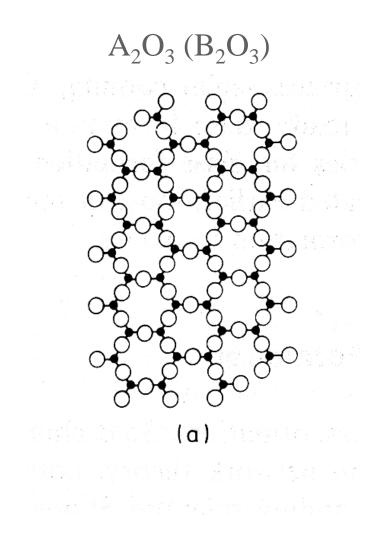
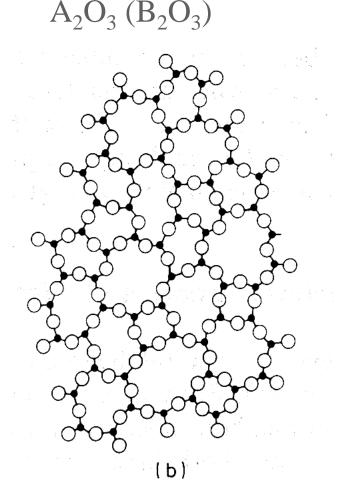
Advanced Vitreous State: The Structure of Glass

Section 1: Lecture 2 – Fundamentals of Glass Formation: Structural and Kinetic Approaches

Glass formation results when the internal structural timescale of the liquid **becomes** or is forced to become significantly longer than the external time scale of the surroundings near the melting or liquidus temperature of the liquid


Optimizing $\tau_{internal}$ for glass formation – Structural approach to glass formation

- Understand and be able to apply the relationships between atomic level structure and ease at which a system will form glass
- Understand and be able to apply Zacharaisen's Rules for glass formation
- Be able to apply understanding of the three different types of additives, modifiers, intermediates, and glass formers, to multi-component systems to predict whether a particular composition will be glass forming or not.


Estimating $\tau_{external}$ for glass formation – Kinetic approach to glass formation

- Understand and be able to use nucleation and growth theory
- Understand and be able to use TTT curves
- Understand and be able to calculate critical cooling rates

- Crystalline materials exhibit a periodic array of atoms and/or ions
- Each atom/ion in the material has a specific location that is periodic in the crystalline structure
- Each location can be exactly specified once the crystalline structure is defined
- Defects in the structure occur when the position and atom/ion type do not agree with that prescribed by the crystal structure

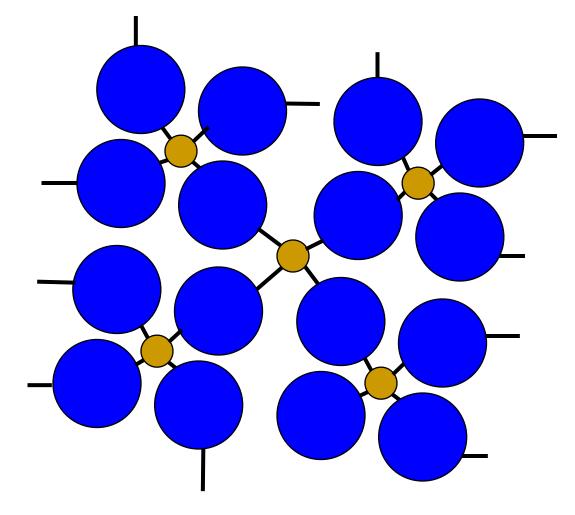
- Amorphous materials lack this long range order
- There is no prescription for which atoms/ions are located at which locations
- However, the energetics of bond formation are very strong
- Atoms will align themselves chemically to:
 - Balance charge in ionic materials
 - Minimize bond energies by filling appropriate bonding orbitals
- Hence, local structure is disordered, but there are still many similarities to the crystalline phase
 - Coordination numbers are ~ same
 - Bond lengths are ~ same
 - Bond Angles are ~ same

- Glass Formation results when
 - Liquids are cooled to below T_M (T_L) sufficiently fast to avoid crystallization
 - Nucleation of crystalline seeds are avoided
 - Growth of Nuclei into crystallites (crystals) is avoided
 - Liquid is "frustrated" by internal "structure that hinders both events
 - Structural Approach to Glass Formation
 - What internal structures promote glass formation?
 - How can structures be developed that increase the viscosity and frustrate crystallization processes?

