Advanced Vitreous State - Physical Properties of Glass

Lecture 26: Charge Conduction Properties of Glass:

Ionic Conduction in Glass - Part 2 Activation Energies in Glass

Steve W. Martin

Department of Materials Science & Engineering Iowa State University Ames, IA swmartin@iastate.edu

Binary Alkali Silicate Glasses

- Addition of Na₂O Increases the ionic conductivity, decreases the electrical resistivity
- Increasing the temperature increases the ionic conductivity, decreases the ionic resistivity
- Ionic conductivity of soda glasses is still very low except for the highest temperatures

Fig. 17.17. Conductivity of glasses in the system Na₂O-SiO₂. From E. Seddon, E. J. Tippett, and W. E. S. Turner, J. Soc. Glass Technol., 16, 950 (1932).

DC ion conductivity in glass

- $xLi_2O + (1-x)P_2O_5$
- Creation of non-Bridging oxygens
- "Mobile" lithium ions
- The higher the concentration of Li₂O, the higher the conductivity
 - Lower resistivity
- Activation energy decreases with Li₂O content

Composition Dependence of the Conductivity

- Binary lithium phosphate glasses, $Li_2O + P_2O_5$, are relative poor ion conductors
- Binary lithium borate glasses, Li₂O + B₂O₃, are slightly better conductors
- Binary lithium silicate glasses, Li₂O + SiO₂ are slightly better conductors yet.

 $Li_{2}O:B_{2}O_{3}$

Li₂O:SiO

2

Li₂O+ SiO₂ 5.0 () (⊕.cm)-1 4.0 (3 150 °C -3.0 $i_2O + B_2O_3$ 20 -4.0II ⊢ 0.4 *x*LiO 0.2 0.6 - 5.0 $Li_2O+P_2O_5$ = 150 °C) Ref. log o (o in (Q·cm)⁻¹, T 6.0 $\Box Li_2O + SiO_2$ 34 ■Li₂O + SiO₂ 35,36 6.37 ∇ Li₂O + B₂O₃ 38,39 $\triangle Li_2O + B_2O_3$ 33 $Li_2O + 87B_2O_3/$ $PLi_2O + P_2O_5$ 23 31 \Rightarrow Li₂O + P₂O₅ \bigcirc Li₂O + P₂O₅ 30 -8.0 120 00 Eact (kJ·mol⁻¹) - 9.0 (?)-- 10.0 0.2 0.0 0.4 0.6 xLi₂O 0.3 0.5 0.6 0.2 0.4 0.7 xLi₂O

 $Li_{2}O:P_{2}O_{5}$

Salt doped phosphate glasses

 Halide doping strongly increases the conductivity

Salt doped phosphate glasses

 Halide doping strongly increases the conductivity

Effect of Sulfur Substitution - "Fast Ion Conductors"

Silver Phosphate Glasses

Other Silver sulfide doped glasses

Salt doped phosphate glasses

- Lil doped LiPO₃ show highest conductivity and lowest activation energy among the halides
- Crystallization at the end of the glass forming limit

Mixed Glassformer Systems

 Phosphate and borate mixed glasses show non-linear "Mixed Glassformer" effect

Composition Dependence of the Conductivity

- Binary lithium phosphate glasses, $Li_2O + P_2O_5$, are relative poor ion conductors
- Binary lithium borate glasses, Li₂O + B₂O₃, are slightly better conductors
- Binary lithium silicate glasses, Li₂O + SiO₂ are slightly better conductors yet.

 $Li_{2}O:B_{2}O_{3}$

Li₂O:SiO

2

Li₂O+ SiO₂ 5.0 () (⊕.cm)-1 4.0 (3 150 °C -3.0 $i_2O + B_2O_3$ 20 -4.0II ⊢ 0.4 *x*LiO 0.2 0.6 - 5.0 $Li_2O + P_2O_5$ = 150 °C) Ref. log o (o in (Q·cm)⁻¹, T 6.0 $\Box Li_2O + SiO_2$ 34 ■Li₂O + SiO₂ 35,36 6.37 ∇ Li₂O + B₂O₃ 38,39 $\triangle Li_2O + B_2O_3$ 33 $Li_2O + 87B_2O_3/$ $PLi_2O + P_2O_5$ 23 31 \Rightarrow Li₂O + P₂O₅ \bigcirc Li₂O + P₂O₅ 30 -8.0 120 001 (kJ·mol⁻¹) 08 00 09 00 - 9.0 (?)-- 10.0 0.2 0.0 0.4 0.6 xLi₂O 0.3 0.5 0.6 0.7 0.2 0.4 xLi₂O

