Optical and Photonic Glasses

Lecture 11: Thermal Expansion of Glasses

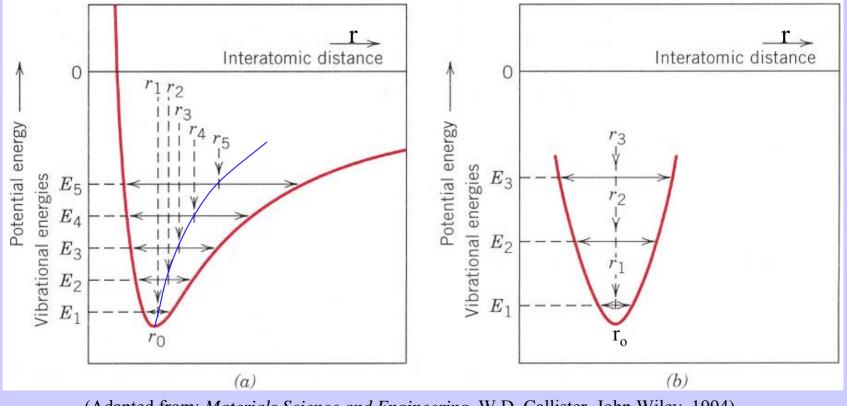
Professor Rui Almeida

International Materials Institute For New Functionality in Glass Lehigh University

Thermal expansion of glass

Physical origin of thermal expansion: increase in *amplitude* of the thermal vibrations of the atoms/ions, as a result of their anharmonicity:

(a) anharmonic oscillator:


$$V = \frac{1}{2} k (r - r_0)^2 + \dots$$

 $E_v = (v + \frac{1}{2}) hv + ...$

(b) *harmonic* oscillator:

 $V = \frac{1}{2} k(r-r_0)^2$ (Hooke's law)

 $E_v = (v + \frac{1}{2}) hv$

(Adapted from: Materials Science and Engineering, W.D. Callister, John Wiley, 1994)

Spring 2005

Lecture 11

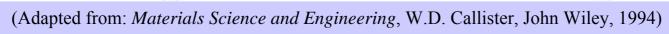
Thermal expansion of glass

Physical origin of thermal expansion: increase in *amplitude* of the thermal vibrations of the atoms/ions, as a result of their anharmonicity:

(a) anharmonic oscillator:

$$V = \frac{1}{2} k (r - r_0)^2 + \dots$$

Interatomic distance Interatomic distance 0 0 r_2 Potential energy Vibrational energies E_3 Vibrational energies E_5 E_4


$$E_v = (v + \frac{1}{2})hv + ...$$

(b) *harmonic* oscillator:

 $V = \frac{1}{2} k r^2$ (Hooke's law)

 $E_v = (v + \frac{1}{2}) hv$

(b)

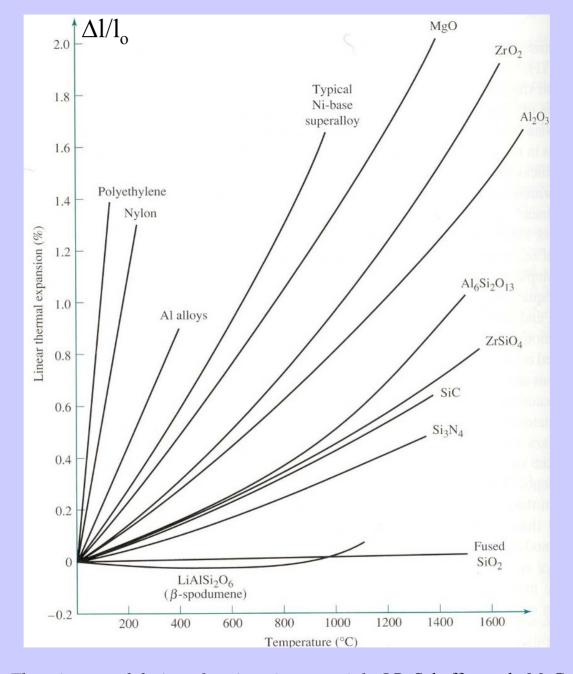
Spring 2005

Potential energy

 E_3

 E_2

 E_1


 r_0

(a)

Lecture 11

 E_2

 E_1

(Adapted from: *The science and design of engineering materials*, J.P. Schaffer et al., McGraw-Hill, 1999) Spring 2005 Lecture 11 Rui M. Almeida