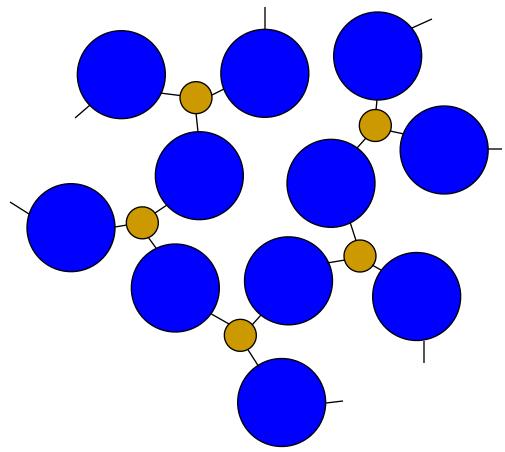
- Using structure to promote glass formation
 - Develop atomic bonding structures in the system that produce large viscosity near the melting point
 - Silicate liquids and glasses

$$\square$$
 SiO₂, Na₂O + CaO + SiO₂

- Develop large molecular structures that due to their size prevent and/or frustrate the organization into the crystalline structure
 - Polymeric liquids with large polymer chains
 - $\Box -(CH_2)_n$
 - Develop complex local and variable structures in the liquid that on cooling have a large number of possible structural motifs to follow and as a result no one structure is favored over another
 - Molten salt liquids with a number of components
 - $\Box \qquad Ca(NO_3)_2 + KNO_3$

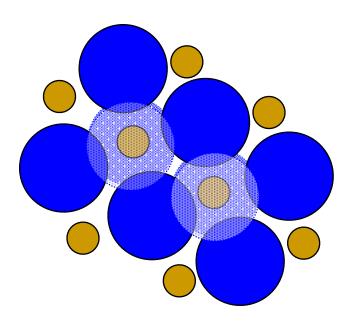

- Glass formation requires long range continuous bonding in the liquid to produce:
 - High viscosity
 - 3 Dimensional bonding
 - Strong individual bond strength
 - "Open" structure that is not efficiently packed
 - Corners of polyhedra are shared to increase "connectivity"
 - Bonds for bridges between corner sharing polyhedra

- Oxygen atoms are linked (bonded) to no more than two atoms
- Oxygen coordination around glass forming cations is small, 3, 4
- Cation polyhedra share corners and not edges or faces
- At least three corners are shared


William H. Zachariasen, Journal of the American Chemical Society 54 (1932) 3841-3851

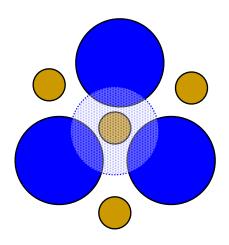
- Apply these rules to the following:
 - □ SiO_{4/2}
 - $\square \quad \mathsf{B}_2\mathsf{O}_3 \text{ or } \mathsf{BO}_{3/2}$
- Apply these rules to the following:
 - CaO
 - Na₂O

SiO_{4/2}


B₂O₃ or BO_{3/2}

Zacharaisen's Rules for Modifiers

Ca₁O₁ (CaO) Closed-packed cubic


- Ca occupying all octahedral sites
- Octahedral sites = Ca = O

Zacharaisen's Rules for Modifiers – M_2O

Na₂O₁ (Na₂O) Closed-packed cubic

- Na occupying tetrahedral sites
- Tetrahedral sites = $2 \times O = Na$

Sun's Bond Strength Model

- Glass formation is brought about by both:
 - Connectivity of bridge bonds
 - Strong Bonds between atoms (ions)
- Sun classified oxide according to their bond strengths
 - Glass formers form strong bonds to oxygen rigid network, high viscosity
 - Modifiers from weak bonds to oxygen Disrupt, modify, network
 - Intermediates form intermediate bonds to oxygen can't form glasses on their own, but aid with other oxides to form glasses

Sun's Bond Strength Model

Glass formers

Greater than 80 kcal/mole bond strength with oxygen

- **B**₂O₃, SiO₂, Geo₂, P₂O₅, Al₂O₅....
- Intermediates

Between 60 to 80 kcal/mol bond strength with oxygen

- TiO₂, ZnO, PbO....
- Modifiers

Less than 60 kcal/mole bond strength with oxygen

Li₂O, Na₂O, K₂O, MgO, CaO....

