Advanced Vitreous State – The Physical Properties of Glass

Active Optical Properties of Glass

Lecture 21: Nonlinear Optics in Glass-Applications

Denise Krol Department of Applied Science University of California, Davis Davis, CA 95616 <u>dmkrol@ucdavis.edu</u>

Nonlinear optical susceptibilities

General formalism:

$$P(t) = \chi^{(1)}E(t) + \chi^{(2)}E(t)^2 + \chi^{(3)}E(t)^3 + \dots$$

= $P^{(1)}(t) + P^{(2)}(t) + P^{(3)}(t) + \dots$

E and P can be written as sum of frequency components:

$$E = \sum_{j} E(\omega_{j})e^{-i\omega_{j}t} \qquad P = \sum_{j} P(\omega_{j})e^{-i\omega_{j}t} \qquad \text{output frequency}$$

$$\chi^{(1)}(\omega) = \frac{P^{(1)}(\omega)}{\varepsilon_{o}E(\omega)} = \frac{Ne^{2}}{\varepsilon_{o}m} \frac{1}{\omega_{0}^{2} - \omega^{2} - i\omega\gamma} \qquad \text{input frequencies,}$$

$$pos \text{ or neg}$$

$$\chi^{2}(\omega_{p} = \omega_{m} + \omega_{n}) = \frac{P^{(2)}(\omega_{p})}{E(\omega_{m})E(\omega_{n})} = \frac{Nae^{3}}{m^{2} \cdot D(\omega_{p})D(\omega_{n})D(\omega_{m})} \qquad \text{Value of } \chi^{(n)}$$

$$\chi^{(3)}(\omega_{q} = \omega_{m} + \omega_{n} + \omega_{p}) = \frac{Nbe^{4}}{m^{3} \cdot D(\omega_{q})D(\omega_{m})D(\omega_{n})D(\omega_{p})} \qquad \text{Value of } \chi^{(n)}$$

Nonlinear optics in glass

2nd-order nonlinearities

In normal glasses χ⁽²⁾=0

3nd-order nonlinearities

- All materials, including glasses, have a $\chi^{(3)}$
- In glass there are only three independent $\chi^{(3)}$ tensor elements
- χ⁽³⁾ processes involve the interaction of 3 input waves to generate a polarization (4th wave) at a mixing frequency with 3 different input frequencies there are many possible output frequencies

$$\chi^{(3)}(3\omega=\omega+\omega+\omega)\neq\chi^{(3)}(\omega=\omega+\omega-\omega)$$

- Strength of generated signal depends on propagation length -optical fibers!
- Phase matching: $\Delta k = k_4 k_3 k_2 k_1 = 0$

Units in nonlinear optics

Gaussian system of units

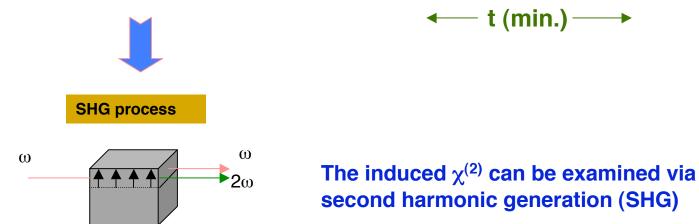
$$\vec{P}(t) = \chi \underbrace{\stackrel{(1)}{\underbrace{\quad}} \cdot \vec{E}(t) + \chi \underbrace{\stackrel{(2)}{\underbrace{\quad}} \cdot \vec{E}(t)^2 + \chi \stackrel{(3)}{\underbrace{\quad}} \cdot \vec{E}(t)^3 + \cdots}_{\text{nonlinear}}$$

MKS system

$$\vec{P}(t) = \frac{\varepsilon_0}{\varepsilon_0} \left[\chi^{(1)} \cdot \vec{E}(t) + \chi^{(2)} \cdot \vec{E}(t)^2 + \chi^{(3)} \cdot \vec{E}(t)^3 + \cdots \right]$$

