Advanced Vitreous State – The Physical Properties of Glass

Active Optical Properties of Glass

Lecture 20: Nonlinear Optics in Glass-Fundamentals

Denise Krol Department of Applied Science University of California, Davis Davis, CA 95616 <u>dmkrol@ucdavis.edu</u>

Active Optical Properties of Glass

1. Light emission

Optical amplification and lasing (fluorescence, luminescence)

Optical transitions, spontaneous emission, lifetime, line broadening, stimulated emission, population inversion, gain, amplification and lasing, laser materials, role of glass

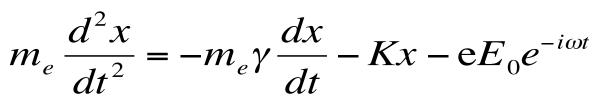
2. Nonlinear Optical Properties

Fundamentals: nonlinear polarization, 2nd-order nonlinearities, 3rd-order nonlinearities Applications: thermal poling, nonlinear index, pulse broadening, stimulated Raman effect, multiphoton ionization

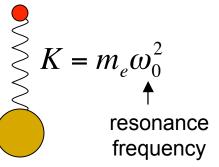
Linear optics-classical electron oscillator

electron

Equation of motion for bound electron:



damping force binding force driving force



ion core

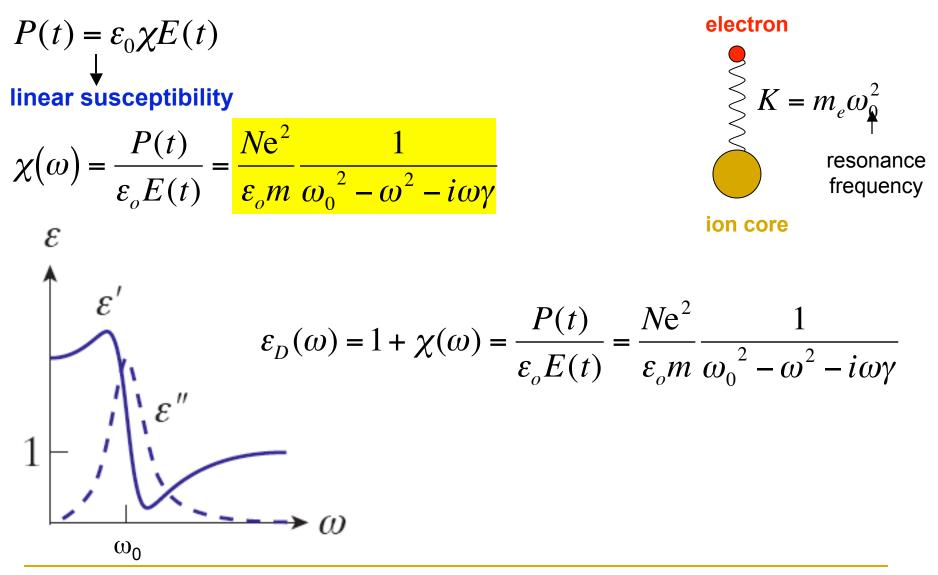
Solution: electron oscillates at driving frequency

$$x(t) = x_0 e^{-i\omega t} = \frac{-eE_0}{m} \frac{1}{\omega_0^2 - \omega^2 - i\omega \gamma} e^{-i\omega t}$$

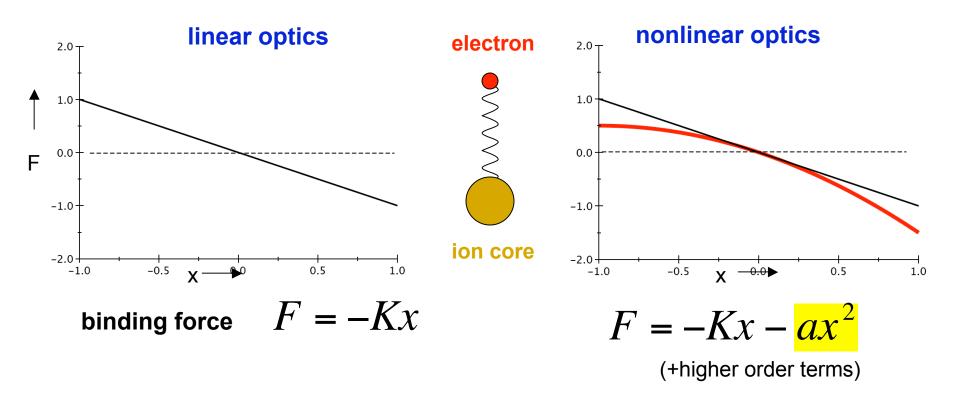
Oscillating dipole: p = -ex(t)

