
Mechanical Properties of Glass

 Elastic Modulus and Microhardness
[Chapter 8 – The “Good Book”*]

 Strength and Toughness [Chapter 18]
 Fracture mechanics tests
 Fractography
 Stress Corrosion
 Fracture Statistics

*A. Varshneya, “Fundamentals of Inorganic Glasses”,
Society of Glass Technology (2006)
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Bond Breaking Leads to Characteristic Features



Elastic Modulus Is Related To The Strength of Nearest 
Neighbor Bonds
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Force  = F = - dU/dr

Stiffness = S0 = (dU2/dr2) r = r0

Elastic Modulus = E = S / r0

r0
F

rr0
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There Are Several Important Properties in 
Mechanical Behavior:

Elastic Modulus – Governs Deflection

Strength – Governs Load Bearing Capacity
Toughness – Governs Crack Propagation

S

e

Hardness Measures Surface Properties
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P

P

A = Cross-sectional Area =  r 2

Stress = P / A

r

P = Load On Sample
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P

P

A = Cross-sectional Area =  r 2

Strain = L / L

r

L

L

L = Length 

L = Change In Length
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Infinitesimal cube  represents triaxial state of stress.  

y = (1 /E)[y - ( x + z)]     xy = [2(1+) / E] (xy)
x = (1 /E)[x - ( y + z)]     yz = [2(1+) / E] (yz)
z = (1 /E)[z - ( y + x)]     zx = [2(1+) / E] (zx)



Special Cases of Loading Often Occur
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(a) Tensile stress.         (b) Shear stress.            (c) Hydrostatic pressure.



In uniaxial loading in the x direction, E (or Y) 
relates the stress, x, to the strain, x.



x = E x

 y = z= - x

 xy = G 
p  = K V
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





In the case of shear loading, the shear modulus is 
appropriate
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(a) Tensile stress.         (b) Shear stress.            (c) Hydrostatic pressure.
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

 V/ V0

In the case of hydrostatic pressure, the bulk 
modulus is appropriate.



There is a relationship between E, G and K 
(and of course Poisson’s ratio, )
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G = E / [2 (1+)]

K = E / [3(1-2)]

Note: -1 ≤  ≤ 0.5.  

(When  = 0.5, K       ∞  and E        3G. Such 
a material is called incompressible.).



There is a relationship between E, G and K 
(and of course Poisson’s ratio, )
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G = E / [2 (1+)]

K = E / [3(1-2)]

So, when we determine any two parameters, 
(for isotropic materials) we can calculate the 
others.



There are several techniques used to measure 
the elastic modulus:

A.  Stress-strain directly (load-displcament)
1. tension
2. 3-pt flexure
3. 4-pt flexure
4. Hydrostatic pressure
5. Torque on rod

B.  Ultrasonic wave velocity
1.  Pulse echo
2.  Direct wave

C.  Beam Vibration
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P

P

A = Area =  r 2

r

Elastic Modulus = Stress / Strain

S or 


Strain = e or 

A = Brittle

B = Ductile

S =Stress = P / A

Strain = L / L



To measure E from flexure, need to calculate 
the stress and strain.
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A A

 = 3PL / (2 b h2)           / L

b

h



P



Pulse echo technique is often used to measure 
modulus
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C. Kittel, Intro. To Solid State Physics, J. Wiley & Sons



Pulse Echo technique is one of the most 
reliable.
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In the simplest case for isotropic materials there 
are direct relationships.
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vL = [ E / ]1/2

(Longitudinal waves)

vS = [ G / ]1/2

(Shear waves)



For the beam vibration technique,  we stimulate 
the flexural modes.
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Fig 8-5

For beam bending:
E = (0.946 L4 f2  S) / h2

f = frequency
S = shape factor
H = width and height
L = length
 = density



In general, E decreases as the size and 
concentration of the alkali cations increases
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Fig 8-6a



E decreases as the size and concentration of the 
alkali cations increase
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E  

K

G
x 

Fig 8-6b



E decreases as the size and concentration of the 
alkali cations increases
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Fig 8-6c



E increases with addition of metal oxide (MO) 
[except PbO]
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Na2O x MO  5SiO2

Fig.8-7   (Varshneya)



Lithia-aluminosilicates have greater E values 
than SiO2
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Fig.8-8



In general, bulk moduli of silicate glasses 
increase with temperature (except at low 
temperatures [0 - 60K])
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N.B. - the 
compressibility,  is 
being graphed in the 
figure (Fig. 8-9).