Glass Formers (Oxides) - form glasses on their own

			Dissociation energy $E_{d'}$		Single-bond
	M in MO _x	Valence	per MO _x (kcals)	Coordination number ^b	strength (kcals)
Glass	В	3	356	3	119
formers	Si	4	424	4	106
	Ge	4	431	4	108
	Al	3	402-317	4	101-79
	В	3	356	4	89
	Р	5	442	4	111-88
	V	5	449	4	112-90
	As	5	349	4	87-70
	Sb	5	339	4	85-68
	Zr	4	485	6	81

Table 3-2. Single Bond Strengths for Oxides^a

Intermediates (Oxides) – assist in glass formation

			Dissociation energy $E_{d'}$		Single-bond
	M in MO _x	Valence	per MO _x (kcals)	Coordination number ^b	strength (kcals)
Intermediates	Ti	4	435	6	73
	Zn	2	144	2	72
	Pb	2	145	2	73
	Al	3	317-402	6	53-67
	Th	4	516	8	64
	Be	2	250	4	63
	Zr	4	485	8	61
	Cd	2	119	2	60

Modifiers (Oxides) – degrade glass formation

Modifiers	Sc	3	362	6	60
	La	3	406	7	58
	Y	3	399	8	50
	Sn	4	278	6	46
	Ga	3	267	6	45
	In	3	259	6	43
	Th	4	516	12	43
	Pb	4	232	6	39
	Mg	2	222	6	37
	Li	1	144	4	36
	Pb	2	145	4	36
	Zn	2	144	4	36
	Ba	2	260	8	33
	Ca	2	257	8	32
	Sr	2	256	8	32
	Cd	2	119	4	30
	Na	1	120	6	20
	Cd	2	119	6	20
	K	1	115	9	13
	Rb	1	115	10	12
	Hg	2	68	6	. 11
	Cs	1	114	12	10

Classifying Oxides

- How would each of the following be classified?
 - $\square SiO_2, B_2O_3, P_2O_5$
 - □ TiO₂, PbO
 - □ Na₂O, CaO, ZnO

Dietzel's Field Strength Criteria

- Sun classifies AI as both a glass former and an intermediate
 - AI_2O_3 does not form glass at normal quenching rates
 - More factors are important than just bond strength
 - Small cations with high charge glass formers
 - Large cations with small charge modifiers
 - Medium sized cations with medium charge intermediates

Dietzel's Field Strength Model

	Valence	Ionic radius (for CN = 6)	Most frequent coordination number	Ionic distance for oxides	Field strength at distance of O ²	Function in glass
Element	Z	r in Å	CN	a in Å	ions Z/a^2	structure
К	1	1.33	8	2.77	0.13	
Na	1	0.98	6	2.30	0.19	
Li	1	0.78	6	2.10	0.23	
Ba	2	1.43	8	2.86	0.24	Network
Pb	2	1.32	8	2.74	0.27	modifier
Sr	2	1.27	8	2.69	0.28	$Z/a^2 \approx 0.1 \dots 0.4$
Ca	2	1.06	8	2.48	0.33	
Mn	2	0.91	6	2.23	0.40	teri per per en el teriore. L'esta de la compañía
Fe	2	0.83	6	2.15	0.43	

Table 3-3. Field Strengths of Various Ions^a

Intermediates – assist in glass formation

					Field	
		Ionic	Most		strength	
		radius	frequent	Ionic	at	
		(for CN	coordination	distance	distance	Function
	Valence	= 6)	number	for oxides	of O^2	in glass
Element	Z	r in Å	CN	a in Å	ions Z/a^2	structure
Mn	2	0.83	4	2.03	0.49	
Mg	2	0.78	6	2.10	0.45	
			4	1.96	0.53	
Zr	4	0.87	8	2.28	0.77	
Be	2	0.34	4	1.53	0.86	Intermediate
Fe	3	0.67	6	1.99	0.76	$Z/a^2 \approx 0.5 \dots 1$
			4	1.88	0.85	ne that would
Al	3	0.57	6	1.89	0.84	
			4	1.77	0.96	
Ti	4	0.64	6	1.96	1.04 J	1993년 18일 - 1985년 1983년 1983년 1987년 1987년 1987년 1983년 198 1987년 1987년 1987년 1983년 198

Glass forming oxides - form glass on their own

	Valence	Ionic radius (for CN = 6)	Most frequent coordination number	Ionic distance for oxides	Field strength at distance of O ²	Function in glass
Element	Ζ	r in Å	CN	a in Å	ions Z/a^2	structure
В	3	0.20	4	1.50	1.34	
Ge	4	0.44	4	1.66	1.45	Network
Si	4	0.39	4	1.60	1.57	former
Р	5	0.34	4	1.55	2.1	$Z/a^2 \approx 1.5 \dots 2.0$
B	3	0.20	3	1.36	1.63	

^a After Dietzel [11].