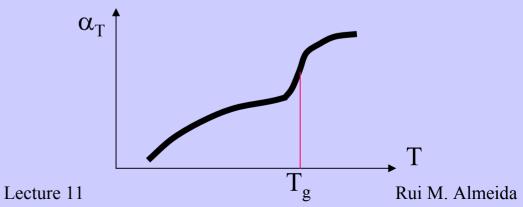
Material	$\alpha_{\rm th}(imes~10^{-6}~^{\circ}{ m C}^{-1})$	Material	$\alpha_{\rm th}(imes~10^{-6}~{}^{\circ}{ m C}^{-1})$
Metals		Ceramics	
Al	25	Al ₂ O ₃	6.5-8.8
Cr	6	BeO	9
Co	12	MgO	13.5
Cu	17	SiC	4.8
Au	14	Si	2.6
Fe	12	Si_3N_4 (α phase)	2.9
Pb	29	Si_3N_4 (β phase)	2.3
Mg	25	Spinel (MgAl ₂ O ₄)	7.6
Мо	5	Soda-lime-silicate glass	9.2 (used in light bulbs
Ni	13	Borosilicate glass	4.6 (used with Kovar)
Pt	9	Silica (96% pure)	0.8
К	83	Silica (99.9% pure)	0.55
Ag	19	Polymers (unoriented)	
Na	70	Polyethylene	100-200
Та	7	Polypropylene	58-100
Sn	20	Polystyrene	60-80
Ti	9	Polytetrafluoroethylene	100
W	5	Polycarbonate	66
Zn	35	Nylon (6/6)	80
1020 steel	12	Cellulose acetate	80-160
Stainless steel	17	Polymethylmethacrylate	50-90
3003 aluminum alloy	23.2	Ероху	45-90
2017 aluminum alloy	22.9	Phenolformaldehyde	60-80
ASTM B 152 copper alloy	17	Silicones	20-40
Brass	18		
Pb-Sn solder (50-50)	24		
AZ31B magnesium alloy	26		
ASTM B160 nickel alloy	- 12		
Commercial titanium	8.8		
Kovar (Fe-Ni-Co)	5		

(Adapted from: The science and design of engineering materials, J.P. Schaffer et al., McGraw-Hill, 1999)

Spring 2005

Lecture 11

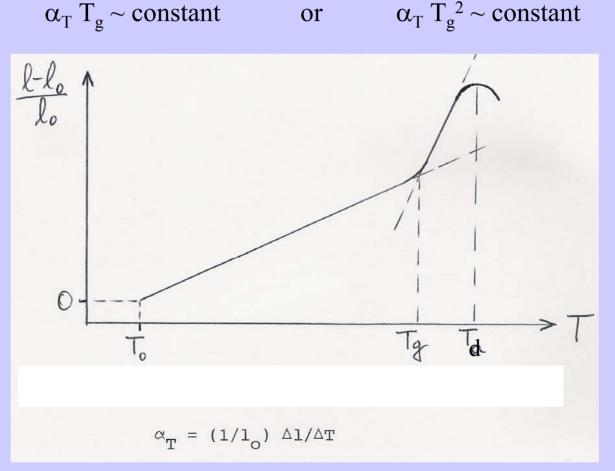
For a given temperature, T:


linear thermal expansion coefficient of a sample of length **l**:

 $\alpha_{\rm T} = (1/\mathbf{I}) \, d\mathbf{I}/d\mathbf{T} \qquad (\text{in units of } \mathrm{K}^{-1})$ $\alpha_{\rm T} = 1/3 \, \alpha_{\rm T}^{\rm vol} = 1/3 \, (1/\mathrm{V}) \, (\partial \mathrm{V}/\partial \mathrm{T})_{\rm P}$

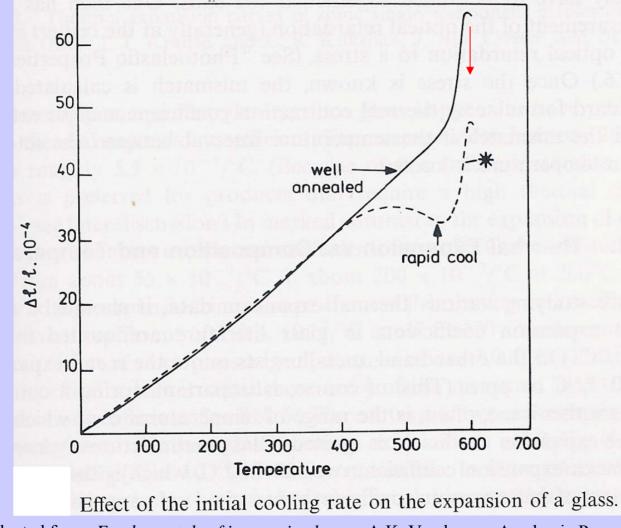
Over a small temperature range, the average value:

 $\alpha_{\rm T} = (1/\mathbf{l}_{\rm av}) \,\Delta \mathbf{l}/\Delta \mathrm{T} \sim (1/\mathbf{l}_{\rm o}) \,\Delta \mathbf{l}/\Delta \mathrm{T} = (1/\mathbf{l}_{\rm o}) \,(\mathbf{l}-\mathbf{l}_{\rm o})/(\mathrm{T}-\mathrm{T}_{\rm o})$


For a glass, the changes of α_T with T are similar to those of c_p :

Spring 2005

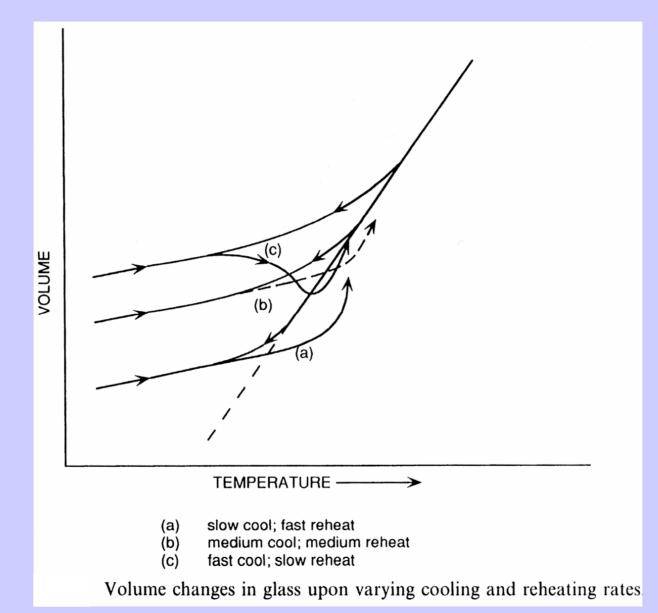
Typical thermal expansion curve for a glass, with the relative expansion, $\Delta l/l_o$, plotted as a function of temperature. The *thermal expansion* coefficient is the slope of the curve. The slope increases steeply above T_g, hence this is a *good method to determine* the glass T_g . The *dilatometric softening temperature*, T_d, corresponds to $\eta \sim 10^9$ - 10^{10} Pa.s, a viscosity much higher than that of the Littleton softening point ($10^{6.65}$ Pa.s).


Usually, for modified SiO_2 - R_2O silicate glasses of varying R_2O content, one has:

Spring 2005

Lecture 11

The curvature downwards is an artifact due to an apparent contraction caused by a pushrod penetration into the specimen, due to its softening. The rapidly cooled glass is less dense than the well annealed one and it will shrink, up to a certain point, when slowly reheated, as a result of structural relaxation.

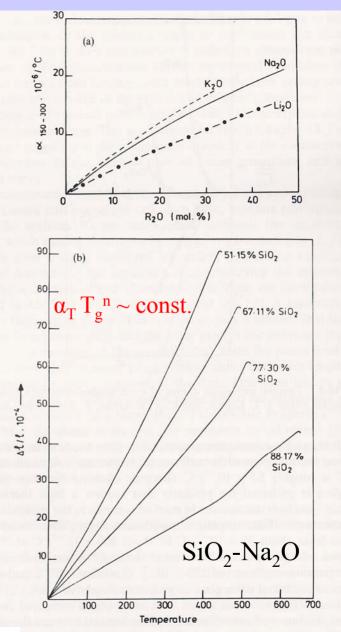


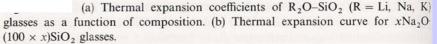
(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