(The compressibility 
is the reciprocal of 
the bulk modulus.)



Composition and structure affect the values of 
elastic moduli.
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N.B.: at low (< 10mol%) 
alkali content, E    with 
B2O3 addition.

However, with greater 
alkali content glasses 
addition of B2O3 leads 
to a maximum in E.



Complications of silicate glasses makes 
predictions difficult
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F = [-a / rn ]+ b / rm

(Condon-Morse)
Force = F = - dU/dr
Stiffness = S0 = (dU2/dr2) r = r0
Elastic Modulus = E = S / r0



Complications of silicate glasses makes 
predictions difficult
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F = [-a / rn ]+ b / rm

(Condon-Morse)
Force = F = - dU/dr
Stiffness = S0 = (dU2/dr2) r = r0
Elastic Modulus = E = S / r0

General rules:
1. E increases as r0

x decreases
2. E increases as valence, i.e., qa x qc
3. E affected by bond type (covalent, ionic, 

metallic).
4. E affected by structure (density, electron 

configuration, etc.)



Microhardness is a measure of surface 
properties and can be related to elastic 
modulus, toughness and surface tension.
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Hardness = Force / Area



Many hardness tests are available
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The most common microhardness diamond 
tips for glasses are Vickers and Knoop
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Hv = 1.854 F / D2 (Actual area)           KHN = 14.23 F / L2 (Projected area)

Hardness = Force / Area Fig. 8-12
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Note plastic flow  in  silicate 
glass using a Vickers 
microhardness indenter.

Plastic flow in Se glass using 
a Brinell microhardness 
indentation.

Fig. 8-13 a & b



Diamond hardness indentations can result in 
elastic and plastic deformation.
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Microhardness can be measured dynamically
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HvL = 37.84 F / h2
max

(from loaded depth, hmax)

Hvf = 37.84 F / h2
f

(from unloaded depth, hf)

F = a1h + a2 h2 (equation fit to curve)

HvL2 (GPa)= 37.84 a2   { load independent  hardness;  a2 = N/m2}

Refs. 34 and 35 in Chapter 8.



Microhardness can be measured dynamically
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Measure dF/dh on initial 
unloading

Er = ( / 2  A) [dF/dh]

Er =[(1-2)/E] + [(1-i
2)/ Ei
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Materials & Methods 
o The energy spent during the nanoindentation process can be 
categorized as plastic energy (Wpl) and elastic energy (Wel). 
The indenter penetrates the sample and reaches the maximum 
penetration (hmax) at Pmax. During the unloading process, the 
compressed zone recovers and the final depth of the indent (hf)
is often much less than hmax.



Elastic Moduli and microhardness are two 
important mechanical properties.
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Elastic modulus is a macroscopic measure of the strength of bonds at the atomic 
scale.

Hooke’s law (stress proportional to strain) defines the moduli of linear elastic 
solids.

For isotropic glasses only two constants are required – others can be calculated.  
Note: -1 ≤  ≤ 0.5.  (When  = 0.5, K         ∞  and E        3G).

Elastic modulus is best measured using the “pulse echo” or similar technique.  
For silicate glasses, E  70≈ GPa and  ≈ 0.22.

Hardness is a measure of the resistance to penetration.  Both densification and 
material pile-up are observed in glasses.

Vickers indentation is the most common diamond indenter for glasses.
For a silicate glass, H v  ≈ 5.5 GPa