Glass forming compositions

- How would you classify the following compositions? Glassforming or not?
- $0.15Na_2O + 0.35Al_2O_3 + 0.50SiO_2$
- 0.35Na₂O + 0.15CaO + 0.25Al₂O₃ + 0.25SiO₂

Advanced Vitreous State: The Structure of Glass

Section 1: Lecture 2 – Fundamentals of Glass Formation: Structural and Kinetic Approaches

Glass formation results when the internal structural timescale of the liquid becomes or **is forced** to become significantly longer than the external time scale of the surroundings near the melting or liquidus temperature of the liquid

Kinetic Theory of Glass Formation

- Understand and be able to use nucleation and growth theory
- Understand and be able to use TTT curves
- Understand and be able to calculate critical cooling rates

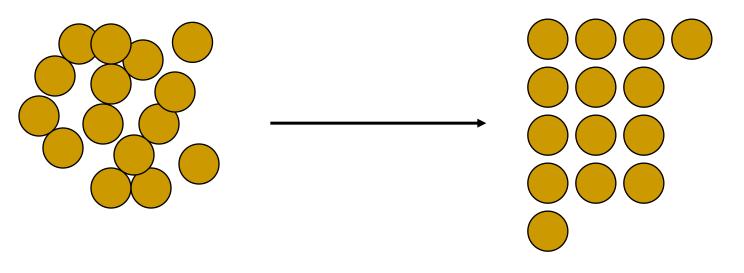
Kinetic Approach to Glass Formation

- Glass formation requires the by-passing of the crystallization events at T_m
 - Structural approach is to create high viscosity to frustrate nucleation and growth processes
 - SiO_{4/2} easily supercools due to the high connectivity of the liquid through strong –O-Si-O- bonding
- Kinetic approach to glass formation asserts:
 - All liquids can be made into the glassy state
 - The question is how fast must the liquid be cooled?
 - Fast quenching, >> 100°C/sec, implies "marginal" glass forming ability
 - □ Slow cooling,<< 1°C/min, implies "strong" glass forming ability
 - The critical cooling rate, R_c, measures how fast a liquid must be cooled to avoid crystallization and render the liquid into the glassy state

Critical Cooling Rates for Various Liquids

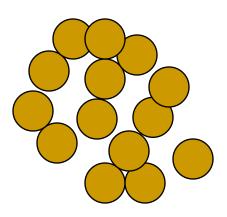
 Table 3-5. Examples of Critical Cooling Rates (°C/s) for Glass Formation

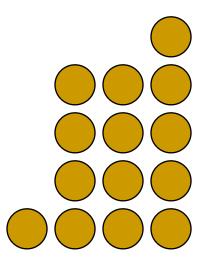
		Heterogeneous nucleation contact angle (deg)			
Material	Homogeneous nucleation	100	60	40	
SiO ₂ glass ^a	9×10^{-6}	10 ⁻⁵	8×10^{-3}	2×10^{-1}	
GeO ₂ glass ^a	3×10^{-3}	3×10^{3}	1	20	
Na2O·2SiO2 glass ^a	6×10^{-3}	8×10^{-3}	10	$3 \times 10^{+2}$	
Salol	10				
Water	107				
Ag	10 ¹⁰				
Typical metal ^a	9×10^{8}	9×10^{9}	1010	5×10^{10}	


^a After P. I. K. Onorato and D. R. Uhlmann, J. Non-Cryst. Sol., 22(2), 367-378 (1976).

Calculating the Critical Cooling Rate

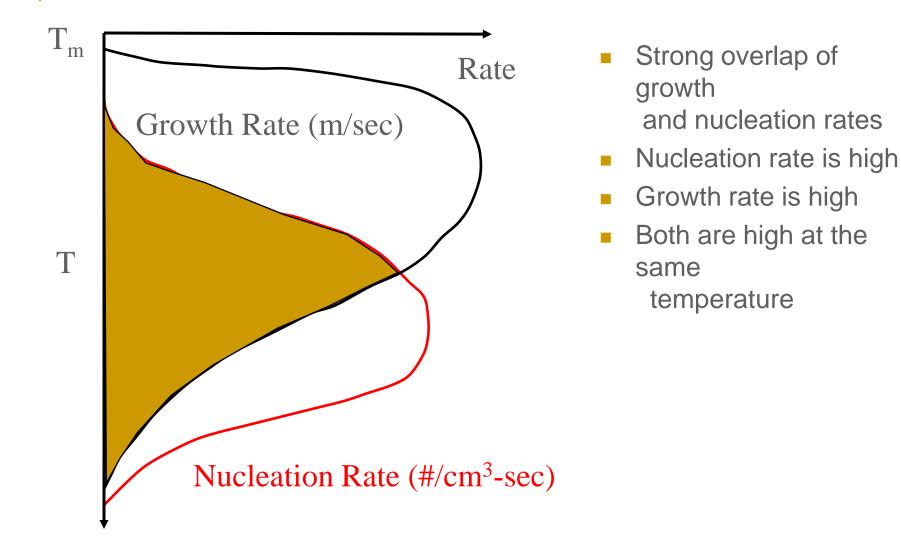
- The kinetic approach to glass formation then becomes:
 - What is the R_c value for a particular liquid?
 - □ If $R_c >> 100^{\circ}C$ /sec, then the liquid is a poor glass former
 - If R_c is << 1°C/min, the the liquid is a good glass former
 - How can R_c be calculated?
 - What are the factors that control R_c ?

