Effect on Glass Structure-Photo-induced structural modification

Kathleen Richardson and Laeticia Petit Clemson University richar3@clemson.edu

Outline

- Radiation and photo-structural effects
 - What is photosensitivity
 - Photosensitivity versus "damage"
- Absorption mechanisms
 - Intrinsic and Extrinsic
 - One photon (linear), two photon (2PA), Broadband
 - Defect-based processes
 - □ Expose only, expose heat treat
 - Hydrogen-loading of SiO2 (Simmons-Potter and Stegeman..fiber papers)
 - PTR, photo-chromic materials (Borelli, Glebov, other?)
 - Nano-particle doped: surface plasmon effects
 - Dose and Power
 - Cumulative dose (Viens paper on 514nm written gratings in ChG)
 - Jiyeon data MHz versus KHz exposure
 - Induced absorption, induced refractive index change
 - Correlation to structure and mechanisms
 - KCR work (Cedric), Frumar work

Outline continued

- Reversibility and Stability of photo-induced structure
 - Permanent versus reversible with heat treatment
 - Light induced nucleation and dissolution
 - Engineering structural stability
 - Writing in fresh films, ability to write in aged films (Zoubir work)
- Compositional effects : glass network, intermediates, modifiers
 - Examples (historic)
 - SiO2 : Griscom and Friebel :radiation damage
 - Photo-enhanced etching behavior (Russian lithography refs)
 - Corning Photoform, Photochromic (Stookey)
- How do we create?
 - Broadband exposure (UV lamp, laser Heike review article on Photosensitivity)
 - laser exposure (514, 800, fs)
 - Synchotron exposure (in-situ work of H. Jain on As-Se)

How do we measure?

- Characterization of photo-structural modification
 - Bonding changes, absorption changes, structureinduced property changes
 - Photo-darkening (light induced absorption)
 - Zygo films measurements of Δn
- Measurement-induced modification
 - Near bandgap exposure in ChG's (bulk)
 - Gratings in ChG Films (peaks and valleys)
 - Fibers gratings written along length for device applications

Definition photosensitivity

- The term of photosensitivity can be described as the refractive index and/or absorption change that can be induced by radiation (light, laser irradiation, γ, x-ray, etc) in a glassy material; it is of great important for the fabrication and design of optical devices such as gratings and waveguides.
- Photosensitive glass was explored and developed in the 1950s for micro-structuring using ultraviolet (UV) light.
- Photosensitivity can be intrinsic or extrinsic

Extrinsic absorption mechanisms: Defect-based process

- Photochromic materials changes in color (absorption) when exposed to light due to activation of a dopant by a photon of characteristic energy
- Exposure at one wavelength (by a photon of sufficient energy, hv) can cause a change in one direction (activation), which can be reversed
 - by exposure at another wavelength, or
 - by thermal relaxation.
- Applications: Holograms can be written by exposure of a bleach-able material or by bleaching of an activated material.

Photochromic glasses

Dr. Stookey created major life-changing inventions including photosensitive and photochromic glasses, and glass-ceramics and was presented with the National Medal of Technology from President Ronald Reagan in recognition of his scientific achievements in 1986.

Stookey, an industrial researcher and inventor, was truly one of the major pioneers at Corning Glass Works, N.Y., whose work not only made an impact on the company in the United States but also in France. When he began his career at Corning in 1940, the company, the economy and the times were ripe for new discoveries.

Mechanisms – Photochromic sun glasses

Photochromic glasses can be characterized principally by four important properties:

- 1. Darkening or 'on' time (cf. Fig. 2(a)).
- 2. Fading or 'off' time (cf. Fig. 2(b)).
- 3. Fatigue (which should be absent).
- 4. Darkest and lightest condition (contrast).

Fig. 1. Behavior of photochromic glass in eyeglasses and in a window.

Absorption mechanisms: Defect-based process

- Ce is often used as a sensitizer as it promotes release of electrons upon visible excitation
- The microstructuring process under the UV light can be described as a 4 step process.
- Exposure to the UV light photo-ionizes/oxidizes Ce³⁺ to Ce⁴⁺, resulting in the generation of free electrons.