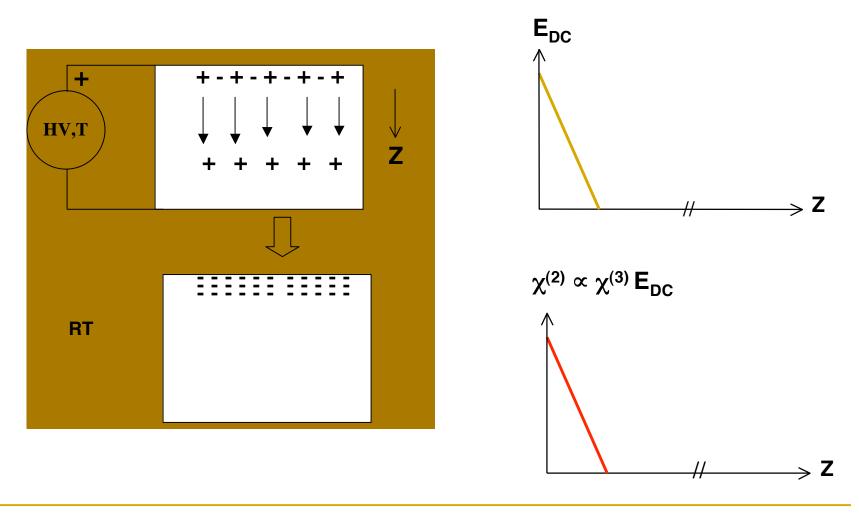
 ϵ_0 = permittivity of free space = 8.85 x 10⁻¹² F/m

	MKS system	Gaussian system
Electric Field, E Polarization, P	V/m C/m ²	statvolt/cm statvolt/cm
Intensity, I	$I = 2n \left(\frac{\varepsilon_0}{\mu_0}\right)^{1/2} E ^2$	$I = \frac{nc}{2\pi} \left E \right ^2$
Intensity, I	W/m ²	erg/cm ² -sec
χ ⁽²⁾	m/V χ ⁽²⁾ (MKS) = 4	cm/statvolt, <mark>esu</mark> 189 x 10 ⁻⁴ x ⁽²⁾ (Gaussian)
χ ⁽³⁾	m²/V² χ ⁽³⁾ (MKS) = 1	(cm/statvolt)², <mark>esu</mark> .40 x 10 ⁻⁸ χ ⁽³⁾ (Gaussian)


$\chi^{(2)}$ can be induced in glass by thermal poling

V (kV)

5


Second order optical nonlinearity $(\chi^{(2)}) = 0$ in glasses because glasses are isotropic

To induce a $\chi^{(2)}$ in glasses Thermal poling technique Thermal poling experiment T (°C) DC + Heat silica $\chi^{(2)}$ nm $\chi^{(2)}$

25

Thermal poling-proposed mechanism

6

$\chi^{(3)}$ phenomena and applications in glass

Effect

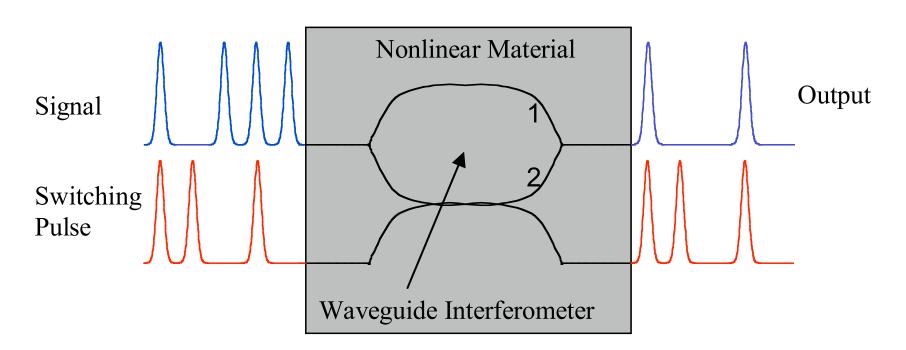
Nonlinear index

$$\begin{array}{l} \mathbf{n=n_0+n_2l}\\ \mathbf{n_2} \thicksim \chi^{(3)}(\omega=\omega+\omega-\omega) \end{array}$$