Lecture 11

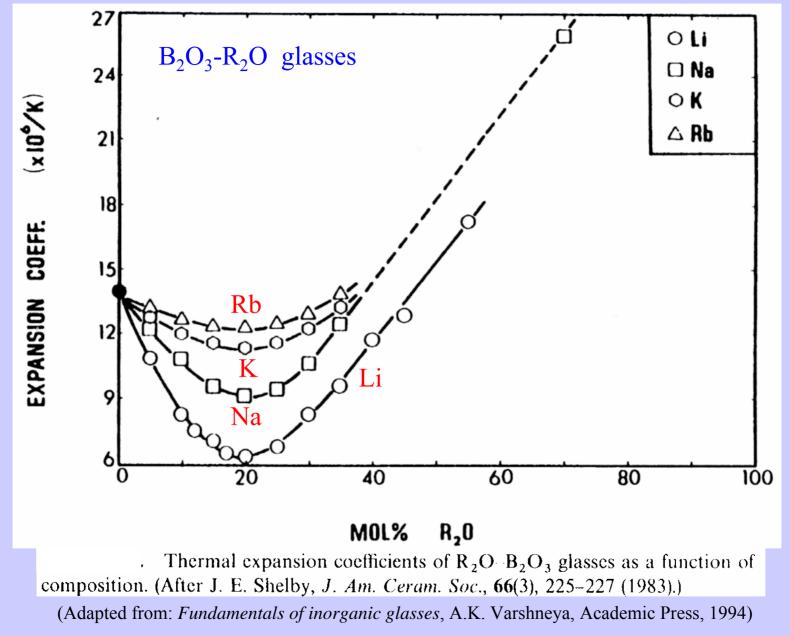
Volume structural relaxation


(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)


Spring 2005

Lecture 11

Thermal expansion coefficients and thermal expansion curves for alkali silicate glasses.

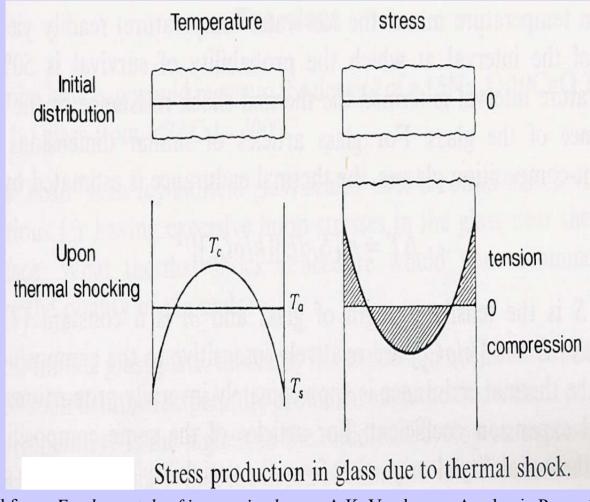


Lecture 11

Borate anomaly

Spring 2005

Lecture 11


Thermal Expansion Coefficients of Some Commercial

Glasses

Glass Code	Туре	Expansion coefficient 10 ⁻⁷ /°C	
		0–300°C	Set point—25°C
GE 001	Potash soda lead	93.5	101
GE 008	Soda lime	93.5	105
GE 012	Potash soda lead	89.5	97
Corning 1720	Aluminosilicate	42	52
GE 706	Borosilicate	48	55
GE 725	Borosilicate	35.5	39
Corning 7720	Rorosilicate	36	12

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Sudden cooling of a glass surface below the average specimen temperature, T_a , causes the development of tensile stresses which can lead to glass fracture by *thermal shock*. The glass interior, where the temperature is above T_a and is maximum at the center, will be under compression. The thermal shock resistance is strongly dependent on the value of α_T and v-SiO₂ ($\alpha_T \sim 5 \times 10^{-7} \text{ K}^{-1}$) has an exceptional resistance to thermal shock.

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

Lecture 11

Annealing and tempering

While the annealing of glasses at $T \le T_g$ is performed to promote the release of residual thermal stresses created during casting (generally into a mold at a temperature lower than the melt), the mechanical resistance of the final glass may be increased by means of thermal or chemical tempering treatments.

The most common thermal tempering (performed, e.g., on different types of glass windows) starts with a sudden cooling of the surface of a glass part (initially near its Littleton softening point), by blowing cold air over it, through a nozzle. The surface quickly solidifies (under a moderate tensile stress), while the internal layers are still hot and viscous, but these subsequently contract upon cooling, solidifying under tension, which is then compensated by a residual *surface compression*.

The surface compression is the key point, since catastrophic propagation of glass surface flaws will only occur under a tensile stress after the surface compression has been offset by the applied tensile stress, corresponding to a *strengthening* of the *glass*. (Remember that, according to Griffith's theory, $\sigma_c = 8 \sigma_t$).

Thermal tempering is not possible for very thin glass sheets, for glasses with very small α_T (e.g. high-silica glasses), or for complex shapes such as bottles, which are all cases where *chemical tempering* may be utilized.