2) In Ag-based photochromic processes, some of these free electrons reduce the silver ions (Ag⁺ to Ag⁰). (2) $(a_{Ag}^{+}) \rightarrow (Ag^{+})$

Absorption mechanisms: Defect-based process

3) Under a successive heat-treatment protocol, precipitated Ag atoms diffuse to form clusters.

If the Ag clusters reach a given volume, they become the nuclei for the growth of a crystalline phase that is comprised of lithium metasilicate.

Note

These metasilicates are preferentially soluble in a dilute solution of hydrofluoric (HF) acid with a contrast ratio of etching selectivity of 20–50 compared with UV unexposed regions.

As-melted or virgin glass

transparent

<u>**PTR glasses : What do they look like?</u>**</u>

PTR glass spontaneously crystallized (Heat-Treatment **ONLY** at 600°C for 10 hrs)

opaque

PTR glass heterogeneously crystallized (UV exposure and Heat-Treatment at 520°C), transparent but colored

Glass Structure: Photo-induced structural modification

Absorption spectra of Ce-free PTR glass at different stages of the photo-induced process (2 J/cm²). No absorption band was recorded.

Induced refractive index measurement in a virgin PTR glass.

Interferometry

Interfering beams propagating through a material illustrates it's refractive index homogeneity

Absorption and induced absorption of PTR glass at different stages of UV irradiation (2 J/cm² and 20 J/cm²) and heat-treatment

From H. Francois St.Cyr, PhD thesis, University of Central FL/CREOL, (2001) "Photo-thermal-refractive Glasses: Crystallization Mechanism for Optical Applications"

richar3@clemson.edu

Crystallized phases: induced index change

Phase	PDF #	System	Group	a(Å)	b(Å)	c(Å)
NaF	36-1455	Cubic	Fm3m	4.633	4.633	4.633
NaBr	36-1456	Cubic	Fm3m	5.974	5.974	5.974
NaBr	27-0658	Cubic	N/A	12.133	12.133	12.133
Ag	04-0783	Cubic	Fm3m	4.086	4.086	4.086
Ag	41-1402	Hexagonal	P63/mmc	2.886	2.886	10.000
AgF	25-0762	Cubic	Pm3m	2.945	2.945	2.945
AgF	03-0890	Cubic	Fm3m	4.921	4.921	4.921
AgF	32-1004	Hexagonal	P63mc	3.246	3.246	6.226
AgF ₂	19-1134	Orthorhombic	N/A	5.813	5.529	5.073
AgF ₃	45-0159	Hexagonal	N/A	8.989	8.989	9.815
AgBr	06-0438	Cubic	Fm3m	5.774	5.774	5.774

XRD pattern of virgin and crystallized PTR

(A-B) Low- and (C-D) High-magnification TEM images of spontaneously crystallized PTR glass prepared by TP and FIB respectively.

Photosensitivity (PS)

permanent refractive index change ∆n by laser exposure

From "Photosensitity, Fundamentals and Overview", H. Ebendorff-Heidepriem

faculty@university.edu

Structure of Glass: Section being lectured

Laser material modification: pulsed direct write or cw laser interaction, ablation

- Focusing a cw source or a femtosecond near-IR beam in a transparent material produces a local change of the refractive index
- fs-regime writing allows volumetric processing and minimizes thermally induced defects often seen in ns experiments; lack of thermal "damage" to material results in clean features
 - Glass structure reorganization (bond bending and/or breaking)
 - Photoexpansion or densification
 - Refractive index modification (+ or -)
- Sub-micron precision 0.5 μm demonstrated for fs (Schaffer et al., Opt. Lett. 26, 2001)
- Real time serial fabrication, 3-D structuring possible, not amenable to high volume processing due to limitations of writing speed

ns or other "conventional" faculty@university

(b)

fs exposure with minimal debris and thermal

Microchannels

Optical Fibres

Courtesy Exitech Corp.

