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A MC simulation of a material is easy to perform.

 At each iteration of the simulation, a new configuration is generated.  

This is usually done by making a random change to the coordinates of 

a single randomly chosen particle using a random number generator 

(RNG).

E.g. xnew = xold + rmax

ynew = yold +  rmax

znew = zold +  rmax

Here = 2 -1 and is in the range (0,1). rmax is the maximum allowed 

displacement in any direction.

 A unique random number is generated for each direction.

Implementing Metropolis MC
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 The potential energy of the new configuration is then calculated.

 Since the change from the previous configuration involves the 

motion of a single particle, only those contributions to the energy 

resulting from the particle’s new position need to be recalculated.

 If periodic boundaries are used, the minimum image convention 

must be invoked in calculating the energy (more on this later).

Implementing Metropolis MC
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 If the new configuration is lower in energy than the previous 

configuration, then the new configuration is retained as the starting 

point for the next iteration.

 If not, then the Boltzmann factor exp(-[Unew-Uold]/kBT) is calculated and 

compared to a random number between 0 and 1.

 If the random number is less than or equal to the Boltzmann factor, the new 

configuration is accepted.

 If the random number is greater than the Boltzmann factor, the new 

configuration is rejected and the previous configuration is retained for the 

next iteration.

The acceptance criterion can be written as:

rand(0,1) ≤ exp(- U(rN)/kBT)

Implementing Metropolis MC
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 The acceptance criterion in Metropolis Monte Carlo is derived by 
imposing the condition of detailed balance

 It assures unique limiting probability distribution

Detailed Balance

P(E)

E

N possible states

Probability that state i is occupied: 

i = Z-1·exp[–Ui/kBT]

Probability distribution of states

= ( 1, 2, 3, …, n, …, m, …, N)

Transition matrix :

mn = probability that system transitions

from state m to n

Stochastic matrix :

mn = probability that algorithm seeks 

transition from state m to n
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Detailed Balance

In the Metropolis algorithm: 
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Detailed Balance

Example: 2-level system; state 1 twice as likely as state 2
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Detailed Balance

0 .5 0 .5

1 0

Assume = ( 1, 2) = (1,0)

( 2 ) (1) 0 .5 , 0 .5

( 3 ) ( 2 ) 0 .7 5 , 0 .2 5

( 4 ) ( 3 ) 0 .6 2 5 , 0 .3 7 5

( 5 ) ( 4 ) 0 .6 8 7 5 , 0 .3 1 2 5

(n 1) (n ) 0 .6 6 6 , 0 .3 3 3
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Metropolis MC: Markov Chains

 The Metropolis algorithm generates a Markov chain
of states of the system.

 A Markov chain satisfies the following two conditions:
 The outcome of each trial depends only upon the preceding 

trial and not on any other previous trials.

 Each trial belongs to a finite set of possible outcomes.

 The first condition distinguishes the MC method from 
the MD method:  in an MD simulation, all states are 
connected deterministically in time.
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 Why accept any moves that raise the energy?
 Consider the alternative: any move that lowers the energy is 

accepted, any move that raises the energy is rejected.  The 
consequence of this is that thermal fluctuations would not be 
allowed, and phase space would not be properly explored at 
the given temperature.  

 This would be equivalent to simulating at zero temperature.

 In any system in equilibrium at temperature T, thermal 
fluctuations occur that occasionally raise the energy.  These 
fluctuations allow the system to explore phase space and 
allow all atoms to experience all environments.

Detailed Balance
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Choosing the size of the displacement:

 At each iteration, the size of the move is governed by 
the maximum displacement rmax. 

 The max displacement rmax is an adjustable 
parameter whose value is usually chosen so that 
50% of the trial moves are accepted.
 If rmax is too small, then many moves will be accepted but the 

states generated will be very similar to the previous ones and the 
system will explore phase space very slowly.