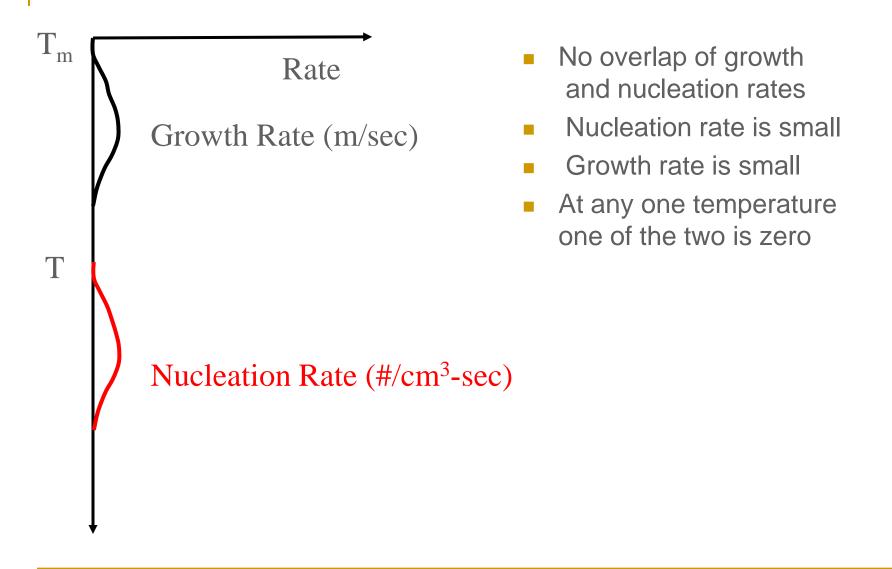

Nucleation and Growth Rates Control R_c


- Nucleation, the first step...
- First process is for microscopic clusters (nuclei) of atoms or ions to form
 - Nuclei possess the beginnings of the structure of the crystal
 - Only limited diffusion is necessary
 - Thermodynamic driving force for crystallization must be present

Growth of crystals from nuclei

- Growth processes then enlarge existing nuclei
- Smallest nuclei often redissolve
- Larger nuclei can get larger
- Thermodynamics favors the formation of larger nuclei




Nucleation and Growth Control R_c

- Poor glass formers:
 - Liquids which quickly form large numbers of nuclei close to T_m
 - That grow very quickly
- Good glass formers
 - Liquids that are sluggish to form nuclei even far below T_m
 - That grow very slowly

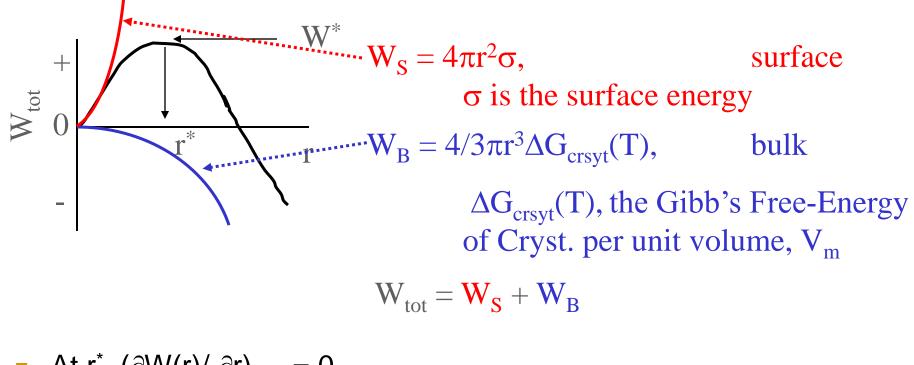
Nucleation and Growth Rates – Poor Glass Formers