Examples of Processing of Glass and Ceramic Materials

Femtosecond Laser Micromachining Ceramics

Spectra Physics "Hurricane" Laser

Excimer Laser Patterning

Microlenses

Really Need True 3D Patterns and a Cost Effective Processing Approach

faculty@university.edu

Structure of Glass: Section being lectured

Two regimes of *direct* writing

Dependence of axial shape of structural modification on writing approach

transverse writing longitudinal writing

1-photon

2-photon

THE AEROSPACE CORPORATION

> Direct-Write Patterning Using Various CAD (AutoCadTM) Patterning Layers 355 nm 266 nm (high dose) 266 nm (low dose) 248 nm Additional "Layers" that can be added

Platinum metal deposition

faculty@university.edu

21

Δn

What is a Photostructurable Glass Ceramic Material or Photoceram

Example: FoturanTM (Schott Corp.)

Property	Foturan in the Vitreous
	State
Young's Modulus	$78 \times 10^3 \text{ N/m m}^2$
Poisson's Ratio	0.22
Knoop Hardness	4600 N/m m^2
Modulus of Rupture	60 N/mm^2
(M O R)	
Density	2.37 g/cm^3
Thermal Expansion	$8.6 \ 10^{-6}/K$
Thermal Conductivity	$1.35 \text{ W/m K} @ 20^{\circ}\text{C}$
Specific Heat	0.88 J/gK @ 25°C
Glass-ceramic	465 °C
Transform ation	
Temperature	
Electrical Conductivity	$8.1 \times 10^{12} \text{ O hm} - \text{cm} @ 25^{\circ}\text{C}$
	$1.3 \times 10^7 \text{ Ohm-cm} @ 200^{\circ} \text{C}$
Dielectric Constant	6.5 @ 1 M H z, 25 °C

Copyright © 2002 by The Aerospace Corporation

Processing Photoceramic Glasses Typical Process Flow

Step 1: Illumination/Latent Image

 $Ce^{3+} + hv (312nm, 2 J/cm^2) \rightarrow Ce^{4+} + e^{-}$

Step 2: Ceramization to a Meta-Silicate

Step 3: Preferential Isotropic Etching

• Crystalline Li₂SiO₃ dissolves 20x faster than the amorphous glass in 5% hydrofluoric acid.

• $Li_2SiO_3 + 3HF \rightarrow 2LiF + H_2SiF_6 + 3H_2O$

Schott/SGT April 2002

Copyright © 2002 by The Aerospace Corporation

Exposure at Multiple Wavelengths Can Result in the Fabrication of Unique 3D Patterns

So...as we'd expect

Chemistry dictates the structure of the material (purity matters) Structure dictates the properties Optical properties are dictated by chemistry and processing route (thermal history dictates V, $\rho => n$); impurities define intrinsic absorption properties (α , α_2) Thus...material's photo-response will be dependent on all of these attributes

What does this mean to absorption? network formers and modifiers

Additions of Al₂O3 and B₂O₃ improve the tetrahedral network structure, consuming NBO's and move the UV edge back up to higher frequencies.
PbO which is present in moderate concentrations in may flint optical glasses, shifts (v) the UV edge significantly.

Absorption and Dispersion

Photo-induced property changes Exposure (hv) induced: Structural reorganization (bond bending); reversible As,S, Structural reorganization (bond breaking) permanent As₂S₃ and other glasses Structural reorganization (melting and solidification: cooling rate causes ΔV , Δn) <u>Crystallization</u> - realized through exposure and heat treatment=> to yield new phase with: **Refractive index variation (** Δ n crystal $\neq \Delta$ n glass) **PTR** Creation of a new phase with etch rate (contrast) faculty@university.edu 38