 $Li_{2}O:P_{2}O_{5}$

Ionic motion in glassy electrolytes

Mobility and number dependence of the conductivity

$$\sigma(T) = n(T)eZ_c \mu(T) = \frac{\sigma_0}{T} \exp\left(\frac{-\Delta E_{act}}{RT}\right)$$
$$n(T) = n_o \exp\left(\frac{-\Delta E_c}{RT}\right)$$
$$\mu(T) = \frac{\mu_0}{T} \exp\left(\frac{-\Delta E_s}{RT}\right)$$

$$\sigma(T) = \frac{Z_c e n_0 \mu_0}{T} \exp\left(\frac{-\left(\Delta E_c + \Delta E_s\right)}{RT}\right)$$

Question: What are the magnitudes of $\Delta E_{S(M)}$ and ΔE_{C} ?

"Extreme" Models of the Activation Energy

Strong Electrolyte Model

- All cations are dissociated from their "host" anion and are available for conduction
 - Like NaCl, HCl, NaOH, H₂SO₄ dissolved in water
- □ Na⁺....⁻O-Si≡
- $\Box \Delta E_{C}$ is "small" and not strongly compositionally dependent

$$\Box \ \sigma_{d.c.} \sim Zen_0\mu_0/Texp(-\Delta E_m/RT)$$

Migration energy dominates the d.c. conductivity

"Extreme" Models of the Activation Energy

- Weak Electrolyte Model
 - Only a small fraction of the cations are dissociated
 - Like HOAC, Acetic Acid, K_a ~ 1.8 x 10⁻⁵
 - □ ∆E_m is "small" and not strongly compositionally dependent
 - Most of the cations are bound with their charge compensating anion
 - $\Box \ \sigma_{d.c.} \sim Ze\mu_0 n_0 / T \exp(-\Delta E_c / RT)$
 - Creation energy dominates the d.c. conductivity

Strong and Weak Electrolyte models

- "Strong electrolyte" SE model suggests *all* cations are equally available for conduction.
 - Each cation experiences an energy barrier which governs the rate at which it hops
- "Weak electrolyte" WE model suggests only those *dissociated* cations are available for conduction
 - Dissociation creates mobile carriers available for conduction
- SE models suggests that $\Delta E_{c} + \Delta E_{s}$ both contribute, one could be larger or smaller than the other
- WE model suggests that ∆E_c is the dominant term

S.W. Martin, C.A. Angell, JNCS, 1983

()

Coulomb Energy Barrier

- Anderson-Stuart Model
- Assignment of Coulombic and Strain energy terms
 $\Delta E_c + \Delta E_s$
- "Creation" or Concentration versus Migration energy terms, $\Delta E_{c} + \Delta E_{m}$
- Coulomb energy term, ΔE_{C} attractive force between cation and anion

$$\approx \frac{C_{struct}}{\varepsilon_{\infty}} \left[\frac{-Z_c Z_a e^2}{\lambda/2} - \frac{-Z_c Z_a e^2}{(r_c + r_a)} \right] = \frac{C_{struct}}{\varepsilon_{\infty}} \left[\frac{Z_c Z_a e^2}{(r_c + r_a)} - \frac{2}{\lambda} \right]$$

$$\lim_{\lambda \to \infty} \Delta E_{act} \to \frac{C_{struct} Z_c Z_a e^2}{\varepsilon_{\infty} (r_c + r_a)} = const .$$

swmartin@iastate.edu

Strain Energy Barrier

- Strain energy term ΔE_s
- "Work" required to "dilate the network so large cations can migrate

$$\Delta E_{s} = \pi G (r_{c} - r_{d})^{2} \lambda / 2$$

 $\begin{array}{lll} G & Shear \mbox{ modulus} \\ r_c & Cation \mbox{ radius} \\ r_d & Interstitial \mbox{ site radius} \\ \lambda & Jump \mbox{ distance} \end{array}$

Cation Radius Dependence of ΔE_c and ΔE_m

"Rational" Models of the Activation Energy

- Both activation energies are non-zero and contribute to the total activation energy
- Anderson-Stuart¹ model calculation

$$\Delta E_{c} = \frac{\beta_{struct.} Z_{c} Z_{a} e^{2}}{\varepsilon_{\infty}} \left[\frac{1}{(r_{c} + r_{a})} - \frac{2}{\lambda} \right] \qquad \Delta E_{s} = \Delta$$

$$\Delta E_s = \Delta E_m = 4\pi r_d G(r_c - r_d)^2$$

$x Na_2O + (1-x)SiO_2$	ΔE_{s} (calc)	ΔE_{c} (calc)	$\Delta E_{act}(calc)$	ΔE_{act}^{2}
11.8	11.7	66.9	78.6	68.1
19.2	10.9	62.3	73.2	63.7
29.7	10.0	56.1	66.1	59.7

- Calculation shows that the ΔE_c term is the larger of the two energy barriers.
- Weak-Electrolyte behavior?