Nucleation and Growth Rates – Good Glass Formers

Nucleation Rate Theory

- Rate at which atoms or ions in the liquid organize into microscopic crystals, nuclei
- I = number of nuclei formed per unit time per unit volume of liquid
- Nucleation Rate (I) \propto

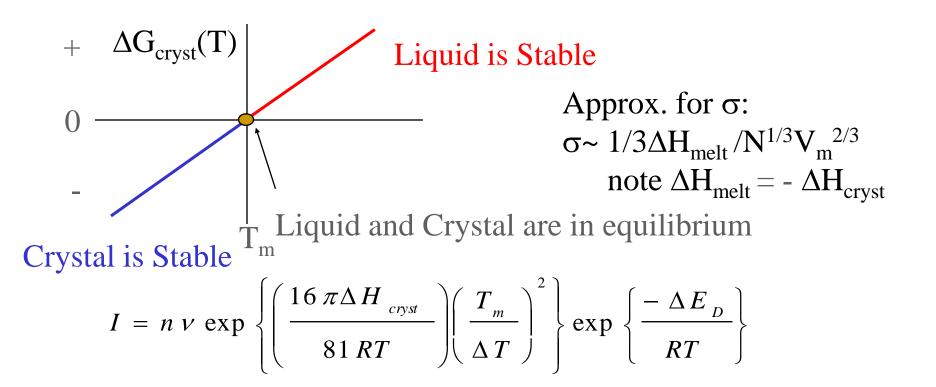
number density of atoms x fastest motion possible x thermodynamic probability of formation x diffusion probability


Nucleation Rate Theory $I = nvexp(-NW^*/RT)exp(-\Delta E_D/RT)$ Number density Fastest motion Thermodynamic probability Diffusion probability

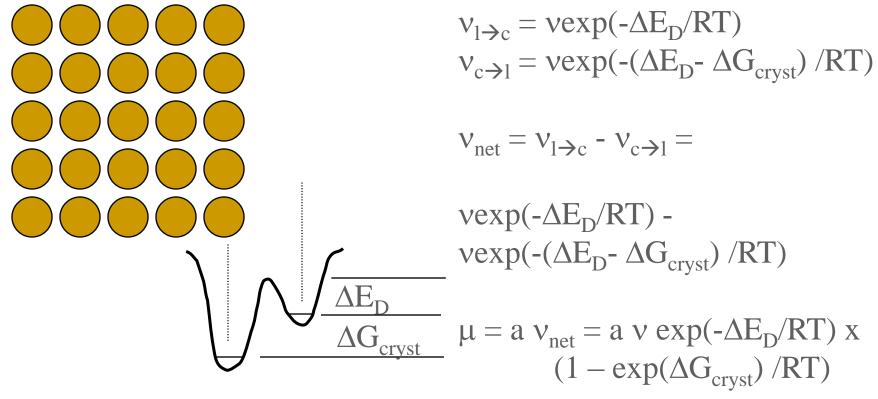
- n = number density of atoms, molecules, or formula units per unit volume
 - = ρ N/Atomic, molecular, formula weight
- v = vibration frequency ~ 10¹³ sec⁻¹
- N = Avogadro's number
 - = 6.023 x 10²³ atoms/mole
- W* = thermodynamic energy barrier to form nuclei
- ΔE_D = diffusion energy barrier to form nuclei ~ viscosity activation energy

A word about the $f(x,T) = \exp(-x/T)$ function

- This function is bounded between 0 and 1
- As x >> 0, f >> 1
- As x >> ∞, f >> 0
- As T >> 0, f >> 0
- As T >> ∞, f >> 1
- Sketch a series of curves for T dependence on linear f and log f
- Linear T and 1/T


Nucleation Rate – Thermodynamic barrier W^*

- At r^{*}, $(\partial W(r) / \partial r)_{r=r^*} = 0$
- $r^* = -2\sigma / \Delta G_{cryst}(T)$
- $W(r^*) \equiv W^* = 16\pi \sigma^3/3(\Delta G_{cryst}(T))^2$


Nucleation Rate I(T)