Stimulated Raman scattering

Applications

Optical switching Supercontinuum generation


Raman amplifiers and lasers

7

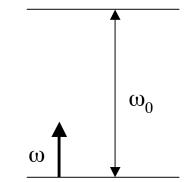
Nonlinear photoinduced changes

Fs laser structuring

Nonlinear optical switch

Without switching pulse: waves in leg 1 and 2 interfere destructively, no output

<u>With switching puse</u>: due to the nonlinear interaction, the switching pulse causes a phase shift in the part of the signal pulse propagating in leg 2. As a result waves in 1 and 2 interfere constructively, output

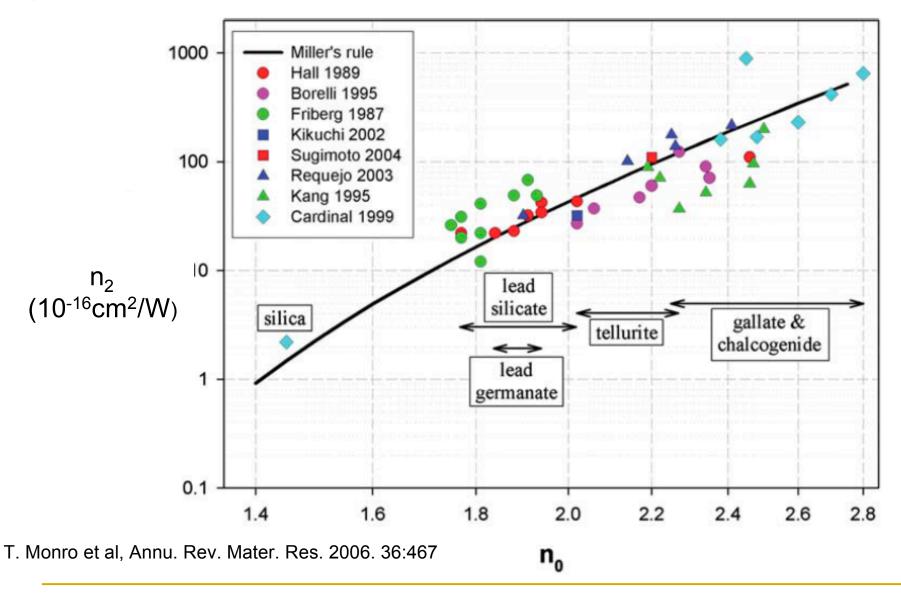

From P.Thielen, PhD Dissertation, UC Davis, 2004

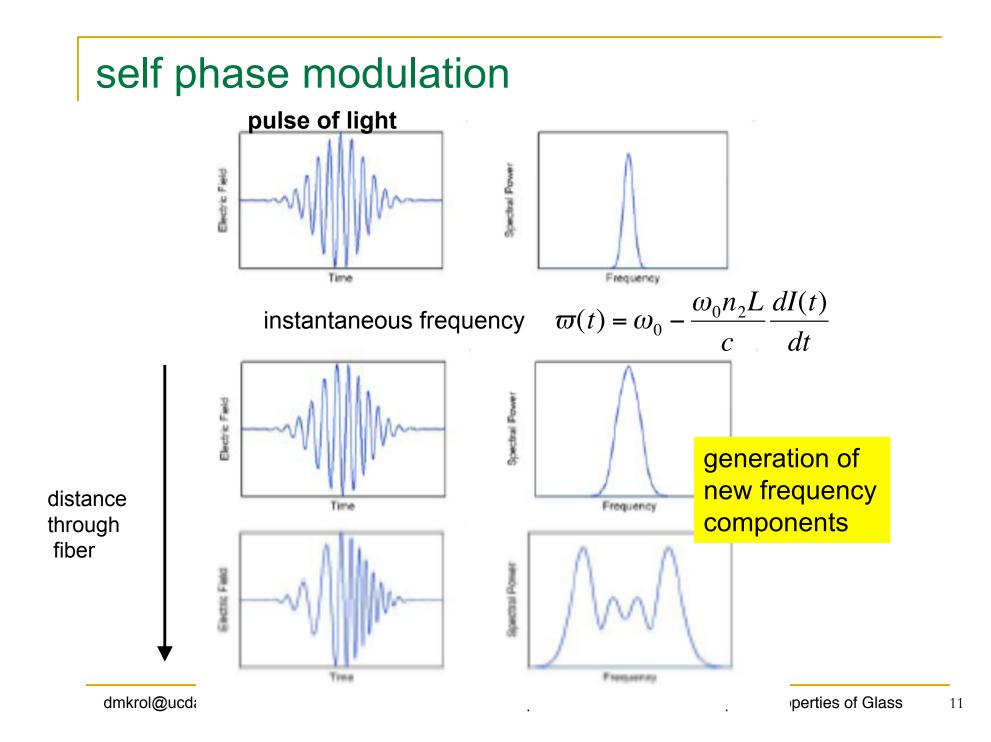
8

Material dependence of n₂

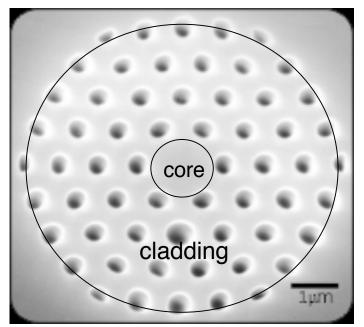
Classical anharmonic electron oscillator, far from resonance:

$$\chi^{(3)}(\omega = \omega + \omega - \omega) \approx \frac{e^4}{m^3 \omega_0^6 d^5}$$



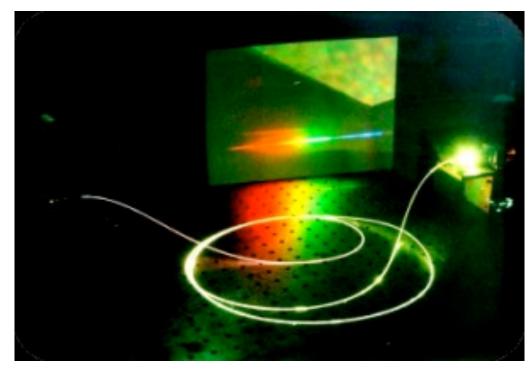

9

Bond polarizability model by M. Lines:


Long wavelength limit:
$$n_2(0) = \frac{3.4(n_0^2 + 2)^3(n_0^2 - 1)d^2}{n_0^2 E_s^2} \cdot 10^{-20}$$