Material absorption: response to laser light network structure, dopants

		spectral wave-		laser type		Regime	
Material absorption spe	lange	lengui					
		VUV	157nm	F ₂		pulsed	
	UV	193nm	ArF excimer		pulsed		
JCe			244nm	Ar+	2.Harmonic	CW	
		248nm	KrF excimer		pulsed		
apse		266nm	Nd:YAG 3.Harm.		pulsed		
			325nm	HeCd		CW	
vadeuth	VIS	457 - 488 nm	Ar ⁺ various lines		CW		
	NIR	800nm	Ti:	fs			
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		efect, Dop osorption efect, dopant \approx elective ext e-SiO ₂ 24 μ^{2+} , Ce ³⁺ 24 μ^{3+} 46 g ⁺ 42	2000 λ _{Laser} citation 44 & 248 m 44 & 248 m 56 nm 20 nm	im im	$\frac{\text{Laser (write wavelength})}{\text{wavelength}}$ $\lambda_{\text{laser}} \gg \lambda_{\text{glass}}$ $\frac{\text{Single vs m}}{\text{photon product}}$ $\frac{\text{glass}}{\text{Ge-SiO}_2} = 4$	ting) <u>h</u> ss nulti- cesses 800 nm 88nm	

From CEncy Gressens Ryedous ensitivity Fundamentalscared Overview," Heike Ebendorff-Heidepriem, PBSc. 1st International Workshop on Glass and the Photonics Revolution (2002)

Dopants/impurities and spectral regimes

FIGURE 109a-g. Spectra of some transition elements in sodium silicate glasses, from Bamford [41, 42] (ε = molar normal extinction coefficient in 1/[mole cm]).

 $\begin{array}{c} ---- Na_2O \text{ content about 15 mole \%} \\ ---- Na_2O \text{ content about 40 mole \%} \end{array} \right\} \text{ Melted in oxidizing atmosphere} \\ ---- Na_2O \text{ content about 15 mole \%} \\ ----- Na_2O \text{ content about 40 mole \%} \right\} \text{ Melted in reducing atmosphere}$

faculty@u

Now...what happens upon exposure to light?

Absorption and other properties of material
Form of the material (bulk, film, fiber)
Desired modification we want
Exposure conditions

Permanent, reversible, ablative

Structure of Glass: Section being lectured

faculty@university.edu

Structure of Glass: Section being lectured

Δn structures

Two distinct processing regimes of fs exposure: As_2S_3 films

I (GW/cm²)

25

Deterministic ablation threshold ~35 GW/cm² for chalcogenides; Absolute value varies with composition <u>Trenches</u> (left) ablated through the chalcogenide thin film in ablative regime (I > 35 GW/cm²)

15

5

<u>Surface expansion</u> (right) realized in fs sub-threshold regime; <u>extent of change</u> in structure, topography and resulting index change is dependent on writing conditions and wavelength

faculty@university.edu "Direct femtosecond laser writing of optical waveguides in As₂S₃ thin films," A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, <u>Optics Letters</u> 29 7 (2004)

Direct write fs laser micro-fabrication in As₂S₃

Micro-ablation of relief features (grating)

Micro-restructuring of material Photo-induced expansion (phase grating)

•Surface profile (Zygo New View white light interferometer microscope)
 •Typical width of exposure features ~10 μm (FWHM)

*"Microfabrication of waveguides and gratings in chalcogenide thin films," A. Zoubir et al., Technical Digest. CLEO pp 125-126 (2002) "Direct femtosecond laser writing of optical waveguides in As*₂S₃ *thin films," A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, <u>Optics Letters</u> 29 7 (2004)*

faculty@university.edu

Structure of Glass: Section being lectured

Design and Dimensions

	∆n structure	starting device					
Bragg gratings							
1D	Fiber Bragg gratings	1D	single-mode fibre				
			channel waveguide in planar device				
2D	planar gratings	2D	thin film on substrate				
	grating limited to exposed surface	3D	bulk				
3D	volume gratings, holograms	3D	bulk: d = 2 - 7 mm d = 100-200µm				
	Long peri	od gratir	ngs				
1D	LPG in fibre	1D	single-mode fibre				
Waveguides							
1D	channel	2D	thin film on substrate				
		3D	bulk: E _{laser} > E _{band-gap}				
>1D	multi-mode	3D	bulk: E _{laser} < E _{band-gap}				

