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Amorphous chalcogenides:

•high optical transmissivity in IR region, 

•high index of refraction, 

•high optical non-linearity, 

•large free volume

•large photoinduced changes of structure and physico-chemical 
properties 

Many present and potential applications:

•in optics and optoelectronics: lenses, microlenses, filters, 
coatings (antireflection, …), planar optical and integrated circuits 
and devices, IR lasers, acousto-optic elements, optical signal 
processing (light up-conversion, signal couplers, frequency mixing, 
amplifiers, possibly all optical computing...)
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•biomedical - X-ray and diagnostical sensors, surgical IR lasers, 
tissue removal, evanescent waves, in vivo measurements, eye safe 
radars, 

•in communications – fibers, lasers, signal processing, ..
•rare-earths doped chalcogenides - luminescence in NIR and MID 
IR spectral regions: light amplifiers, generators, eye-safe 
lasers, environmental and other sensors.
•fibres: telecommunications, power delivery, mechanical and 
temperature sensing, chemical and remote monitoring (medicine, 
in vivo spectroscopy,…)
•large photostructural effects: photoresists, waveguides, 
gratings, holography, phase-change optical and electrical 
memories, diffractive elements,photoinduced dissolution and
diffusion of metals

•chemical sensing and environmental monitoring - IR, chemical and 
ionic sensors (uncladed fibres - evanescent waves, membranes), 
fibers for remote sensing –spectroscopy (chemistry, ecology), 
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•large free volume: photostructural effects, doping by Ag+, Li+

or other ions ⇒ thin solid-electrolytes (batteries, ionic selective 
sensors).

•The phase-change memories based on Ge-Sb-Te and other
telluride based films - commercially applied in DVD disks with 
capacity up to 50 Gb/disk, going to be increased. 
•Ovshinsky universal (unified) memories (OUM), multilevel data 
storage
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1. Preparation, bulk glasses, thin films, sputtering, pulsed 
laser deposition (PLD)

- bulk glasses – mostly direct synthesis in evacuated silica 
tubes → thermal quenching, annealing

- thin films, of binary, ternary or multinary systems, vacuum 
thermal evaporation (TE) is not suitable ⇒ fractional 
evaporation or nonstoichiometry. 

possible solution: (PLD). Evaporation by (ns or fs) pulses of high 
intensity and energy, excimer lasers emitting in UV region, 
(e.g. KrF, 248nm, ~5eV ≈ 480kJ/mol., ∼108 – 109 W/cm2)

→ nearly any material can be evaporated, 
every pulse evaporates all components, independently on their 

vapor pressure.

The stoichiometry is often preserved. 
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The kinetic energy (temperature) of evaporated particles ~ keV –
the reactions among the particles or fragments are quicker.

⇒ the structure of some ablated films can be closer to the 
structure of target glass –

⇒ new materials are obtained (contrary to thermal evaporation).
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The PLD films of As2Se3 contain less ‘wrong’ As-As and Se-Se 
bonds and As4Se4, As4Se3, Se8 or Sen particles. 

⇒ probably due to higher kinetic energy of the plasma-plume 
particles: enables their interaction (Eqs. 1-3) ⇒ densities of 
As4Se4, As4Se3, Sen are lowered, e.g. 

As4Se4 + (2/n) Sen = 2 As2Se3 (1)
As4Se3 + (3/n) Sen = 2 As2Se3, (2)
|As-As| + |Se-Se| = 2|As-Se| (3)

In As-S system: during evaporation - thermal dissociation, change 
of composition

2As2S3 = As4S4 + S2, (4)

para-realgar (As4S4) is formed at high temperatures
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The photoinduced processes are enabled by relatively large 
free volume. It is inversely proportional to the ω
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low coordination number of chalcogens (mostly Nc ≅ 2), and of pnictides, 
(e.g. Nc(As) ≅ 3).

Irreversible photoinduced changes:

homogenization, chemical reactions among fragments formed by 
dissociation during evaporation, e.g. 

As4S4 + S2 = 2As2S3 (6)
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Exposure increases the rates of synthetic reactions, also some
photolytic reactions.

The reversible photoinduced changes are connected with 
changes of local bonding configurations. 

For As-S, As-Ga-S, As-Sb-S, and Sb2S3, Ge-Sb-S films and 
bulk glasses, a model has been proposed. 

SSAsAsiIih
SAs −+−− ⎯⎯⎯⎯⎯ →←

,
2

ν (7)
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supported by Raman spectroscopy results, As2S3
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bulk glass 
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In PLD films of As2Se3, the exposure increases the index of 
refraction, and following annealing ⇒ the index of refraction 
decreases ↔ densification and thermally-induced expansion of 
the amorphous layers. 
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Nonlinear properties → signal processing

The refractive index, n = no + n2 <E2> , n0 and n2 do 
not depend on intensity of light, n0 >> n2. 