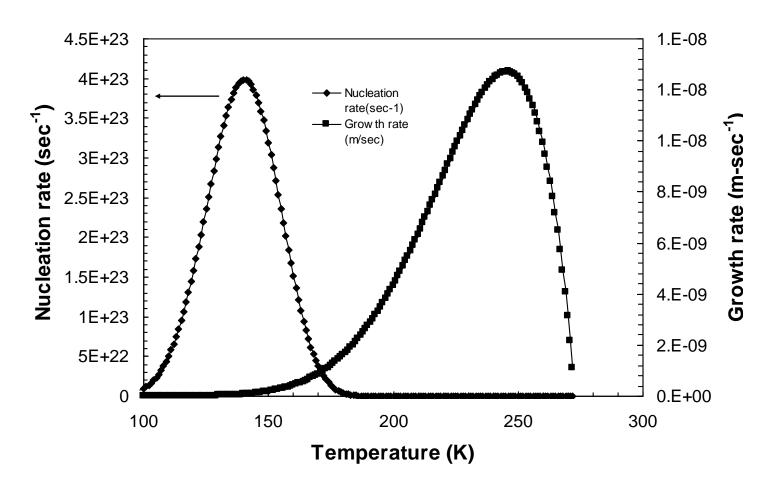
- I = $nvexp(-N 16\pi \sigma^3/3(\Delta G_{crsyt}(T))^2/RT)exp(-\Delta E_D/RT)$
- $\Delta G_{cryst}(T) = \Delta H_{cryst}(T_m)(1 T/T_m)/V_m \equiv \Delta H_{cryst}(T_m)(\Delta T_m/T_m)$

Growth Rates $\mu(T)$

- Crystal growth requires
 - Diffusion to the nuclei surface
 - Crystallization onto the exposed crystal lattice

Growth Rates - $\mu(T)$

Diffusion coefficient, D

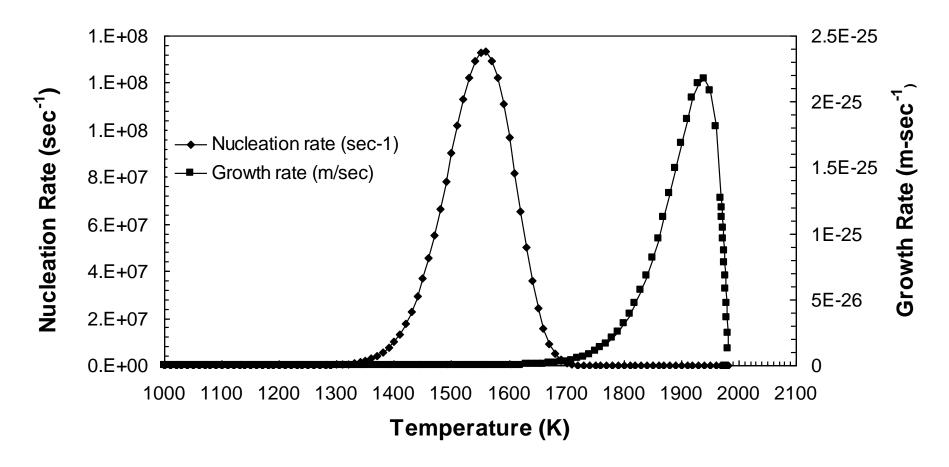

$$D(T) = a^{2} v \exp \left[\frac{-\Delta E_{D}}{RT}\right] = \left(\frac{fRT}{3N\pi a \eta(T)}\right)$$

Stokes-Einstein relation between D and η

Hence:

$$\mu(T) = \left(\frac{fRT}{3N\pi a^2 \eta(T)}\right) \left(1 - \exp\left[\left(\frac{\Delta H_m}{RT}\right)\left(\frac{\Delta T}{T_m}\right)\right]\right)$$

Nucleation and Growth Rates

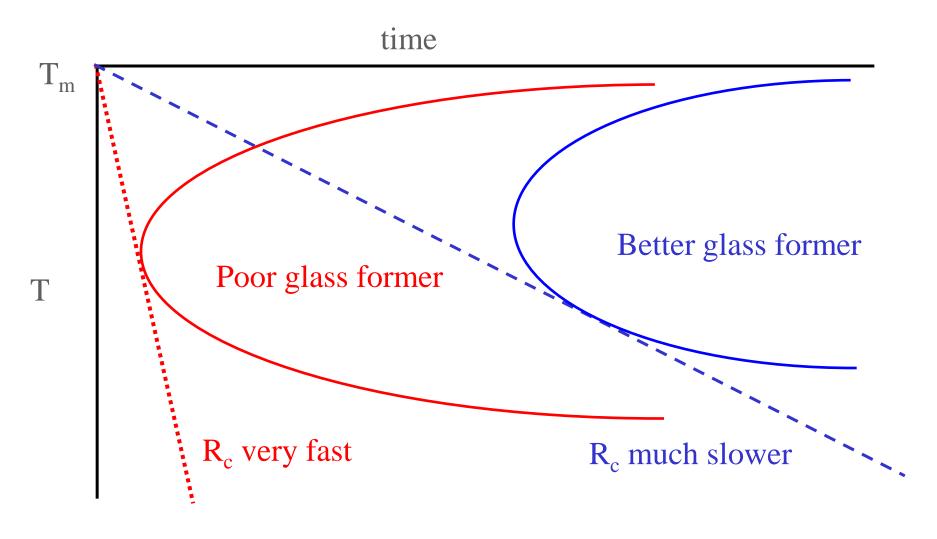


Nucleation and Growth Rates for Water

Advance Vitreous State: The Structure of Glass Section 1: Lecture 2 - Fundamentals of Glass Formation: Structural and Kintic Approaches SWMartin

