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OUTLINE

WHA‘J; IS A PHOTON & PHOTONICS? When did it all
begin”

1 APPLICATIONS OF PHOTONICS

1 Fibres for signal processing e.g. amplification and lasing
-  telecom wavelengths
- mid-IR wavelengths (beyond 2 um and longer)

- schemes for generating light in visible and means for
accessing shorter UV wavelengths and X-ray lasers

Planar optics devices and optical integration and MEMS
for inorganic, organic, and biological solid matters

Materials processing

1 Fibres as Chemical Sensing in 1 to 10 micron and then
beyond 10 microns

1 Bio-photonics and future

1 High-power lasers for fusion energy and space
communications
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PHOTONICS, Albert Einstein & His Quotations

1 |magination is more important than the knowledge.

1 All these 50 years of conscious brooding has brought me no nearer to
the answer to the question “what are the light quanta”? Now-a-days
every Tom, Dick, and Harry thinks he knows it, but he is gravely
mistaken.

; Knowledge must bring humility so that we continue
imagining new science for the good of the well-being of everyone on
the planet.

WHAT IS PHOTONICS? Interaction of photons (coherent and incoherent)
with matter, and of its consequences: linear and non-linear
interactions. Follows conservation of momentum and energy.
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THE HOLY TRINITY IN PHOTONICS- a
multidisciplinary subject

MATERIALS PHYSICS &
CHEMISTRY

Biotechnology ENGINEERING
& Technology
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Electromagnetism & Electrodynamics

Partial differential formjIntegral form

Gauss's law for magnetism: V-B=0

\Faraday s law of induction:

LAmpere's law + Maxwell's extension:

Where

p is the free electric charge density (SI unit: C/m?), not including dipole charges bound in a material
B is the magnetic flux density (SI unit: tesla, T), also called the magnetic induction.

D is the electric displacement field (SI unit: C/m?).

E is the electric field (SI unit: VV/m),

H is the magnetic field strength (SI unit: A/m)

J is the current density (SI unit: A/m?)

M s the divergence operator (SI unit: m1),

g4 is the curl operator (SI unit: m) Ref: http://encyclopedia.laborlawtalk.com/Electromagnetic_theory
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Summarise Photon-Matter Interaction

| think — it is relevant to quote Richard Feynman “How
clever we are to have found it all out, but on how
clever nature is to pay attention to it”.

R P Feynman also said: “ when a law is right it can be
used to find another” and Maxwell’s genius, like that
of Einstein and Feynman later on in the 20 Century,
set a wonderful example of successfully exploiting the
knowledge of ELECTROMAGENTISM for
‘ELECTRODYNAMICS”.

It removed the mystery of Newtonian Ether which was
confusing in a similar manner when 15" century
priests thought that the “Biblical Angels fly the planets
around “earth” before Newton and Kepler brought the
concept of Gravity and begin to define its scale”.
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Photon-Matter Interaction

1 Different scales of interactions in the medium
1 Linear interaction (low photon intensity regime)
— Guided propagation
— Scattering in the linear regime (elastic and inelastic scattering)
— Reflection, refraction, polarisation, diffraction
1 Nonlinear interaction (High photon intensity regime)
Photon absorption at band gap and molecular frequencies
Raman and Brillouin effects (conservation of energy)

Conservation of momentum (electronic transitions; e.g. self-
phase modulation, four-wave mixing etc)

Photon interaction at very large intensities
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Examples

1 OPTICAL FIBRES and WAVEGUIDES
1 Semiconductor and rare-earth doped devices

1 Guiding light in a periodically controlled defect
structures

1 High power laser interaction with matter

1 Achieving ultra-high power beyond 10"W cm-2 —
commercial systems

1 Photons and biological systems — our eyes
1 High-energy photons as surgical tool
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VIBRATIONAL SPECTROSCOPY

Raman Spectroscopy:

Symmetric and anti-
symmetric stretching modes
are determined,

Follow crystal analogues for

CN and nearest neighbours.

Raman Intensity strongly
depends on the
polarisability of molecular
structure, ie cation/anion
size and charge.

V — Vertical, H - horizontal

1 Infrared Absorption and

Reflection Spectroscopy:

1 Asymmetric and anti-

symmetric vibrational modes
can be determined, hence it
Is complementary to Raman.

It is a Dipole-induced
vibrations, therefore by
combining the two vibrational
techniques (IR and Raman) a
detailed phonon and
molecular structure can be
determined.
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BOSONS in Physics

1 The Bosons are considered soft-mode or
weak-mode phonons in the glass structure,
which have vibrational energies in the range
of 5-100 cm-".