Polarization:
$$P(t) = \Sigma p_i = -Nex(t) = \frac{Ne^2 E_0}{m} \frac{1}{\omega_0^2 - \omega^2 - i\omega\gamma} e^{-i\omega t}$$

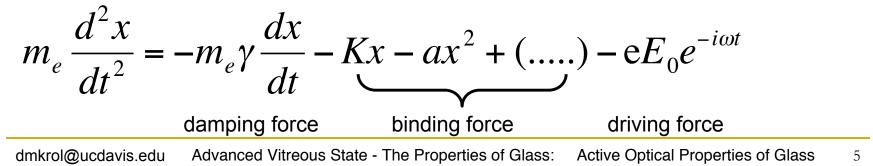
Frequency dependent dielectric constant



Nonlinear optics-anharmonic binding force



Equation of motion for bound electron:



Nonlinear optics-classical electron oscillator

Equation of motion for bound electron:

$$m_{e} \frac{d^{2}x}{dt^{2}} = -m_{e} \gamma \frac{dx}{dt} - \underbrace{Kx + ax^{2}}_{\text{damping force}} - e \begin{bmatrix} E_{0}e^{-i\omega t} + cc \end{bmatrix}$$

ion core

This equation has no general solution, we will solve it by using a perturbation expansion. We replace E(t) by $\lambda E(t)$ and seek a solution in the form:

$$x = \lambda x^{(1)} + \lambda^2 x^{(2)} + \lambda^3 x^{(3)} + \dots$$

The parameter λ is a parameter that characterizes the strength of the perturbation. It ranges continuously between 0 and 1 and we will set it to 1 at the end of the calculation.

Substitute expression for x in above equation of motion and group terms with equal powers of λ

dmkrol@ucdavis.edu Advanced Vitreous State - The Properties of Glass: Active Optical Properties of Glass 6

electron

Nonlinear optics-classical electron oscillator

$$\lambda: \qquad \ddot{x}^{(1)} + 2\gamma \dot{x}^{(1)} + \omega_0^2 x^{(1)} = -eE(t)/m$$

$$\lambda^2: \qquad \ddot{x}^{(2)} + 2\gamma \dot{x}^{(2)} + \omega_0^2 x^{(2)} + a[x^{(1)}]^2 = 0$$

$$\lambda^3: \qquad \ddot{x}^{(3)} + 2\gamma \dot{x}^{(3)} + \omega_0^2 x^{(3)} + 2ax^{(1)} x^{(2)} = 0$$

$$x^{(1)}(t) \propto E(t) \qquad x^{(1)}(t) = \frac{-eE_0}{m} \frac{1}{\omega_0^2 - \omega^2 - i\omega\gamma} e^{-i\omega t}$$

$$x^{(2)}(t) \propto [E(t)]^2 \qquad x^{(2)}(t) = \frac{-ae^2E_0^2}{m^2} [\frac{1}{D(2\omega)D^2(\omega)} e^{-i2\omega t} + \frac{1}{D(0)D(\omega)D(-\omega)}]$$

$$D(\omega_j) = (\omega_0^2 - \omega_j^2) - i\omega_j\gamma \qquad \text{oscillates at } 2\omega \qquad \text{`oscillates'' at } 0$$

$$\chi^{(2)}$$
 resonances

$$x^{(2)}(t) \propto \left[E(t) \right]^2 \qquad x^{(2)}(t) = \frac{-ae^2 E_0^2}{m^2} \left[\frac{1}{D(2\omega)D^2(\omega)} e^{-i2\omega t} + \frac{1}{D(0)D(\omega)D(-\omega)} \right]$$

oscillates at 2ω

"oscillates" at 0

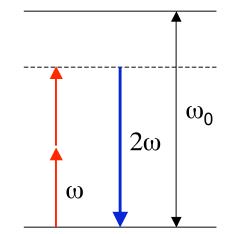
2nd-order nonlinear polarization

 $P^{(2)}(t) = -Nex^{(2)}(t)$

2nd-order susceptibility (for SHG)