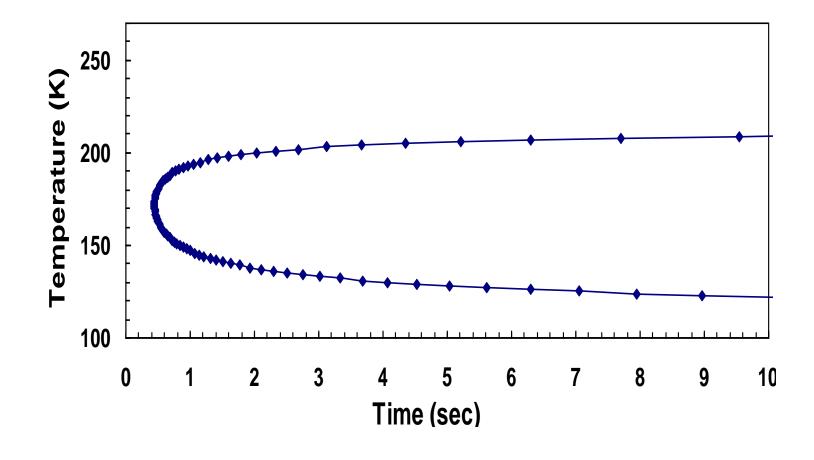
Nucleation and Growth Rates

Nulceation and Growth for Silica



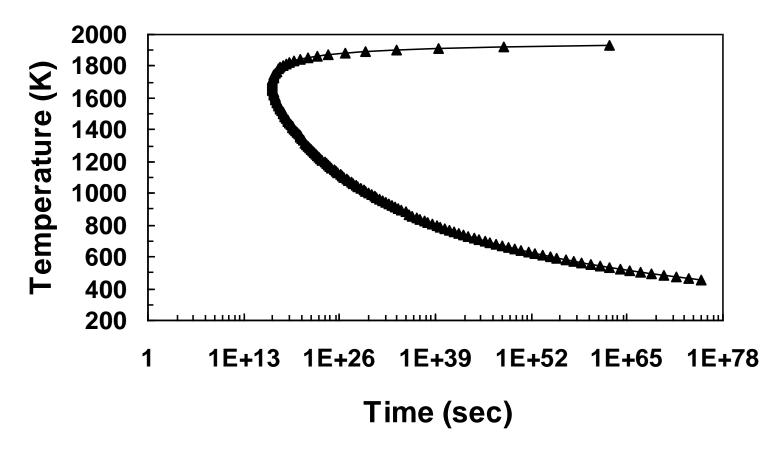
Advance Vitreous State: The Structure of Glass Section 1: Lecture 2 - Fundamentals of Glass Formation: Structural and Kintic Approaches SWMartin

Time – Temperature – Transformation Curves (TTT)


- How much time does it take at any one temperature for a given fraction of the liquid to transform (nucleate and grow) into a crystal?
- $X(t,T) \sim \pi I(T) \mu(T)^{3} t^{4}/3$
- where X is the fractional volume of crystals formed, typically taken to be 10⁻⁶, a barely observable crystal volume

TTT curves and the critical cooling rate, R_c

Time Transformation Curves for Water


T-T-T Curve for water

Advance Vitreous State: The Structure of Glass Section 1: Lecture 2 - Fundamentals of Glass Formation: Structural and Kintic Approaches SWMartin

Time Transformation Curves for Silica

T-T-T Curve for Silica

Summary

Glass formation results when the internal structural timescale of the liquid **becomes** or is **forced to become** significantly longer than the external time scale of the surroundings near the melting or liquidus temperature of the liquid

- Create high viscosity of the liquid near the melting point of the liquid that frustrates crystallization
 - Network bonding favorable for high viscosity
 - Configurational complexity that frustrates crystallization pathways
 - Suppress the melting point through compositional complexity to slow crystallization process
- Surpass crystallization processes by limiting available to system for them to occur
 - Exceed critical cooling rate in region near and below the fusion point of the liquid