The <E2> is the mean square of electric field. The 
fast part of nonlinear index of refraction, n2, is 
connected with nonlinear electron polarizability, PNL

P = χ(1)E + PNL , (8)

PNL = χ(2)E2 + χ(3)E3. (9)

The P is polarizability, χ(1) is the linear optical 
susceptibility, χ(2) and χ(3) are second- and third-
order non-linear optical susceptibilities, respectively. 
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The linear optical susceptibility of isotropic 
medium is given by relation

χ(1) = (n2-1)/4π . (10)

The dependence of (n2-1)-1 vs. (ħω)2 is often linear 
and this dependence can be described by single 
oscillator formula of Wemple and DiDomenico

n2(ω) – 1 = E0Ed/(E0
2- (ħω)2), (11)

where E0 is single oscillator energy, Ed is so called 
dispersion energy and ħω is energy of light.
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for long wavelengths, χ(1) = Ed/4πE0.

For optically isotropic glasses, the χ(2) is zero. 

The χ(3), as a dominant nonlinearity in all glassy 
materials, produced by excitation in the transparent 
frequency region well below the band gap, Eg

opt.

Only χ(3) contributes to the nonlinear behavior.
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For the region far from resonance (Miller´s rule)

χ(3) ≈ A(χ(1))4 x10-10 esu. (12)

For single oscillator (Wemple and DiDomenico) 

χ (1) = (13) 

χ(3) = [EdE0/4π(E0
2 – ћω)2]4x 10-10, (esu). (14)

E0 is single oscillator energy, Ed is dispersion energy.

For ћω → 0, 
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The values of n0 are high in chalcogenides and are 
significantly higher in PLD films in comparison with TE films. 

The χ(3) →also higher. Using the formula (15) :

As2S3 glass: χ(3) = (1.48 – 2.2) x10-12 esu
GeS2 glass, χ(3) = 1x10-12 esu, 
SiO2 glass, χ(3) = 2.8x10-14 (esu) for λ= 1900 nm. 

larger χ(3) ⇒ lower necessary power and shorter
the interaction lengths ⇒

Chalcogenides - promising candidates for optical switching 
and other applications
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Silver containing chalcogenide glasses, photodoping.

Exposure controlled dissolution of Me and diffusion of 
Me+

Model, 
Applications:

• Lithography
• Diffractive optical elements, (diffractive gratings,…)
• IR components, waveguides, microlens arrays, ...)
• Optical storage
• Nonlinear optics
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Phase diffraction gratings 

Microlenses arrays
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Eutectic tellurides, recently: 

Sn16Te84, In13Te87, Sb11Te89.

Melting t ≅ 400-420°C

Bulk samples- crystalline

ablated films – amorphous, good optical transmittance up to 
18 µm, untill now- many droplets

Excimer laser pulses – crystallization,

prevailing Te crystals

IMI Penn 06 2005 28



IMI Penn 06 2005 29



RE3+ doped glasses

Intensive luminescence in NIR and MID-IR part of spectrum

Low phonon energy: the number of phonons to bridge the energy 
gap between the electron levels of RE ion, ∆Ε, is large →

multiphonon relaxation rate is low !

The non-radiative decay rate, ωp, due to multiphonon relaxation, 
Miyakawa-Dexter:

ωp = ω0exp(α ∆Ε/ħω), (16)

α = ln(p/g) - 1, p = ∆Ε/ħω, g is the electron-phonon 
coupling strength, and ωo is a host dependent 
constant. 
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For a high luminescence efficiency also:

high index of refraction,

higher values of spontaneous emission probabilities,

large emission cross-sections of radiative electron 
transitions between energy levels of RE3+ ions.
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Judd-Ofelt intensity parameters were evaluated 
the measured oscillator strengths 

(17)

fcal are calculated oscillator strengths, h is Planck’s constant, m is electron mass, 
υ is mean wavenumber of the absorption band, J is the ground-state total angular 
momentum of Sm3+ (J=5/2), n is the refractive index of the material, Ωt are the 
Judd-Ofelt phenomenological intensity parameters and the

are the reduced matrix elements of the tensor operator, U(t) of rank t.

Values of the Judd-Ofelt intensity parameters, e. g.  for Sm3+ ions in Ge-Ga-Se
glasses:

Ω2 = 7.423 x 10-20 cm2, Ω4 = 14.428 x 10-20 cm2, Ω6 = 6.428 x 10-20 cm2. 
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From the Judd-Ofelt intensity parameters, Ωt: 

The spontaneous transition probability A of an electric-dipole transition:
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e is the electron charge and  is the average wavelength of the transition.

The value of A is high in studied glasses.

λ
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Conclusion:

Chalcogenide glasses and films posses many interesting 
properties applicable in optics, optoelectronics, data storage, 
in chemistry, medicine and biology.
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