$$\chi^{(2)}(2\omega) = \frac{P^{(2)}(2\omega)}{E(\omega)^2} = \frac{aNe^3E_0^2}{m^2} \frac{1}{D(2\omega)D^2(\omega)}$$

$$D(\omega_j) = (\omega_0^2 - \omega_j^2) - i\omega_j \gamma$$



2nd-order susceptibility is enhanced when either ω or 2ω are equal to ω_0

$\chi^{(2)}$ frequency terms

When the input field has 2 frequency components:

$$E(t) = E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t} + c.c$$

the 2nd-order polarization has many frequency components (mixing terms):

$$P^{(2)}(t) = \chi^{(2)} [E_1^2 e^{-i2\omega_1 t} + E_2^2 e^{-i2\omega_2 t} + 2E_1 E_2 e^{-i(\omega_1 + \omega_2)t} + 2E_1 E_2^* e^{-i(\omega_1 - \omega_2)t} + c.c] + 2\chi^{(2)} [E_1 E_1^* + E_2 E_2^*] = \sum_n P(\omega_n) e^{-i\omega_n t}.$$

$$P(2\omega_{1}) = \chi^{(2)}E_{1}^{2} \qquad (SHG), \\P(2\omega_{2}) = \chi^{(2)}E_{2}^{2} \qquad (SHG), \end{cases}$$
Second harmonic generation
$$P(0) = 2\chi^{(2)}(E_{1}E_{1}^{*} + E_{2}E_{2}^{*}) \quad (OR), \qquad Optical rectification$$
$$P(\omega_{1} + \omega_{2}) = 2\chi^{(2)}E_{1}E_{2} \qquad (SFG), \qquad Sum-frequency generation$$
$$P(\omega_{1} - \omega_{2}) = 2\chi^{(2)}E_{1}E_{2}^{*} \qquad (DFG). \qquad Difference-frequency generation$$

Nonlinear optics: general formalism $\vec{P}(t) = \chi^{(1)} \cdot \vec{E}(t) + \chi^{(2)} \cdot \vec{E}(t)^2 + \chi^{(3)} \cdot \vec{E}(t)^3 + \cdots$ linear nonlinear

The em field is expressed as sum of frequency components, for example

$$E(t) = E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t} + c.c.$$

The induced polarization can be written as:

$$P(t) = \sum_{n} P(\omega_n) e^{-i\omega_n t}$$

The frequency components $\omega_{\rm n}$ are determined by the order of the interaction and the input frequencies

2nd-order interaction:

 $\begin{array}{cccc} \text{input frequencies, E} & \text{induced polarization frequencies, P} \\ \text{One} & \omega_1 & 2\omega_1, 0 \\ \text{Two} & \omega_1, \omega_2 & 2\omega_1, 2\omega_2, 0, \omega_1 + \omega_2, \omega_1 - \omega_2 \\ \text{Three} & \omega_1, \omega_2, \omega_3 & 2\omega_1, 2\omega_2, 2\omega_3, 0, \omega_1 + \omega_2, \omega_1 + \omega_3, \omega_2 + \omega_3, \omega_1 - \omega_2, \omega_1 - \omega_3, \omega_2 - \omega_3 \end{array}$

3rd-order polarization and nonlinear index

Applied field, one input frequency

3rd order nonlinear polarization

$$E = E_0 e^{-i\omega t}$$
$$P^{(3)}(t) = \chi^{(3)} E(t)^3$$

has frequency components:

 $P(3\omega) = \chi^{(3)} E_0^3$ $P(\omega) = 3\chi^{(3)} E_0^2 E_0^*$

The total polarization at ω has linear and nonlinear contributions

$$P(\omega) = \chi^{(1)}E_0 + 3\chi^{(3)}E_0^2E_0^*$$

$$P(\omega) = (\chi^{(1)} + 3\chi^{(3)}E_0E_0^*)E_0 = \chi^{(eff)}E_0 \qquad \chi^{(eff)} = \chi^{(1)} + 3\chi^{(3)}|E_0|^2$$

$$n = n_0 + n_2I \qquad n_2 \propto \chi^{(3)}$$
intensity

n₂ = nonlinear index coefficient

 $\chi^{(3)}$ - frequency terms

With three input fields: $\omega_1, \omega_2, \omega_3$

P⁽³⁾ has the following frequency components:

 $3\omega_{1,} 3\omega_{2}, 3\omega_{3}$ $\omega_{1,} \omega_{2}, \omega_{3}$ $2\omega_{1}\pm\omega_{2}, 2\omega_{1}\pm\omega_{3,} 2\omega_{2}\pm\omega_{1}, 2\omega_{2}\pm\omega_{3,} 2\omega_{3}\pm\omega_{1}, 2\omega_{3}\pm\omega_{2}$ $\omega_{1}+\omega_{2}+\omega_{3}, \omega_{1}+\omega_{2}-\omega_{3}, \omega_{1}+\omega_{3}-\omega_{2}, \omega_{2}+\omega_{3}-\omega_{1}$ 2nd-order polarization

$$P(t) = P^{(1)}(t) + P^{(2)}(t) = \chi^{(1)}E(t) + \chi^{(2)}E(t)^2$$

$$P(t) = \sin(\omega t) + 0.5 \sin(\omega t)^{2}$$
Innear polarization
$$\sin(\omega t)$$

$$-0.25 \cos(2\omega t)$$

$$0.25$$

 $\chi^{(2)}$ requires lack of inversion symmetry

$$P(t) = P^{(1)}(t) + P^{(2)}(t) = \chi^{(1)}E(t) + \chi^{(2)}E(t)^2$$

$$P^{(2)}(t) = \chi^{(2)} E(t)^2$$

In material with inversion symmetry

 $-P^{(2)}(t) = \chi^{(2)} \left[-E(t) \right]^2$

$$P^{(2)}(t) = -P^{(2)}(t) \rightarrow \chi^{(2)} = 0$$

Glass is isotropic
$$\longrightarrow \chi^{(2)} = 0$$

P and E are vectors! So $\chi^{(n)}$'s are tensors

n = order of χ	number of tensor elements	notation for one element
1	9	$\chi^{(1)}_{ij}$
2	27	$\chi^{(2)}_{ijk}$
3	81	$\chi^{(3)}_{ijkl}$

$$P_{x}(\omega_{n} + \omega_{m}) = \chi_{xxx}^{(2)}(\omega_{n} + \omega_{m}, \omega_{n}, \omega_{m})E_{x}(\omega_{n})E_{x}(\omega_{m})$$

$$P_{y}(\omega_{n} + \omega_{m}) = \chi_{yxx}^{(2)}(\omega_{n} + \omega_{m}, \omega_{n}, \omega_{m})E_{x}(\omega_{n})E_{x}(\omega_{m})$$

Nonlinear wave equation

Propogation of waves is described by nonlinear wave equation

$$-\nabla^2 \vec{E} + \frac{\varepsilon^{(1)}}{c^2} \frac{\partial^2 \vec{E}^{(1)}}{\partial t^2} = -\frac{4\pi}{c^2} \frac{\partial^2 \vec{P}^{NL}}{\partial t^2}$$

which leads to a set of coupled differential equations (example SHG)

$$\frac{\partial A_2}{\partial z} = \frac{4\pi i d_{eff} \omega_2^2}{k_2 c^2} A_1^2 e^{i\Delta kz} \qquad \Delta k = k_2 - 2k_1$$
$$\frac{\partial A_1}{\partial z} = \frac{8\pi i d_{eff} \omega_1^2}{k_1 c^2} A_2 A_1^* e^{-i\Delta kz}$$

Growth of SH wave depends on propagation length and is optimized when $\Delta k=o$ (phase matching)

Nonlinear optics in glass

2nd-order nonlinearities

In normal glasses χ⁽²⁾=0

3nd-order nonlinearities

- All materials, including glasses, have a $\chi^{(3)}$
- In glass there are only three independent $\chi^{(3)}$ tensor elements
- χ⁽³⁾ processes involve the interaction of 3 input waves to generate a polarization (4th wave) at a mixing frequency
 -with 3 different input frequencies there are many possible output frequencies
- Strength of generated signal depends on propagation length -optical fibers!
- Phase matching: $\Delta k = k_4 k_3 k_2 k_1 = 0$