Jan. 10, 2008 Winter School on New Functionalities in Glass

Vacuum-ultraviolet transparency of silica glass and its relation to processes involving mobile interstitial species

Tokyo Metropolitan University Koichi Kajihara

Overview

- 1. Introduction
- 2. Structure and optical properties of defects
 - Strained Si-O-Si bonds
 - Network modifiers (≡SiX)
 - Interstitial hydrogen molecules (H₂)
- 3. Improvement of UV-VUV transparency of silica glasses
 - (a) Effects of structural disorder (strained Si-O-Si bonds) on VUV transparency
 - (b) Removal of strained Si-O-Si bonds by doping with network modifiers
 - (c) Role of mobile interstitial H_2 molecules
- 4. Silica glasses for UV-VUV spectral region
 - Silica glasses for excimer laser photolithography
 - Deep-UV optical fibers
- 5. Interstitial oxygen in silica glass

Why silica glass?

- One of the simplest light metal amorphous oxides
- Large-size crystalline polymorph (α -quartz) is available
- Good mechanical properties and chemical stability
- High purity products are commercially available
- Various practical applications
 - Optical components
 - Gate dielectric films
 - Catalysts and catalyst supports

Silica glass (amorphous SiO_2) – A promising UV optical material

- 1. Largest bandgap among glasses commercially available (absorption edge ${\sim}8{
 m eV}$)
- 2. Good shape workability
- 3. Good physical and chemical properties

Fused silica ... Prepared from natural quartz

Good thermal stability; for crucibles and reactor chambers.

- Type I Electric melting in crucibles. Contain metallic impurities (e.g. Al, Na), low (<5ppm) OH concentration.
- Type II Crucible-free H_2 - O_2 flame fusion. Concentrations of metallic impurities are lower than Type I. Medium (\sim 100ppm) OH concentration.

From product catalog, Covalent Materials Co.

1. Introduction Characteristic types of silica glasses [after Brückner(1998)]

Synthetic silica ... Prepared by vapor-phase decomposition of silane compounds High purity, various doping techniques; for optical components

- Type III Directly deposited by H_2 - O_2 hydrolysis. High (~1,000ppm) OH concentration.
- Type IIIa,b Prepared by "soot"-remelting. Suitable for dehydration and doping.
- Type IV Prepared by O₂-Ar plasma CVD method. Nealy OH-free but contains O₂ molecules.

There are various types of silica glasses!

• Different types of silica glasses

different optical properties ... different concentrations of point defects

Control of point defects is important!

Optical properties of silica glass is often influenced by trace amounts of defects!

 $\log[\text{Conc.}(\text{cm}^{-3})]$

22	Lattice atom (O: 4.4×10^{22} cm ⁻³)
21	Solubility limit of fluorine (SiF) (several wt%)
20	SiOH in ''wet'' silica glass (\sim 1000wtppm、 \sim 10 20 cm $^{-3}$)
	Detection limit by X-ray fluorescence spectroscopy
19	H_2 in H_2 -loaded silica, chlorine (SiCl) in dry silica
18	SiOH in silica glass for KrF and ArF photolithography (10-100wtppm)
	Metallic impurities (e.g. AI) in fused silica
17-16	Detection limit by IR and Raman spectroscopy (bulk glasses)
17-15	Common radiation-induced defects
15-14	Detection limit by PL and EPR spectroscopy (bulk glasses)
	SiOH in optical telecom fibers
13	Problematic defect concentration for DUV optical fibers

Transparency region of silica glass

- Excellent transparency from infrared to vacuum-ultraviolet
- "Blue shift" of the main research field

2. Structure and optical properties of defects

Ideal structure... Corner-shared SiO₄ tetrahedra, built only from Si-O bonds

- Chemical defects ... Local nonstoichiometry (vacancy, interstitial, dangling bonds, impurity atoms)
- Physical defects... Topological disorder (strained Si-O-Si bonds)

2. Structure and optical properties of defects Optical absorption bands

Improvement of transparency and radiation hardness ... Control of point defects

After Skuja et al., Proc.SPIE 4347,155(2001)

A comparison among SiO $_2$ polymorphs

α -quartz (ordered SiO₄ units)

Silica glass (disordered SiO₄ units)

- Larger bandgap than silica glass
- F₂ laser irradiation does not form persistent defects

Materials	Band gap	Bandgap excitation causes	
Amorphous silicon	${\sim}1.7{ m eV}$	Staebler-Wronski effect	
Chalcogenide glasses	$\sim 2 { m eV}$	Photo darkening	
Silica glass	\sim 9eV	?	