Fabrications of Gratings

faculty@university.edu

Structure of Glass: Section being lectured

Glasses for Gratings

faculty@universit

Fiber Bragg Gratings

 \bigcirc sensors $\leftrightarrow \otimes$ DWDM

Schematic experimental set-up for hologram and grating writing

1D Gratings in planar devices

e.g. R=95% $\rightarrow \Delta n \cdot L = 1 \cdot 10^{-3} \text{ mm}$					
	<u>fiber</u>	<u>planar</u>			
Δn	5 ·10 -5	1 ·10 -3			
L	2cm	1mm			

faculty@university.edu

Structure of Glass: Section being lectured

Planar and volume Gratings

Planar and volume Gratings

Frequency selective filters

tuning by sample rotation and tilting

 \rightarrow different $\theta_i \rightarrow$ different $\lambda_i = 2 \cdot \Lambda \cdot \sin \theta_i$

fac

Fabrication of Waveguides

faculty@university.edu

Structure of Glass: Section being lectured

Waveguides

applications

fabrication of channel waveguides in integrated optical devices

- easy and fast process
- \succ no sharp bends \rightarrow low rad. losses

self-writing:

- buried waveguides in one step
- complex structures (Y-couplers, tapers) by tailoring the writing beam shape

waveguide characterization

- > waveguide image and mode-profile
- Surface changes by AFM and profilometer
- ≻ ∆n measurements:

from NA but modelling complex mode-profiles? from beam output narrowing during self-writing

Glasses for Waveguides

GaLaS, FP:Ce,Eu, PbO-SiO₂, Ge-SiO₂ > 244nm cw, direct-writing Na-borosilicate:Nd, Ge-SiO₂ > 455-488nm cw > high transmission → self-writing oxide, fluoride, sulfide

800nm fs, train of pulses

Material response: Direct-writing in fused silica - tuning to absorption is only part of the issue

lectured

- Multi-photon exposure conditions
- 800 nm fs pulses; shown is dose
- Waveguide homogeneity highly dependent on irradiation parameters
- High pulse energy and/or slow translation speed induces too much inhomogeneity to support waveguiding
- Low pulse energy and/or fast translation speed results in not inducing a high enough ∆n to support waveguiding

faculty@university.edu

Direct-write in fused silica

The resulting refractive index change is estimated from the waveguide NA

 $NA = \sqrt{2n\Delta_n}$

Cross-sectional view

Typical Δn ~ 0.004 Pulse energies ~ few μJ

Structure of Glass: Section being lectured

faculty@university.edu

58

Direct-write in fused silica

Different modes are supported depending on the ∆n created

faculty@university.edu Coupling efficiency Cha30% ction being lectured

Direct-write in IOG-1 (phosphate) glass - fs (130 fs)-written (800 nm), 0.3 µJ/pulse (D. Krol, UC-Davis/LLNL)

Fluorescence spectra (left) for modified (red) and unmodified (black) IOG-1 phosphate glass. λ_{exc} = 488 nm. Increase emission is attributable to formation of POHC defect upon illumination via proposed mechanism below.

Proposed mechanism for the production of phosphorus-oxygen hole center (POHC) defects. The precursor consists of two nonbridging oxygen (NBO) atoms (pink) connected to a phosphorus (blue) atom, a defect that is common in phosphate glasses. A hole gets trapped on two orbitals of the two oxygen atoms to form the fac POHC. Resulting index change in exposed region of the glass is (-). ⁶⁰

Absorption and *induced* absorption in ChG: influence of Se

- Substitution of As atoms by chalcogens has little effect on linear absorption (in 3->7 series)
 Nonlinear absorption changes
 Se content primary α driver; not
- only participant for $\Delta \alpha$

Extent of modification (Δα) increases with dose; effect is directly related to chalcogen (primarily Se) content
 Not solely linear with chalcogen content; nonlinear absorption (two photon?)
 Sec Influence of lone pair(s) of species affects n₂