E_s is Sellmeier gap
Frequency dependence $n_2(\omega) = n_2(0) \cdot \left[1 - \left(\frac{\hbar\omega}{E_s}\right)^2\right]^{-3.5}$

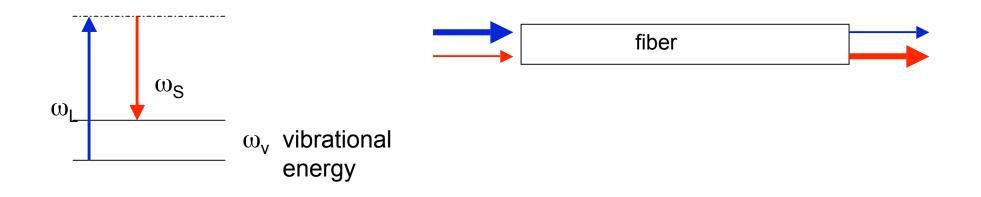
Material dependence of nonlinear index


Supercontinuum generation in microstructured fibers

guidance properties determined by size and pattern of holes

unusual dispersion high nonlinearity

propagation of pulsed (100fs) Ti-sapphire laser light(800 nm) results in supercontinuum generation : 400-1600 nm


From Philip Russell et al. Source:www.bath.ac.uk/physics/groups/opto/rse/holeyfibres.html

dmkrol@ucdavis.edu Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 12

Raman gain

Stokes Raman scattering

At high laser intensities: stimulated Stokes Raman scattering

$$P^{NL}(\omega_{S},z) = 6\chi_{R}(\omega_{S})|A_{L}|^{2}A_{S}e^{ik_{S}z}$$
$$\chi_{R}(\omega_{S}) = \frac{N}{6m} \left(\frac{\partial\alpha}{\partial q}\right)_{0}^{2} \cdot \frac{1}{\omega_{v}^{2} - (\omega_{L} - \omega_{S})^{2} + 2i\gamma(\omega_{L} - \omega_{S})}$$