Short-range physical disorder... Distribution in Si-O-Si angle c.f. α -quartz... No distribution in Si-O-Si and O-Si-O angles, Si-O length

Typical strained Si-O-Si bonds

- ... 3- and 4-membered rings Galeener, JNCS49,53(1982)
 - Do not exist in α -quartz
 - The concentration depends on thermal annealing (fictive) temperature

3-membered ring

 D_2 band (606cm⁻¹)

4-membered ring

D₁ band (495cm⁻¹)

Defect formation

Elimination of strained Si-O-Si bonds

- Low temperature heating ("physical" annealing) ... time consuming
- Breaking up glass network by network modifiers (SiF, SiCI, SiOH, SiH) ("chemical" annealing)...structural relaxation by lowered viscosity

Hosono and Ikuta, NIMB166, 691(2000)

3b. Network modifiers

Types and the VUV absorption bands

3b. Network modifiers

- Increase in SiF concentration
 - Improve VUV transparency
 - Decrease defect concentration
- Most effective at <1 % SiF doping (Effects do not proportionally with SiF concentration)

Structural relaxation by SiF doping

Hosono and Ikuta, NIMB166, 691(2000)

	VUV OA	Photolysis	Cost	Applications
SiF (F-doped	No	No	High	Excimer laser lithography, DUV fiber
SiOH (Wet)	\gtrsim 7.4eV	${\sf SiO}^{ullet}+{\sf H}^0$	Low-Med.	UV-DUV laser optics
SiCl (Dry)	\gtrsim 7.7eV	$Si^{\bullet} + Cl^{0}$	Med	IR optical telecom
SiH	No?	$Si^{\bullet} + H^0?$	_	_

3c. Interstitial H_2 molecules

Silica glass • Low density as compared with crystalline SiO₂, Al₂O₃... large free volume

- Easy diffusion and reaction of small chemical species
 e.g. Doremus, "Diffusion of reactive molecules in solids and melts", Wiley(2002)
- Neutral interstitial species
- Hydrogen-related... H^0 , H_2
- Oxygen-related $\ldots O^0$, O_2

	Density (g cm $^{-3}$)
Silica glass	2.21
Tridymite	2.33
Cristobalite	2.33
lpha-quartz	2.65
Soda-lime silicat	e 2.47
Alumina (AI_2O_3)) 3.97

3c. Interstitial H_2 molecules

 H_2 in silica glass... fast diffusion (He > H₂ > Ne \gg Ar, H₂O), high reactivity

- Hydrogen corrosion in telecom fibers (\equiv Si-O-Si \equiv + H₂ \rightarrow \equiv SiOH + \equiv SiH)
- Sensitization of photoencoding of Bragg gratings
- Termination of dangling bonds $(\mathsf{R}^{\bullet} + \mathsf{H}_2 \rightarrow \mathsf{RH} + \mathsf{H}^0)$
- Improvement of KrF and ArF laser hardness

 $\begin{array}{ll} \mathsf{F}_2\text{-laser-irradiated "wet" silica glass} \\ \mathsf{F}_2 \text{ laser (7.9eV)} & \equiv \mathrm{SiO-H} \longrightarrow \equiv \mathrm{SiO}^{\bullet} + \mathrm{H}^0 \mbox{ (quantum yield } \sim 0.1-0.2 \mbox{)} \\ \mathrm{Nd}: \end{tabular} \mathsf{YAG 4HG (4.7eV)} & \equiv \mathrm{SiO}^{\bullet} \mbox{ } \longrightarrow \equiv \mathrm{SiO}^{\bullet} (1.9eV \mbox{ PL}) \end{array}$

- Concentration of radiation-induced NBOHC(≡SiO[●]) ... insensitive to H₂ loading
- NBOHC does not accumulate in H₂-loaded glass

Kajihara et al., APL79,1575(2001); NIMB33,323(2004); PRB74,094202(2006)

- 1. Termination of dangling bonds[\equiv Si[•](5.8eV), \equiv SiO[•](4.8eV, 6.8eV)]
- 2. Acceleration of oxygen vacancy formation $[\equiv Si-Si \equiv (7.6eV)]$Photoreduction $(\equiv Si-O^*-Si \equiv + H_2 \rightarrow \equiv Si-Si \equiv + H_2O)$
- 3. Crack formation . . . Stress corrosion (\equiv Si-O-Si \equiv + H₂O \rightarrow 2 \equiv SiOH)

 H_2 conc. should be strictly optimized Ikuta et al., API

Ikuta et al., APL80,3916(2002); Appl.Opt.43,2332(2004)

Туре	Defect species	Conventional applications	7.9eV Transparency
Wet	SiOH	UV optics	Poor(OA by SiOH)
Dry	SiCl, Si-Si	IR telecom. fibers	Poor(OA by Si-Si)
F-doped	SiF	X- and γ -resistant fibers	Good

Fluorine-doped silica ... Suitable for photomask substrates in F₂ laser photolithography

4. Silica glasses for UV-VUV spectral region

DUV optical fibers

Conventional fibers (Ge-doped core and pure-silica cladding)

- Not transparent for UV light
- High viscosity drawing-induced defects
- High radiation sensitivity

 \Rightarrow

- 1. F-doped core and cladding
- 2. Defect annihilation by H_2 impregnation

Oto et al, IEEE Photo. Technol. Lett. 13, 978(2001); J. Non-Cryst. Solids 349,133(2004)