1 Few less comprehensive reports on the
evidence for Boson peak in the crystalline
materials.

1 Bosons in the glass structure support the
propagation of acoustic phonons.

1 By comparison Optical Phonons have larger
energies.
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PROPAGATION OF ACOUSTIC PHONONS

Medium Range Order can be determined by equation, which connects
the velocity of sound in a medium with the Boson peak frequency.
Each cluster represents the MRO, which support the Boson coupling, or

the acoustic phonon propagation.

V .
M RO — acoustic

(D gosoN
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Cluster formation glass and local ordering in
GLASSY materials

Low concentration High dopant concentrations Pd-Si amorphous
(<1 mole%) (>S5 mole%) alloy
Clustre Formation In Pd-Si amorphous alloy

produced via PVD technique 500kV

applications accelerating voltage. Clustres are 7.5 - 10
nm in size.

Ref: Physics of amorphous Matls. &
Fibre Amplifiers and their
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Table 2: A comparison of data for the dominant Raman (vg) and Boson peaks (vg) in
various glasses, their acoustic velocities (V,) and calculated Boson mean free
path (I, nm).

Glass Name VR, CM™ M*-A", nm | vgcm?

Si0, 1120 0.162" 55¢
GeO, 880" 0.170" 36
B,0; 1500° 0.137°
Tellurite 760, 660 0.185
Ge-S-| 350 0.220"
50 GeS, - 50 GeS 350 0.220°
Ge-2 350, 420 0.220"
98 GeS,, 2 Ga,S; 480, 350 0.220"
As,S; 340 0.228"
70 GayS; 30 La,S; 350 0.246
ZBLAN 580°¢ 0.209°
ALF-126 620 0.180 (avg)
) ZnBr,, 40 K, 10 BaBr," 155, 144 0.232"
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M Guided Waves and signal degradation
mechanisms

1 Satisfies the condition of total internal reflection and follows
the Maxwell’s equations for electrodynamics; based on
Faraday’s law of electromagnetism. Single-mode and
multimode wavequiding.

1 Loss mechanism Arotal = X r T Xyy T Rayieigh

ol

1 Dlsper3|on. Electromagnetlc interaction with the medium
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Silica Fibre Loss Curve: (Capacity+Reach)/£

L:1575-1615 nm

2"d window : 1290-1335 nm

Available Amplification
\ Bandwidth = 400 nm approx.
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Wavelength nm

Loss = intrinsic + extrinsic factors + dispersive effects
(depends on system) — limits the reach and hence the capacity.
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Stimulated Emission, Lasers and Amplifiers

Before During After emission

Atom in excited stale

— —_— S

AN N

Incident photon hv
photon hy

AVAVAY

photon v

Atam in ground state

Incoherent

1 Stimulated emission and coherence are the two main properties
of lasers.

A wave can also be coherent with itself, a property known as
temporal coherence. If a wave is combined with a delayed copy
of itself, the duration of the delay over which it produces visible
interference is known as the coherence time of the wave, Atc.
From this, a corresponding coherence length can be calculated:
where c is the speed of the wave. -&Ir: — l.’?.ﬂﬂtn
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Fibre based devices

Rare-earth and transition metal fibres for
asers and amplifiers.

1 Passive fibres for optical fibre sensors, power
delivery

1 Hollow-core fibres for long-wavelength
transmission

1 Fibres with periodic defect structures
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Device Costs And Optical Integration

How to shorten the Er-device & yet increase wavelength capacity
for CATV applications?

Challenges:

N
o

How to reduce pump ESA so
that the gain can be
maximised?
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1480 nm pump is better for
longer wavelengths than the
980 nm for reducing the
noise figure.
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ESA at signal wavelengths
beyond 1610 nm
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Erbium Cerium

Energy Level Diagrams of Er3* and Ce3*
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COMPARISON OF Er EMISSION LINES
DIFFERENT GLASSES & STRUCTURE
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Phys Rev B, 2000, , vol.62, No 10, pp.6215-6227.
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Amplification and Blue Upconversion
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Internal gain dB
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Nd-doped

Normalised Emission Intensity
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Website : crystalfibre.com
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MOTIVATION FOR ENGINEERING DEFECTS

Plastic Photonic Crystal Fiber
- Low Loss
- Flexible Interconnection
bet. THz/Mid IR Devices & Systems
- THz Analogue to Optical Fiber

Virtual Absence of l >
Low Loss THz and MIR Waveguides |

Loss @ 1 THz
(cm™)

GVD @ 1 THz
(ps/THz-cm)

Field
Confinement

Mechanical
Flexibility

Free Space

0

0

Coplanar Strips (CPS)

>2

Coplanar Waveguide (CPW)

>2

Metallic Hollow Waveguide

?

