g, cooled at 8–10°C/s through transformation.

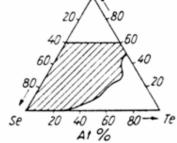
(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

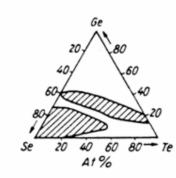

Spring 2005

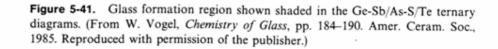
Lecture 2


•				· ·	· ·
Composition (mole %)	Acronym	$T_{g}(^{\circ}\mathrm{C})$	$T_{\mathbf{x}}$ (°C)	Density (gm/cm ³)	n _D
64ZrF ₄ -36BaF ₂	ZB	300	352	4.66	1.522
$53ZrF_4-47ThF_4$	ZT	490	572	5.72	1.551
50ZrF ₄ -25BaF ₂ -25NaF	ZBN	240	300	4.50	1.50
$63ZrF_4 - 33BaF_2 - 4GdF_3$	ZBG	310	390		1.529
$62ZrF_4-33BaF_2-5LaF_3$	ZBL	306	380	4.79	1.523
$62HfF_4 - 33BaF_2 - 5LaF_3$	HBL	312	395	5.78	1.514
57.5ZrF ₄ -33.75BaF ₂ -8.75ThF ₄	ZBT	320	400	4.80	1.523
$57.5 \text{HfF}_4 - 33.75 \text{BaF}_2 - 8.75 \text{ThF}_4$	HBT	319	396	6.19	
56ZrF ₄ -15BaF ₂ -6LaF ₃ -4AlF ₃ -20NaF	ZBLAN	275	405	4.27	1.499
55ZrF ₄ -30 BaF ₂ -15 UF ₄	ZBU	320	400	5.01	
$50ZrF_4-43ThF_4-7YF_3$	ZTY	465	559	5.41	1.537
45ZrF ₄ - 36 BaF ₂ - 11 YF ₃ - 8 AlF ₃	ZBYA	344	425	4.54	1.507
57ZrF ₄ -36 BaF ₂ -3 LaF ₃ -4 AlF ₃	ZBLA	310	390	4.61	1.516
$57HfF_4 - 36BaF_2 - 3LaF_3 - 4AlF_3$	HBLA	312	400	5.88	1.504


 Table 5-6.
 Heavy Metal Fluoride Glass Systems and Some of Their Properties




Ge-As-Te



As-Se-Te

V) Halide glasses

Binary fluorozirconates: $\sim 50 - 70 \text{ mol}\% \text{ ZrF}_4 - \text{BaF}_2$

Zinc halide-based glasses: $\sim 50 - 60 \text{ mol}\% \text{ ZnBr}_2 - \text{KI}$

VI) Chalcogenide glasses:

As - S - Se system: As - Se - Te" Ge - Sb - Se"

large glass-forming region " "

" smaller

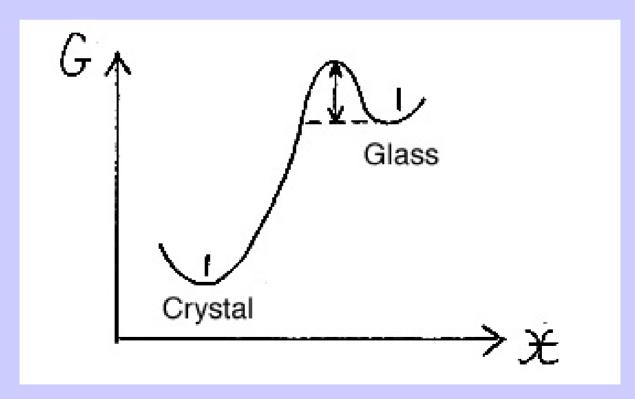
Theories of glass formation

There is not yet a single theory which is able to predict and specify which **materials** and under what **conditions** are able to form glasses.

There are, however, three theories (or *models*, rather) which encompass most of the relevant aspects which are known to lead to glass formation:

- A) Structural theory of glass formation, proposed by W.H. Zachariasen in 1932 (J. Am. Chem. Soc. 54(1932)3841).
- B) Energy criterion of K.H. Sun (1947).
- C) Kinetic theory of glass formation (Turnbull and Cohen, 1960).

A) Zachariasen's theory (oxide glasses)


This theory, strictly applicable to oxide glasses only in its original form, sometimes referred to as the *crystallochemical theory*; it led to the model known as the 3 - D continuous random network (3-D CRN) model.

Basic postulates:

-interatomic forces similar in glass and corresponding crystal
-glass is in a slightly higher energy state (next slide)
-nearest neighbor coordination polyhedra similar in glass and crystal
-nature of interatomic bonds similar in glass and corresponding crystal

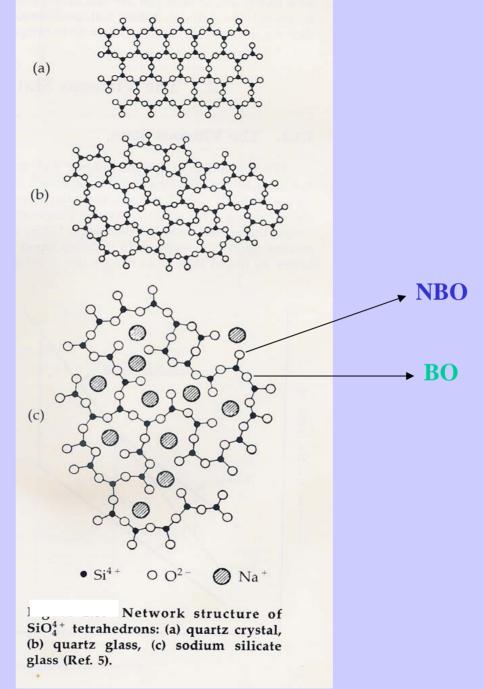
The glass is in a higher energy state, compared to the corresponding crystal.

