Advanced Vitreous State - Physical Properties of Glass

Lecture 27: Charge Conduction Properties of Glass:

Ionic Conduction in Glass - Part 3 Intermediate Range Order Models and Effects of Frequency

Steve W. Martin

Department of Materials Science & Engineering Iowa State University Ames, IA swmartin@iastate.edu

swmartin@iastate.edu

Ionic Conduction in Glass - Part 3

Activation Energies of Ionic motion in glassy electrolytes

Cation Radius Dependence of $\Delta E_c \,$ and ΔE_m

"Rational" Models of the Activation Energy

- Both activation energies are non-zero and contribute to the total activation energy
- Anderson-Stuart¹ model calculation

$$\Delta E_{c} = \frac{\beta_{struct} Z_{c} Z_{a} e^{2}}{\varepsilon_{\infty}} \left[\frac{1}{(r_{c} + r_{a})} - \frac{2}{\lambda} \right] \qquad \Delta E_{s} = \Delta E_{m} = 4\pi r_{d} G(r_{c} - r_{d})^{2}$$

$x Na_2O + (1-x)SiO_2$	ΔE_{s} (calc)	ΔE_{c} (calc)	$\Delta E_{act}(calc)$	ΔE_{act}^{2}
11.8	11.7	66.9	78.6	68.1
19.2	10.9	62.3	73.2	63.7
29.7	10.0	56.1	66.1	59.7

- Calculation shows that the ΔE_c term is the larger of the two energy barriers.
- Weak-Electrolyte behavior?

¹ Anderson, Stuart, J. Amer. Cer. Soc., 1954 ² SciGlass 5.5, Average of many glasses

Thermodynamic Models

- Glass is considered as a solvent into which salt is dissolved
- If dissolved salt dissociates strongly, then glass is considered a strong electrolyte
- If dissolved salt dissociate weakly, then glass is considered a weak electrolyte
- Coulomb energy term calculations suggest that the salts are only weakly dissociated, largest of the two energy terms
- Migration energy term is taken to be minor and weak function of composition
- Dissociation constant then determines the number of mobile cations available for conduction, dissociation limited conduction

Weak Electrolyte model, Ravaine & Souquet '80

Intermediate Range Order models

- Models recognize that ion conductivity requires ion motion over relatively long length scales
- Ions must be able to move from one side of the electrolyte to the other
- Long range connectivity of the SRO structures favorable to conduction must exist
- Deep "traps" along the way must be infrequent and not severe
- Rather, low energy conduction "pathways" are thought to exist which maximize connectivity and minimize energy barriers and traps
- Cluster pathway model of Greeves '85, for example

Intermediate Range Order models

- Cluster pathway model, Greeves et al '85
- Ionic structures in the glass group
- Covalent structures in the glass group
- This forms regions of high NBO concentration
- Causes conductivity to increase faster than simple uniform mixing would suggest

Conductivity percolation

http://www.tda.com/eMatls/images/Composites/percolation_scheme.gif

http://www.physics.upenn.edu/yodhlab/images/research_CMP_percolation_plot.jpg

Conductivity percolation in $AgI + AgPO_3$

RMC Modeling of $AgI + AgPO_3$, Swenson et al. '98

4.635 nm

Intermediate Range Order models

- Microdomain models of conductivity
- Dopant salts such as AgI to oxide glasses, especially AgPO₃, are added to increase conductivity
- Agl is itself a FIC *crystal* above 150°C
- Extrapolations of σ to xAgI = 1 give ~ σ_{AgI} (298K)
- The question then is: Does the AgI create "microdomains" of α-AgI giving rise to the high conductivity?

AgI Micro-domain model

- Most well known of all glasses is xAgI + (1-x)AgPO₃
- AgPO₃ is a long chain structure of -O-P(O)(OAg)-O repeat units
- Intermediate range structure is for these long chains to intertwine and as such frustrate crystallization
- Added AgI dissolves into this liquid without disrupting the structure of the phosphate chains
- Microdomain model then suggests that this dissolved Agl creates increasingly large clusters of α-Agl between the phosphate chains

AgI Micro-domain model

AC versus DC ionic conductivity

D.C. Conductivity

Anderson/Stuart - Coulomb & Strain Energies Moynihan/Macedo - Debeye & Faulkenhagen Theory Modulus

Ravaine/Souquet - Weak Electrolyte Malugani- Agl Micro domains A.C. Conductivity Ngai - Coupling Theory Moynihan -

Dyre - Power Law Funke - Jump Relaxation

AC Conductivity in Glass

Connection to Far-IR vibrational modes,

- Relationships between NMR and AC conductivity measurements
- $0.56Li_2S + 0.44SiS_2$ FIC glass
- $β_{\rm NMR} = 0.35$ $β_{\sigma} = 0.48$
- $\Delta E_{act} = 8.94 \text{ kcal/mol} (7.95)$
- τ_{0NMR} = 4.5 x 10⁻¹⁴secs
- $\tau_{0\sigma} = 4 \times 10^{-15}$
- What is the origin of the difference in β_{NMR} and β_σ?
- Why are the activation energies also different?
- Why are the pre-exponential factors different by a factor of 10?

 $0.56 Li_{s}S + 0.44 SiS_{s}$

- Average relaxation times
 - For Conductivity and NSLR are:
 - Different in magnitude
 - Different in temperature dependence
- What is the origin of the differences?
- Sigma and NSLR completely different processes?
- Is there a consistent formalism to treat both sets of data?