Photo-induced index change: Δn measurement in As₂S₃

Aging to remove deposition-induced stress to yield stable, relaxed network structure <u>does not adversely affect resulting film photosensitivity</u>.
 Measured ∆n is similar to those from early studies using short wavelength light Structure of Glass. Section being Omachi et al., Appl Phys. Lett. (1972), ∆n = 0.104 62

Dose/Intensity-dependence on induced Δn (λ =800 nm, 100 fs pulses, 24 MHz rep rate): As₂S₃ films

 The An values measured for As2S3 (> 0.08) are much

 larger than for oxider glassestion at the state of the sta

MHz fs laser machining system with in-situ microRaman spectroscopy

Goal: probe dynamic material response during laser writing to ascertain detailed knowledge of material modification mechanisms and kinetics

Supported through NSF-MRI grant # DMR 0321110, "Development of a Femtosecond Laser-Materials"In adiation and Student Probing Facility for Nano- and Micro-processing Applications and Student Training"

Free electron model in As₂S₃

 Photo-chemical: bond modification
 Photo-expansion: ΔV
 Photo-refraction: Δn
 Photo-darkening: Δα
 Increase in thermal conductivity (via μTA): Δκ

Avalanche ionization

$$\frac{\partial_{n_e}}{\partial_t} = \alpha_{I(t)n_e} + \sigma_k I(t)^k$$

Multiphoton ionization

A. Zoubir et al., "Direct femtosecond laser writing of waveguides in As2S3 thin films," <u>Optics</u> Letters, Vol. 29 7 (2004) XXX

Intensity (W/cm²)

Free electron model

 $\frac{\partial_{n_e}}{\partial_t} = \sigma_k I(t)^k \cdot \frac{N_0 - n_e}{N_0}$

Free electron density

<u>Depletion parameter</u>: maximum number of bonds available to participate in the photo-chemical <u>reaction process</u>

A. Zoubir et al., "Direct femtosecond laser writing of waveguides in As₂S₃ thin films" Optics Letters 29 7 (2004)

Direct write in polymers: absorption

Figure 4.10: Transmission curves for a representative group of polymers. Loss in the IR comes from multiphonon absorption of light carbon-bonded species (C–H) (after Keyes 1995).

3-D Writing in PMMA fs writing (800 nm) in 25 MHz irradiation regime

1-channel waveguides

"Femtosecond laser fabrication of tubular waveguides in PMMA," A. Zoubir, C. Lopez, M. Richardson, K. Richardson, Optics Letters, in press, (2004) faculty@university.edu lectured 68

Direct-write in PMMA

- Low cost of production and ease of processing and fabrication
- Can be easily tailored to obtain the desired optical parameters (nonlinear coefficient, electro-optic coefficient, photosensitivity)
- Can be doped with conjugated chromophores or rare-earth ions

 Annular refractive index distribution caused by thermal expansion in the focus - resolved by a DIC microscope
 (-) induced index is similar for other chain-structured materials such as in glass materials such as phosphate glass (Schott IOG-1) see "Chan et al., "Flugnesternon" Spectroscopytofic plor Centers Generated in faculty Choisphate, Classes after Exposure the Elemetosecond Laser Pulses," 85 5 1037 (2002)9

Direct-write in PMMA

Structures are highly multi-mode (large dimensions)

Unusual mode are allowed to propagated in such structures

Near-field intensity distribution measured and calculated by the finite-difference method

Refractive index change estimated from simulation: **∆n ~ 0.002**

Material response: induced Δn with $\lambda = 244$ nm (dbl'd Ar⁺)

GLASS TYPE ^a	BAND EDGE (nm)	DEFECT/ DOPANT absorption	SAMPLE GEOMETRY ^b	Δn (10 ⁻³)	WAVEGUIDE STRUCTURE & COMMENTS	Refs.
D ₂ -loaded Ge-doped silica	<200nm	~240 nm GODC	buried layer PECVD	7	channels	[1,2]
H ₂ -loaded Ge-doped silica	<200 nm	~240 nm GODC	buried layer by FHD	>0.3	channels with integral Bragg gratings	[3]
Ge-doped silica	<200 nm	~240 nm GODC	bulk plate		vertical slabs	[4]
SGBN: 6%GeO ₂ d _{laser} =0.27mm	<200 nm	~240 nm GODC	bulk plate	0.5	vertical slabs	
SGBN: 20%GeO ₂ d _{laser} =0.03mm	<200 nm	~240nm GODC	bulk plate	0.8 1.2	low speed: sub-ridge channels; high speed: vertical slabs	
SGBN	<200 nm	~240 nm GODC	buried layer by IO		channels	[5]