- 4. Silica glasses for UV-VUV spectral region Processing of fiber ends
 - End sharpening by chemical etching in hydrofluoric acid
 ... Possible application to scanning nearfield optical microscopy (SNOM)

- Oxygen-deficiency related defects...Si-Si, ≡Si[●], −Si−, ...
 - Main color centers in DUV fibers
- Oxygen-excess related defects... \equiv SiOO[•], O₂, Si-O-O-Si, ...
 - May be used to oxidize oxygen-deficiency related color centers
 - Chemical and optical properties remain largely unclear

Interstitial $O_2...$ The most common form of excess oxygen in silica glass

- Nassau and Shiever (1975) Preparation of low-OH *a*-SiO₂ by plasma-CVD method
- Heitmann et al.(1983) Sharp loss bands of unknown origin in telecom fibers by PCVD
- Carvalho et al. (1985) Identification of interstitial O₂ by Raman spectroscopy
- Awazu et al.(1990) Observation of VUV absorption band of interstitial O_2

- Shikama et al.(1994) Discovery of 1270nm PL band in optical fiber in an nuclear reactor
- Skuja et al.(1996) PL detection of interstitial O_2 via 1064nm excitation
- Skuja et al.(1998) PL detection of interstitial O_2 via 765nm excitation

Sensitive, selective, and non-destructive detection of interstitial O_2 in a-SiO₂

• O₂ PL measurements of silica glasses thermally annealed in air ... Solubility and diffusion coefficient of interstitial O₂ in silica glass

Kajihara et al. J.Ceram.Soc.Jpn.112,559(2004); JAP98,013529(2005)

• Thermal desorption spectroscopy

 $8.3 imes 10^{16}$ molecules \sim 22 % decrease of PL intensity

 O_2 concentration ~ $2.7 imes 10^{16} \text{ cm}^{-3} \Delta A_{\text{PL peak}} / A_{\text{Raman}@1200 \text{ cm}^{-1}}$

• Simultaneous measurement of VUV absorption and O₂ concentration changes

 \Rightarrow

- 1. Red-shift of VUV absorption edge
- 2. Increase in absorption intensity

Weak attractive interaction between O_2 and a-SiO $_2$ framework

• Reaction of a-SiO₂ with H₂...Cracking of Si-O bond \equiv Si-O-Si \equiv + H₂ \longrightarrow \equiv SiOH + HSi \equiv

• Shelby(1980) SiOH creation with little accompanying SiH formation in O_2 -rich a-SiO₂ Two-step reactions 1. $1/2O_2 + H_2 \longrightarrow H_2O$

2. \equiv Si-O-Si \equiv + H₂O \longrightarrow \equiv SiOH

Reactions (1)

- Reaction with Si-Si bonds \equiv Si-Si \equiv + 1/2O₂ \longrightarrow \equiv Si-O-Si \equiv
- Reaction with E' center
- Reaction with SiCl
- Reaction with H⁰

Pfeffer (1998)

Kajihara, JAP98,043515(2005)

 $\equiv Si^{\bullet} + O_2 \longrightarrow \equiv SiOO^{\bullet}$

 $O_2 + H^0 \longrightarrow HO_2^{\bullet}$

 $1/2O_2 + 2 \equiv SiCI \longrightarrow \equiv Si-O-Si \equiv + CI_2$

Reactions (2)

Configuration... Peroxy linkage form

e.g. Hamann, PRL81,3447(1998) Szymanski et al. PRB63,224207(2001)

Formation

- 1. Radiolytic decomposition of Si-O-Si bonds $\equiv \text{Si-O-Si} \equiv \xrightarrow{h\nu} \equiv \text{Si-Si} \equiv + \text{O}^0 \text{ (or } 1/2\text{O}_2\text{)}$
- 2. VUV photolysis of interstitial O₂ O₂ $\xrightarrow{h\nu}$ 2O⁰
- 3. UV photolysis of peroxy radical $h\nu$

 $\equiv \mathsf{SiOO}^{\bullet} \quad \xrightarrow{h\nu} \quad \equiv \mathsf{SiO}^{\bullet} + \mathbf{O}^{0}$

Interstitial oxygen atoms

• Anion part of the Frenkel pair

• Low-temperature oxidant of silicon e.g. Ishikawa et al. JJAP31,1148(1992)

$$O_2 \xrightarrow[Heat]{h\nu} 2O^0$$

- Optical absorption... Use O^0 -rich sample prepared by F_2 laser irradiation
- Diffusivity ... Probe O_2 generated by recombination of O^0

Absorption cross section "map"

Summary

Acknowledgment

This work has been made in collaboration with

- Professor Hideo Hosono
 - (Japan Science and Technology Agency, Tokyo Institute of Technology)
- Professor Masahiro Hirano (Japan Science and Technology Agency, Tokyo Institute of Technology)
- Dr. Linards Skuja (University of Latvia)
- Dr. Yoshiaki Ikuta (Asahi Glass Company Co. Ltd.)
- Dr. Masanori Oto (Showa Device Technology Co. Ltd.)