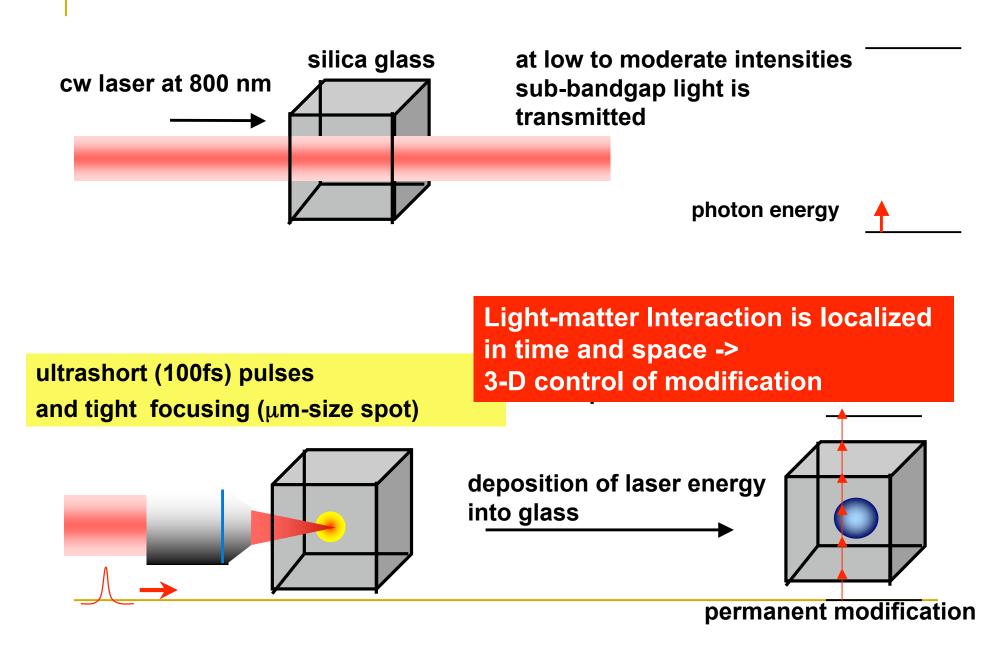
$\chi^{(3)}$ phenomena and applications in glass

Effect

Nonlinear index

Stimulated Raman scattering

Applications


Optical switching Supercontinuum generation

Raman amplifiers and lasers

Nonlinear photoinduced changes

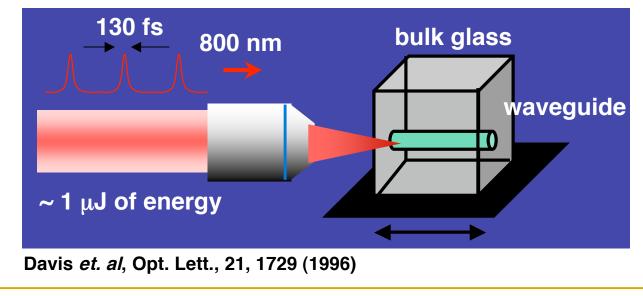
Fs laser structuring

Interaction of glass with sub-bandgap, focused, fs laser pulses

Femtosecond laser modification in glass

dmkrol@ucdavis.edu Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 16

Femtosecond laser pulses can modify various glass properties


Properties:

Refractive index
 Absorption
 Composition (phase separation)
 Valence state (Sm3+ -> Sm2+)
 Crystal nucleation (Ag and Au colloids in glass)

Applications:

photonic devices

lab-on-chip data storage optical switching

Some references

NLO Books:

N. Bloembergen, Nonlinear Optics

R.W. Boyd, Nonlinear Optics

NLO in Glass Reviews

E. M. Vogel, M.J. Weber, D. M. Krol, "Nonlinear optical phenomena in glass", Phys. Chem. Glasses 32, 231 (1991).

K. Tanaka, "Optical nonlinearity in photonic glasses", J. Materials Science: 16, 633 (2005)

Fs laser structuring of glass

"Ultrafast lasers in materials research", Special issue, MRS Bulletin August 2006