Thermoelectric Oxide Materials For Electric Power Generation

Kunihito Koumoto

Nagoya University, Graduate School of Engineering CREST, Japan Science and Technology Agency

Thermoelectric Energy Conversion
Oxide Superlattices
Thin Film TE Devices

Seebeck Effect

Power generation by a TE module

TE Technology for Waste Heat Recovery

"Even at the current efficiencies of thermoelectric devices, 7 to 8 percent, more than 1.5 billion gallons of diesel could be saved each year in the U.S. if thermoelectric generators were used on the exhaust of heavy trucks. That translates into billions of dollars saved." by Prof. T. Tritt (NanoTX'07 Conference,

Oct. 2-4, 2007, Dallas).

Problems of the Conventional TE Materials

Conventional materials: Bi_2Te_3 , Sb_2Te_3 , $PbTe-Ag_2Te_3$, (Bi_1Sb)₂ Te_3 , $CoSb_3$, etc.

- Low Heat Resistance & Oxidation Resistance Melting point of Bi₂Te₃: 580 Comparison : Automobile exhaust gas 800 ~1000
- 2. Limitation of resources

Very small Clarke Numbers

Bi : 2 x 10⁻⁵ %, Sb : 5 x 10⁻⁵ %, Pb : 1.5 x 10⁻³ %, Te : 2 x 10⁻⁷ %

Ref. Pt : 5 x 10⁻⁷ %

3. High toxicity

Oxide TE Materials are highly wanted for power generation in air atmosphere !

SrTiO₃: Good Candidate

Sr Office of the second second

SrTiO₃ Single X'tal $E_g = 3.0 \sim 3.2 \text{ eV}$ $m_{STO}^* = \sim 3-10m_0$

(Frederikse *et al*. PR, 1964; Tokura *et al*. PRB, 2001)

(L. F. Mattheiss, et al PRB., 1972)

Strategy

Cubic perovskite-type SrTiO₃

Control a control a constructivity of electrical conductivity by doping
→ High electrical conductivity, σ
Conta et al. Appl. Phys. Lett. 87 (2005)]

Improvement in ZT by reduction of thermal conductivity (κ) and/or further enhancement of power factor (S²)

 $ZT = \frac{S^2 T}{\kappa}$

Artificial Superlattice

"If electrons were confined in a very narrow space, you would get enhanced thermopower!"

Hicks and Dresselhaus, Phys. Rev. B 47, 12727 (1993).

Fabrication of SrTiO₃/Nb:SrTiO₃ superlattice

RHEED intensity oscillation

XRD & AFM

Out-of-plane XRD pattern

Satellite peaks due to superlattice are clearly seen

Topographic AFM image Frank Van der Merwe (2D) growth

HAADEF-STEM & HREELS

Nb-doped

Nb-doped

Nb-doped

5 nm

 Δ

Undoped STO

Undoped STO

Undoped STO

Diffusion of dopant Nb did not take place!

Seebeck coefficient vs. well thickness

H. Ohta et al., *Nature Mater.*, 6, 129 (2007)

Electrical Conductivity

Nb-doped STO Layer

Electrical conductivity

 σ = **2.3 x 10³ Scm**⁻¹ at 300K

<u>Hall mobility</u> $\mu_{\text{Hall}} \sim 6 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ at 300K

Carrier concentration

 $n_{\rm e} = 2.4 \text{ x } 10^{21} \text{ cm}^{-3} \text{ at } 300 \text{ K}$

H. Ohta et al., *Nature Mater.*, **6**, 129 (2007)

Thermoelectric figure of merit, ZT

Figure of merit ZT

The optimized ZT value in the 2DEG system reaches $ZT_{300K}(2DEG) = 2.4$, which is 24 times larger than that of the corresponding 3Dbulk $SrTiO_3$

Cf: **Bi₂Te₃/Sb₂Te₃ SL ZT_{300K}= 2.4** (Venkatasubramanian et al., *Nature*, 2001)

H. Ohta et al., *Nature Mater.*, **6**, 129 (2007)

Direct Heating Test : STO/STO:Nb Superlattice

1 unit cell SrTiO₃:Nb Carrier electron concentration, $n_e = 4 \times 10^{21} \text{ cm}^{-3}$ Hall mobility, $\mu_{\text{Hall300K}} = 5 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ Electrical conductivity, $\sigma_{300\text{K}} = 3,200 \text{ S} \cdot \text{cm}^{-1}$ Seebeck coefficient, $|S|_{300\text{K}} = 350 \text{ }\mu\text{V} \cdot \text{K}^{-1}$ $_{300K}$ = 1,200 Scm⁻¹ S_{300K} = 200 µ V K⁻¹

28 mV @ T=140 K

High-Temp. Characteristics of STO/STO:Nb SL

TE Conversion Efficiency of Superlattice

Cf: Bi_2Te_3 $T_c=300 \text{ K}$, $T_h=500 \text{ K}$ ZT(average) ~ 1.0 ~ 8.2%

Design Concept for TE Thin Film Module

N-type TE element : STO/STO:Nb Superlattices P-type TE element : Ca₃Co₄O₉ Thin Films

P-type Layered Cobalt Oxide for TE Thin Film Module

H. Ohta et al., Cryst. Growth & Design, 5, 215-218 (2005).

- K. Sugiura et al., *Appl. Phys. Lett.*, **88**, 082109 (2006).
- K. Sugiura et al., Inorg. Chem., 45, 1894-96 (2006).
- K. Sugiura et al., Appl. Phys. Lett., 89, 032111 (2006).
- H. Ohta et al., Adv. Mater., 18, 1649-1452 (2006).
- K. Sugiura et al., Int. J. Adv. Ceram. Technol., 4, 308-317 (2007).

High TE Performance of Ca₃Co₄O₉ Thin Film

K. Sugiura et al., Appl. Phys. Lett., 89, 032111 (2006).

Saturn

RTG

Cassini

JPL-NASA Home Page