Advanced Vitreous State - Physical Properties of Glass

Lecture 25: Charge Conduction Properties of Glass:

Ionic Conduction in Glass - Part 1

Relationship to Glass Structure and Composition

Steve W. Martin

Department of Materials Science & Engineering Iowa State University Ames, IA swmartin@iastate.edu

Ionic Conduction in glass

- Glasses can be systematically doped to increase conductivity
 - From near insulating values to those that rival ionic liquids
- Strong glass forming character over wide compositions ranges make them ideal for many composition studies of the ionic conductivity
- Low melting temperatures often make them compatible with many industrial processing techniques such as sputtering and evaporation to produce thin film electrolytes

Formation of Non-Bridging Oxygens

- Modifier M₂O or MO creates two NBOs per M₂O or MO added
- xNa₂O + (1-x)SiO₂ creates 2x NBOs
- f_{NBO} = NBOs/(NBOs + BOs)

= 2x/(x + 2(1-x)) = 2x/(2-x)

• $f_{BO} = 1 - f_{NBO}$

"Q_i" Units in Alkali Silicate Glasses

Alkali Ions are "weakly" bound

- "Frame work" cations, Si⁺⁴, and anions, O⁼
 - Covalently bonded to the network
 - "Large" bond strength, 100+ kcal/mole
- "Modifying" cations, M⁺, and anions F⁻
 - Ionically bonded to the network
 - "Small" bond strength, < 50 kcal/mole
- Alkali cations can be thermally activated
- To break their weak ionic bond
- And move from one alkali cation site to another
- Thermally activated ionic conduction....

Relation of glass structure to ionic conduction

Molecular Dynamics Simulation of Ionic Conduction

Go to Movie.....

Relation of glass structure to ionic conduction

- $\sigma = 1/\rho \equiv neZ\mu$
 - n is the number density
 - eZ is the charge, +1 most of the time
 - \square μ is the mobility
- What are the units of n?
 - □ #/cm³
- What are the units of μ?
 - $\Box (cm/sec)/V = cm/V-sec$
- What are the units of σ ?
 - $\Box \quad (\Omega \text{ cm})^{-1} \equiv \text{S/cm}$

swmartin@iastate.edu

Ionic Conduction in Glass – Part 1

$$\upsilon^{+}(T) = \upsilon_{0} \exp\left[-\frac{\Delta E_{act} - \lambda ze|E|/2}{RT}\right]$$
$$\upsilon^{-}(T) = \upsilon_{0} \exp\left[-\frac{\Delta E_{act} + \lambda ze|E|/2}{RT}\right]$$
$$\upsilon_{net} = \upsilon^{+}(T) - \upsilon^{-}(T)$$
$$\upsilon_{net} = \upsilon_{0} \exp\left[-\frac{\Delta E_{act}}{RT}\right] \left(\exp\left[\frac{\lambda ze|E|}{2RT}\right] - \exp\left[-\frac{\lambda ze|E|}{2RT}\right]\right)$$
$$\upsilon_{net} = 2\upsilon_{0} \exp\left[-\frac{\Delta E_{act}}{RT}\right] \sinh\left(\frac{\lambda ze|E|}{2RT}\right) \sim \frac{\upsilon_{0}\lambda ze|E|}{RT} \exp\left[-\frac{\Delta E_{act}}{RT}\right]$$

swmartin@iastate.edu

$$\begin{split} \upsilon_{net} &= 2\upsilon_0 \exp\left[-\frac{\Delta E_{act}}{RT}\right] \sinh\left(\frac{\lambda ze|E|}{2RT}\right) \sim \frac{\upsilon_0 \lambda ze|E|}{RT} \exp\left[-\frac{\Delta E_{act}}{RT}\right] \\ velocity &= \upsilon_{net} \times \lambda = \frac{\upsilon_0 \lambda^2 ze|E|}{RT} \exp\left[-\frac{\Delta E_{act}}{RT}\right] \\ mobility &= velocity / E = \frac{\upsilon_0 \lambda^2 ze}{RT} \exp\left[-\frac{\Delta E_{act}}{RT}\right] \\ conductivity &= mobility \times conductivity \times charge \end{split}$$

$$\sigma(T) = \frac{n \upsilon_0 \lambda^2 (ze)^2}{RT} \exp\left[-\frac{\Delta E_{act}}{RT}\right] \equiv \frac{\sigma_0}{T} \exp\left[-\frac{\Delta E_{act}}{RT}\right]$$

swmartin@iastate.edu

swmartin@iastate.edu

Ionic Conduction in Glass – Part 1

Binary Alkali Silicate Glasses

- Addition of Na₂O Increases the ionic conductivity, decreases the electrical resistivity
- Increasing the temperature increases the ionic conductivity, decreases the ionic resistivity
- Ionic conductivity of soda glasses is still very low excep for the highest temperatures

Fig. 17.17. Conductivity of glasses in the system Na₂O-SiO₂. From E. Seddon, E. J. Tippett, and W. E. S. Turner, J. Soc. Glass Technol., 16, 950 (1932).

DC ion conductivity in glass

- $xLi_2O + (1-x)P_2O_5$
- Creation of non-Bridging oxygens
- "Mobile" lithium ions
- The higher the concentration of Li₂O, the higher the conductivity
 - Lower resistivity
- Activation energy decreases with Li₂O content

Composition Dependence of the Conductivity

- Binary lithium phosphate glasses, Li₂O + P₂O₅, are relative poor ion conductors
- Binary lithium borate glasses, Li₂O + B₂O₃, are slightly better conductors
- Binary lithium silicate glasses, Li₂O + SiO₂ are slightly better conductors yet.