Crystalline Sapphire Fiber

Plastic Ribbon Waveguide

Acknowledgement from : Prof. Martin Han, Seoul, Korea
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Guiding Mechanism

- Total Internal Reflection
- Broad Band

- Photonic Bandgap Effect
- Narrow Band
- Ultralow Loss

“Vacuum Guiding”
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Photonic Crystal Fibers

2D Photonic Crystal with Defects
a

Field Localization around Defects

e

Photonic Crystal Fiber

Triangular Lattice Honeycomb Lattice
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. In TeO, Glass

* Improve the manufacturing processes
to further reduce the propagation loss

* Dispersion-management in PCF

Thursday, 06 July 2006

Figure 1 Tellurite glass microstructured fibre
made under the feasibility study. The fibre shown
has a core diameter of 5um. The sample of
several centimetres length is illuminated from
both above and below, and the brightly-lit core is

a clear confirmation of guided optical
transmission

L3umcore PCF \/
1.3 14 15 16 1.7 1

Bulk TeO2glass —

2

GVD - ps/nm/km

Wavelength - mm
Figure 2 Calculated group velocity dispersion in a 1.3pum

core PCF, engineered to be zero at a wavelength of 1.5
nicrons
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H APPLICATIONS OF FIBRES IN SENSORS
TECHNOLOGY

Approach to Environment Monitoring, Management
and Mitigation

1 To carry out chemical analysis using the

spectroscopic technigue for meeting the minimum
pollution specification.

1 To develop a database and real-time pollution
monitoring tool for an intelligent waste
management and pollution warning system.

1 Provide data to National Database for Pollution
Control.

1 Monitor processes for pollution management.
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The Basic Plan For Fugitive Gas Analysis: WDM

system for chemical sensing

Computer Gas from
Duct Vent
PFC's HF, SO '
2 ; PrC's HF, SO,
EXHAUST DUCT Pre-amp Pump
” Vs - Detector

éf‘/l z I_Q : .

K- T |CELL ; Diode Laser Diode Laser White (Absorption) Cell

I:H Swfitc\hjng L:I
Mirror

Measure PFC’s and
greenhouse gases which
escape into the pot room
(fugitive emissions)

| =1, .exp(—¢.C.0)
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2D- and 3D Optical Circuits and Integration via (S
Laser processing

} _
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1530 1540 1550 1560 1570 0O 100 200 300 400
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Relative gain (dB)
Relative gain (dB)
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Biophotonics: a land of imagination
and for future technology

1 Can we use lasers as a tool to do the necessary
diagnostics; e.g. in mid-IR, THz, UV

1 If so, what we can then learn from it?

1 Are there any ethical issues? If yes! Then we must
sort out to design new diagnostic tools for helping
patients for clinical trials and wider use of new
technology.

1 Use biophotonics for environment sensing
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Photons: A source of healing waves

Lasers for arterial plague removal — (Er-line at 2870
nm, Tm @ 2000 nm good tunability)

Lasers for key hole surgery (soft and hard tissue
Incision) Er-lasers.

Dental care (low power) and denture machining (high
power) — Is it possible to make a laser tooth brush?

Improvements in laser dynamic therapy for skin care —
psoriases, eczema, skin cancer.

Drug delivery via nonlinear absorption and optical
tweezing effects.

Analyze macromolecules and learn how to
functionalize them.
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Magical proteins and their multifunctional properties:
photo-active, electromechanical: an opto-mechanical
devices.
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High-Power Lasers: Kilowatt,
Megawatt and beyond
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THE COST OF CLEANING UP

Waste Recycling and Recovery of
Metal Values

Chromite Bauxite
Ore Ore
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L EEDS-CGCRI-CSIR (INDIA) Lab

1 Bring our materials and device knowledge to
tackle water pollution problem in the region.

1 Metal ion pollution to be remedied are As®*,
As3* Cr%* and their chemical companions , e.g.
Iron.

1 \Why we worry about these ions and their
potential adverse effects?
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Spectroscopic applications for As bacterial
Interactions

Benning and Mountain 2004
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Conclusions & Future

A number of fibre and planar waveguide based technologies would
emerge in future which would be capable of providing broadband
amplification via for CWDM technology.

Optical integration is essential for reducing the cost of data
transmission with increased capacity. Silicate, oxide and

chalcogenide glasses are capable of meeting some aspects of
OICs.

In future similar technologies may emerge for mid-IR including
THz for communication, sensing , Imaging and clinical diagnostics,
where we may rely on S|gnal processing at different wavelengths.

Future also holds in providing top quality health care and
maintaining the health of environment via chemical sensing using
LIDAR, RADAR , and ground base sensing stations.

Development of molecular circuits for information processing will

be only possible unless we attempt to understand DNA and other
complex molecules.
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Thank you
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