AC ionic conductivity in glass - DAEs Treatment

- Our fundamental hypotheses are that:
 - Mobile ions reside in a disordered structure which create:
 - Variations in coordination number
 - Variations in bond lengths
 - Variations in bond strengths
 - Variations in jump distances to next cation site, which therefore
 - Create variations in activation energies from cation to cation in the glass
 - The distribution is hypothesized to be:
 - Continuous
 - Discrete
 - Centered about a mean
 - Symmetric to low and high energy values

AC ionic conductivity in glass - DAEs Treatment

- Using a DAEs to treat ion conduction in glass is not new
- Von Schweidler used a DRTs as early as 1907
 - Ann. Physik. **24**(1907)711.
- Cole and Cole, Cole and Davidson reported log Guassian DAEs
 - J. Chem. Phys. **9**(1941) 341
- H. E. Taylor used a DAEs to describe the dielectric relaxation
 - Modeling ϵ' and ϵ'' in soda-lime-silicate glass in 1955
 - □ Trans. Fara. Soc. **51**(1955)873.
- C. T. Moynihan used a log Guassian treatment
 - Modeling conductivity relaxation in CKN melts and glasses in 1972
 - Description Phys. Chem. Glasses **13**(1972)171

Determination of the DAEs in Glass

- Direct measurement through NMR NSLR data
- Conduction process is by the percolation through low barrier sites
- Conductivity will only measure the low energy barriers
- NSLR measures all cations, both contribute to NSLR T₁

Stevels & Taylor DAEs model,

NMR NSLR Data

Determination of the DAEs from NSLR T₁ measurements

$$1/T_1(\omega_L, T) \equiv R_1(\omega_L, T) = C \int_0^\infty \frac{\tau_a}{1 + \omega_L^2 \tau_a^2} + 4 \frac{\tau_a}{1 + 4\omega_L^2 \tau_a^2} Z_{NMR} dE_{NMR}$$

$$Z_{NMR}(E_a) = (1-y)\frac{1}{\sqrt{2\pi}E_b^2} \exp\left[-\frac{\langle e_m - E_a \rangle^2}{2E_b^2}\right] + y\frac{1}{\pi}\left[\frac{E_1}{E_1^2 + (E_m - E_a)^2}\right]$$

 Gaussian DAEs with Lorentzian "tail", y ~ 0.2, to account for low temperature, high frequency "extra" relaxation

DAEs from FIC $Li_2S + GeS_2$ Glasses

DAEs from FIC $Li_2S + GeS_2$ Glasses

- Average of distribution shifts to smaller activation energies with increasing Li₂S
- Distribution does not change shape significantly, all have ~ same FWHM
 - 0.55 Glass is slightly narrower

Modeling of the DC conductivity from DAE (NSLR)

- $\sigma_{DC} = NPe^2 d^2/6k_B T \tau_{av}$
- $r_a = r_{oa}exp(-E_a/RT)$
- $r_{oa} = (E_m/2m)^{1/2}/d$
- τ_a = 1/6r_a, assuming an octahedral site

•
$$\tau_{oa} = 2.7 \times 10^{-12} / (E_m / k_B)^{1/2}$$

$$\tau_{\rm av} = (1/P) \int_{0}^{E_P} \tau_a (E_a/T) Z_{NMR}(E_a) dE_a$$

Modeling of the AC Conductivity

CTRW approximation of the AC 0.1 348K $xLi_{2}S + (1 - x)GeS_{2}$ conductivity $\sigma(\omega,T)$ (1/Ohmm) ^{0.01} 298K Dyre et al 0.001 253K $\frac{1}{\sigma(\omega,T)}/\sigma_{dc} + i\omega = \langle 1/\gamma_a(E_a,T) + i\omega \rangle$ 1.10-4 223F 1.10-5 $\int \tau_{a}(E_{a}^{'},T)Z_{NMR}(E_{a}^{'})dE_{a}^{'}$ 193K 1.10-6 $\gamma_a(E_a,T)$ 1.10-7 163K $\int Z_{NMR}(E_{a}^{'})dE_{a}^{'}$ 1-10-8 **KWW** 1.10-9 10 100 1000 10^{4} 105 106 10^{7} Frequency (Hz)

Multiple FIC Dynamics in Glass

- "Multiple Channel" ion relaxation in FIC glasses
- R₁ data show evidence of multiple relaxation processes
- Fast process at low T, slower process at higher T
- Alkali thioborate glasses are speciated into tetrahedral borons and trigonal borons with NBS
- Are "slow" Li⁺ ions associated with NBS?
- Are "faster" Li⁺ ions associate with BS_{4/2}⁻ groups?

Multiple FIC Dynamics in Glass

- Relaxation spectra of both mobile Li⁺ ions and immobile frame work B ions were measured
- Multiple-channel relaxation was observed for Li⁺ ions
- BS₃ and BS₄ units have different relaxation rates and hence difference DAEs to characterize their dynamics
- N₄ of 0.7Li₂S is 0.05
- Most Li⁺ ions are associated with BS₃³⁻ groups, as evidenced in the DAEs

Summary – Part 3

- The DAEs is an established formalism
- Reflects intrinsic disorder of glass
- In principle is a "calculable" property of glass once structure is known
- Accurately predicts (models) a variety of dynamic data, conductivity and NSLR
- "Naturally" treats multiple relaxation spectra
- Accurately models DC and AC conductivity data