 $Li_2O:B_2O_3$

Li₂O:SiO₂

 $Li_2O:P_2O_5$

Salt doped phosphate glasses

 Halide doping strongly increases the conductivity

Effect of Sulfur Substitution

Salt doped phosphate glasses

- Lil doped LiPO₃ show highest conductivity and lowest activation energy among the halides
- Crystallization at the end of the glass forming limit

Silver Phosphate Glasses

Other Silver sulfide doped glasses

Mixed Glassformer Systems

 Phosphate and borate mixed glasses show non-linear "Mixed Glassformer" effect

Short Range Order models of Conduction Energetics

- Anderson-Stuart Model
- Assignment of Coulombic and Strain energy terms, ΔE_{c} + ΔE_{s}
- "Creation" or Concentration versus Migration energy terms, $\Delta E_{c} + \Delta E_{m}$
- Coulomb energy term, ΔE_{C} attractive force between cation and anion

$$\approx \frac{C_{struct}}{\varepsilon_{\infty}} \left[\frac{-Z_c Z_a e^2}{\lambda/2} - \frac{-Z_c Z_a e^2}{(r_c + r_a)} \right] = \frac{C_{struct}}{\varepsilon_{\infty}} \left[\frac{Z_c Z_a e^2}{(r_c + r_a)} - \frac{2}{\lambda} \right]$$

$$\lim_{\lambda \to \infty} \Delta E_{act} \to \frac{C_{struct} Z_c Z_a e^2}{\varepsilon_{\infty} (r_c + r_a)} = const .$$

swmartin@iastate.edu

Short Range Order models

- Strain energy term ΔE_s
- "Work" required to "dilate the network so large cations can migrate

$$\Delta E_s = \pi G (r_c - r_d)^2 \lambda / 2$$

GShear modulus r_c Cation radius r_d Interstitial site radiusλJump distance

Thermodynamic Models

- Glass is considered as a solvent into which salt is dissolved
- If dissolved salt dissociates strongly, then glass is considered a strong electrolyte
- If dissolved salt dissociate weakly, then glass is considered a weak electrolyte
- Coulomb energy term calculations suggest that the salts are only weakly dissociated, largest of the two energy terms
- Migration energy term is taken to be minor and weak function of composition
- Dissociation constant then determines the number of mobile cations available for conduction, dissociation limited conduction

swmartin@iastate.edu

Weak Electrolyte model, Ravaine & Souquet '80

swmartin@iastate.edu

Strong and Weak Electrolyte models

- "Strong electrolyte" model suggests all cations are equally available for conduction.
 - Each cation experiences an energy barrier which governs the rate at which it hops
- "Weak electrolyte" model suggests only those *dissociated* cations are available for conduction
 - Dissociation creates mobile carriers available for conduction
- SE models suggests that $\Delta E_{c} + \Delta E_{s}$ both contribute, one could be larger or smaller than the other
- WE model suggests that ∆E_c is the dominant term

Intermediate Range Order models

- Models recognize that ion conductivity requires ion motion over relatively long length scales
- Ions must be able to move from one side of the electrolyte to the other
- Long range connectivity of the SRO structures favorable to conduction must exist
- Deep "traps" along the way must be infrequent and not severe
- Rather, low energy conduction "pathways" are thought to exist which maximize connectivity and minimize energy barriers and traps
- Cluster pathway model of Greeves '85, for example

Intermediate Range Order models

 Cluster pathway model, Greeves et al '85

AC versus DC ionic conductivity

AC ionic conductivity in glass

Connection to Far-IR vibrational modes,

Intermediate Range Order models

Percolation Models - Johari et al. '87

- At low dopant concentrations
 - Cations are far separated
 - Mobile species are diluted in a non-conducting host glass
- At intermediate concentrations
 - Cations begin to approach proximity
 - Preferential conduction paths form
 - Sites percolate
- At high concentrations
 - Cations are fully connected
 - Conduction pathways are fully developed

Conductivity percolation in $AgI + AgPO_3$

RMC Modeling of $AgI + AgPO_3$, Swenson et al. '98

4.635 nm

Intermediate Range Order models

- Microdomain models of conductivity
- Dopant salts such as AgI to oxide glasses, especially AgPO₃, are added to increase conductivity
- Agl is itself a FIC *crystal* above 150°C
- Extrapolations of σ to xAgI = 1 give ~ $\sigma_{AgI}(298K)$
- The question then is: Does the Agl create "microdomains" of α-Agl giving rise to the high conductivity?

AgI Microdomain model

- Most well known of all glasses is xAgI + (1-x)AgPO₃
- AgPO₃ is a long chain structure of -O-P(O)(OAg)-O repeat units
- Intermediate range structure is for these long chains to intertwine and as such frustrate crystallization
- Added AgI dissolves into this liquid without disrupting the structure of the phosphate chains
- Microdomain model then suggests that this dissolved Agl creates increasingly large clusters of α-Agl between the phosphate chains

AgI Microdomain model

Ionic Conduction in Glass

- Ohms law
 - □ V = IR
 - $\Box \ V = I \ \rho \ t/A = I \ \rho \ k$
 - $\Box \ \rho = 1/\sigma$
 - ρ(Ωcm), σ(Ωcm)⁻¹
- Calculate σ for
 - $\Box I = 1 \mu A$
 - □ V = 1 V
 - □ k = 1 mm/1 cm²