a) SGBN: germanium-borosilicate, FP:fluorophsosphate, GLS: gallium lanthanum sulfide b) IO: Na-K ion exchange Structure of Glass: Section being From "Laser writing of waveguides in photosensifive glasses," H. Ebendorff-Heidepriem, J. faculty@university.edu Opt. Mat., in press (2004)

GLASS TYPE ^a	BAND EDGE (nm)	DEFECT/ DOPANT absorption	SAMPLE GEOMETRY ^b	Δn (10 ⁻³)	WAVEGUIDE STRUCTURE & COMMENTS	Refs.
Pyrex borosilicate	~200 nm	<300 nm impurities	bulk plate		vertical slabs	[6]
			surface layer by IO	2	channels	
Fluoro- aluminate: 2.51%CeF ₃	<200 nm	~250 nm Ce ³⁺ very strong	Spin coat buried layer	~10	channels between ridges, photo-expansion	[7]
FP: (less than) 0.05%LnF ₃ d _{laser} ≥0.5mm	<200 nm	250nmEu ²⁺ 260 nm Ce ³⁺	bulk plate		vertical slabs	[8]
PbO-SiO ₂ 45-74 wt%PbO	>300 nm		bulk plate	2.7-6.9	channels, photoexpansion	[9]
Bi ₂ O ₃ -based	~450 nm		bulk plate; surface layer by spin coating	0.4	channels beneath changed surface	[10]
GLS d _{laser} ~0.04mm	~500 nm		bulk plate	1	channels beneath valley, compaction, change in composition	[11,12]
a) SGBN: ger	manium-boro	silicate, FP:flue	prophsosphate	e, GLS: gall	ium lanthanum	sulfide

b) IO: Na-K ion exchange From "Laser writing of waveguides in photosensitive glasses,"^GH. Ebendorff-Heidepriem, <u>J. Opt.</u> Mat., in press (2004)

Proposed mechanisms for structure/induced index variation

Mechanism varies with composition and glass structure

- Writing wavelength's impact on glass structure: relaxation or re-organization; intrinsic absorption of matrix
- Network connectivity: laser induced compaction or expansion drives volume and index change
- GLS and SiO₂=> compaction 3D network re-organizes
- As₂S₃ and Zr-Ba-F =>(bulk) glasses start out with higher density, can expand due to weak interlayer bonds (films?)

Absorbing species: *enhanced* UV absorption

GODC: germanium-oxygen deficient centers: network

Q λ = 240nm, 3-coordinated GeO₃⁺ species has strong absorption as a result of enhanced polarizability

Other defects: hole centers; e⁻ species, color centers
 EU ²⁺ at 250 nm, Ce ³⁺ at 260nm: added absorption through dopants Structure of Glass: Section being lectured

Dynamics

decay

> dependence on time and temperature

- \rightarrow long-term and thermal stability of gratings
- study by isochronal annealing

Photosensitivity mechanisms

 $\rightarrow \Delta \alpha = f(z) \rightarrow \Delta \alpha_{eff}$

faculty@univ

faculty@university.edu

Structure of Glass: Section being lectured

Photosensitivity mechanisms

Densification model

- ➢ densification (△V) accommodated by photoelastic effect (△polarizability)
- > structural rearrangements
 - \rightarrow collapse of high-order ring structure
- Iarge part in AI-SiO₂
- > not in H_2 -loaded Ge-SiO₂ → CC model

Photoexpansion

➢ structural rearrangements→ widening of interlayer distances

Photosensitivity mechanisms

Photosensitivity characterization

79

Outlook

80