This can be considered a metastable state, in the sense that a certain thermodynamic energy barrier exists (related to the activation energy for crystal growth) for the glass to crystallize. Such energy is provided when the glass is heated above its temperature of onset of crystallization (obtainable from a DSC, or DTA, run).

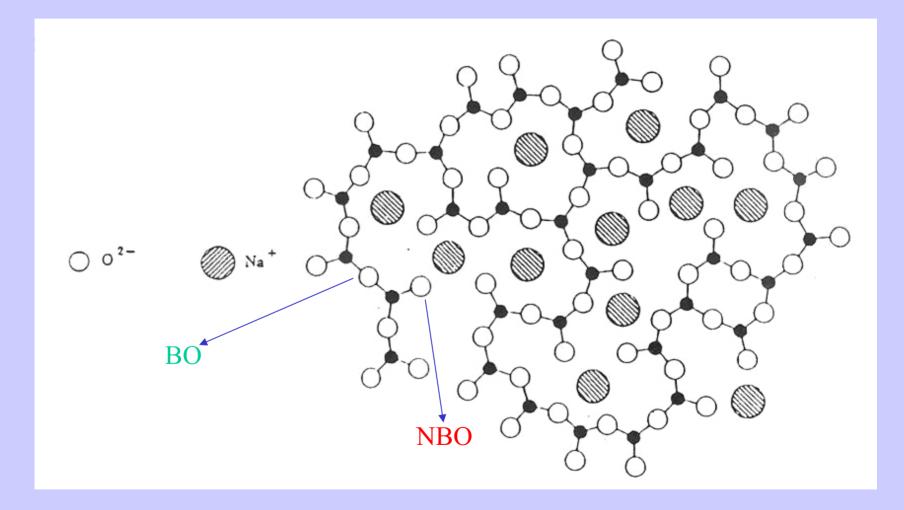
Zachariasen's rules:

- each oxygen atom in a glass is bonded only to one or two glass-forming cations (e.g. Si⁴⁺);
- 2) the coordination number (CN) of the glass-forming cation is small: 3 or 4;
- 3) the oxygen coordination polyhedra share corners, but not edges or faces;
- 4) the polyhedral structural units form a **3-D continuous random network** in which every polyhedron shares at least 3 corners with its neighbors.

Limitations of Zachariasen's rules


- apply only to oxide glasses (silica, silicates, ...)
- there are several exceptions to the rules, such as:
 - non-oxide glasses
 - CN > 4 (e.g. fluoride and metallic glasses)
 - chain-like glass structures (e.g., metaphosphate glasses)
- some other models of glass structure (e.g., the *crystallite* model of Lebedev) actually oppose the idea of a CRN.

Strong points of Zachariasen's model


predicts the existence of the main oxide glass formers (SiO₂, GeO₂, B₂O₃,
P₂O₅, ...) and glass modifiers (Na₂O, CaO, ...); suggests the existence of bridging oxygen (BO) and non-bridging oxygen (NBO) species.

The bottom figure (c) depicts the structure of a SiO_2 -Na₂O glass, where **BO** and **NBO** species can be identified.

(Adapted from: *Optical glass*, T.S. Izumitani, Hoya Corporation, 1986)

This figure also depicts the structure of a SiO_2 -Na₂O glass, where **BO** and **NBO** species can be identified:

B) **K.H. Sun**'s criterion:

- Establishes a correlation between **glass forming tendency** and chemical **bond strength** in the glass.

Dissociation energy of oxides into gaseous elements:

 $E_{d}^{MOx} = |1/m \Delta H^{o}_{f}(M_{m}O_{n}, c) - \Delta H^{o}_{f}(M, g) - n/m \Delta H^{o}_{f}(O, g)|$

 E_d refers to a mol of M in $MO_{n/m}$.

 $E_b = E_d / CN$ is called the **single bond strength**

The basic idea behind this model is that, when a melt is quenched to form a glass, the stronger the M-O bonds, the more difficult are the structural rearrangements necessary for crystallization and, hence, the easier is glass formation.

(Adapted from: *Fundamentals* of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

	M in MO _x	Valence	Dissociation energy $E_{d'}$ per MO _x (kcals)	Coordination number ^b	Single-bond strength (kcals)
Glass	В	3	356	3	119
formers	Si	4	424	4	106
	Ge	4	431	4	108
	Al	3	402-317	4	101-79
	В	3	356	4	89
	Р	5	442	4	111-88
	V	5	449	4	112-90
	As	5	349	4	87-70
	Sb	5	339	4	85-68
	Zr	4	485	6	81
Intermediates	Ti	4	435	6	73
	Zn	2	144	2	72
	Pb	2	145	2	73
	Al	3	317-402	6	53-67
	Th	4	516	8	64
	Be	2	250	4	63
	Zr	4	485	8	61
	Cd	2	119	2	60
Modifiers	Sc	3	362	6	60
	La	3	406	7	58
	Y	3	399	8	50
	Sn	4	278	6	46
	Ga	3	267	6	45
	In	3	259	6	43
	Th	4	516	12	43
	Pb	4	232	6	39
	Mg	2	222	6	37
	Li	1	144	4	36
	Pb	2	145	4	36
	Zn	2	144	4	36
	Ba	2	260	8	33
	Ca	2	257	8	32
	Sr	2	256	8	32
	Cd	2	119	4	30
	Na	1	120	6	20
	Cd	2	119	6	20
	K	1	115	9	13
	Rb	1			
			115	10	12
	Hg	2	68	6	11
	Cs	1	114	12	10

^a After Sun [8].

^b Based on either known or assumed values.