¹ Anderson, Stuart, J. Amer. Cer. Soc., 1954

² SciGlass 5.5, Average of many glasses

Thermodynamic Models

- Glass is considered as a solvent into which salt is dissolved
- If dissolved salt dissociates strongly, then glass is considered a strong electrolyte
- If dissolved salt dissociate weakly, then glass is considered a weak electrolyte
- Coulomb energy term calculations suggest that the salts are only weakly dissociated, largest of the two energy terms
- Migration energy term is taken to be minor and weak function of composition
- Dissociation constant then determines the number of mobile cations available for conduction, dissociation limited conduction

swmartin@iastate.edu

Weak Electrolyte model, Ravaine & Souquet '80

$$\begin{array}{l} 1/2M_{2}O + SiO_{4/2} \rightarrow {}_{3/2}O - Si - O^{-}M^{+} \rightarrow {}_{3/2}O - Si - O^{-} \cdots M^{+} \\ \hline (Unreacted) \quad (Reacted but Undissociated) (Dissociated) \\ K_{diss} = a_{M} + a_{OM} - / a_{M2O} \\ \qquad \qquad \sim [M^{+}][OM^{-}]/a_{M2O} = [M^{+}]^{2}/ a_{M2O} \\ \hline (M^{+}] \quad \sim K_{diss}^{1/2}a_{M2O}^{1/2} \equiv n \\ \sigma = ze\mu n = ze\mu K_{diss}^{1/2}a_{M2O}^{1/2} \sim C a_{M2O}^{1/2} \\ \hline \log K_{diss} \sim -Ne^{2}RT/4\pi\epsilon_{o}\epsilon_{\infty} (r_{+} + r_{-}) \\ As r_{+}, r_{-} increase, K_{diss} increases \\ As \epsilon_{\infty} increases, K_{diss} increases \end{array}$$

swmartin@iastate.edu

Intermediate Range Order models

- Models recognize that ion conductivity requires ion motion over relatively long length scales
- Ions must be able to move from one side of the electrolyte to the other
- Long range connectivity of the SRO structures favorable to conduction must exist
- Deep "traps" along the way must be infrequent and not severe
- Rather, low energy conduction "pathways" are thought to exist which maximize connectivity and minimize energy barriers and traps
- Cluster pathway model of Greeves '85, for example

Intermediate Range Order models

 Cluster pathway model, Greeves et al '85

Conductivity percolation in $AgI + AgPO_3$

RMC Modeling of $AgI + AgPO_3$, Swenson et al. '98

4.635 nm

RMC Modeling of $AgI + AgPO_3$, Swenson et al. '98

4.635 nm

Intermediate Range Order models

- Microdomain models of conductivity
- Dopant salts such as AgI to oxide glasses, especially AgPO₃, are added to increase conductivity
- Agl is itself a FIC *crystal* above 150°C
- Extrapolations of σ to xAgI = 1 give ~ $\sigma_{AgI}(298K)$
- The question then is: Does the Agl create "microdomains" of α-Agl giving rise to the high conductivity?

AgI Microdomain model

- Most well known of all glasses is xAgI + (1-x)AgPO₃
- AgPO₃ is a long chain structure of -O-P(O)(OAg)-O repeat units
- Intermediate range structure is for these long chains to intertwine and as such frustrate crystallization
- Added AgI dissolves into this liquid without disrupting the structure of the phosphate chains
- Microdomain model then suggests that this dissolved Agl creates increasingly large clusters of α-Agl between the phosphate chains

AgI Microdomain model

Part 2 Summary

- Conductivity can be increased many orders of magnitude
 - Essentially insulating values 10^{-15} (Ω cm)⁻¹
 - "High Conducting" values 10⁻² (Ωcm)⁻¹
 - Activation energy appears to be dominated by coulomb potential
 - Weakening the coulomb potential between cation and anion lowers the activation energy
 - Oxide glasses lowest conducting
 - Sulfide glasses doped with ionic salts the highest conducting

AC versus DC ionic conductivity

AC ionic conductivity in glass

Connection to Far-IR vibrational modes,