 If rmax is too large, then very few moves will be accepted because 
they lead to unfavorable overlaps.

 rmax can be adjusted automatically while the program is running to 
achieve the desired acceptance ratio by keeping a running score of 
the proportion of moves that are accepted.

Implementing Metropolis MC



Virtual Glass Course — 07 kieffer@umich.edu

13

 Example: A binary mixture of two species with interaction 

energies AA, BB, and AB and identical molecular size . The 

values of characterize the well depths of the van der Waals 

interactions between any two molecules.

 To simplify, discretize space and allow the molecules to move 

only by discrete amounts.  That is, allow the molecules to move 

on the sites of a lattice.

Example:

MC Simulation of a Binary Mixture

Energy of mixing

 

Tc = 2.27 Example: 

AA = -0.5

BB = -0.5

AB = -1

AB– AA+ BB

A
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1. Choose a particle at random (pink square).

2. Choose a neighboring particle at random (green square).

1. This defines the MC “move” - we will attempt to swap these two 

particles.

3. Calculate the current and new potential energy of the two particles.

MC Simulation of a Binary Mixture
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4. If < 0, accept the move. If not, calculate Boltzmann factor and compare 
with a random number.  Accept if rand(0,1) ≤ exp(- E/kBT).

5. Note bounds: If T very large, then BF close to one, and move nearly 
always accepted.  If T very small, then BF is very small, and move is rarely 
accepted.

MC Simulation of a Binary Mixture

Old New
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Questions?
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Reverse Monte Carlo

Interaction

Energy
Equilibrium

Configuration

Structural

Characteristics

(e.g., S(Q))

Experiment

compare

MC

Reverse

MC

Method introduced by Robert McGreevy†

† R.L. McGreevy and L. Pusztai, Mol. Sim. 1, 359 (1988);

R.L. McGreevy, J. Phys. Cond. Matter 13, R887 (2001)
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Reverse Monte Carlo
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 Create “reasonable” starting configuration

 evaluate S(Q)
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Reverse Monte Carlo

Move one particle and re-evaluate S(Q)

 Only contribution of the one particle that moved 

needs to be considered



Virtual Glass Course — 07 kieffer@umich.edu

21

Reverse Monte Carlo

 Compare simulated S(Q) with experimental one

 Evaluate agreement factor 2
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Reverse Monte Carlo

 Calculate ∆ 2 = 2 (after move) – 2 (before move)

 If ∆ 2 ≤ 0, accept move

 If ∆ 2 > 0, compare to random number and move 

accept if

 Otherwise reject move

ran d 0 ,1 ex p ²
S Q

2
2
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Reverse Monte Carlo

 Method maximizes entropy, i.e. strives towards most 

disordered structure that produces given S(Q)

 Must use maximum range of experimental S(Q)

 Impose additional constraints (e.g., coordination 

number, bond angles, etc.)

 Combine with MD
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Questions?
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Equations of motion …
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Solving the equations of motion …
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Molecular Dynamics Simulations

Compute force on each 

particle interactions based 

appropriate interaction model

Compute displacement of 

particles in a short time 

interval based on 

accelerations

Update 

positions

Iterate every 

0.002 ps

i j

r i j

F i, ² r i

f i j
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Molecular Dynamics Simulation

 Basic MD simulation program:

 Read in run parameters (e.g. initial energy or temperature; 

N)

 Initialize positions and velocities

 Compute forces on all particles

 Integrate Newton’s equations (F = ma)

 Update particle positions and velocities

 Calculate instantaneous properties

 Stop after iterating tmax steps

repeat
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MD: Four basic parts

Initialization

Force Calculation

Integration
Updating of xi,vi

Recording of data 
Calculation of properties

•Setting up initial conditions.

•Boundary conditions.

•Dealing with different kinds of 
forces.

•Tricks tracking particles.

•Different integration schemes.

•Different thermodynamic 

ensembles.

•What to calculate?

•Averaging data
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MD Simulation: Integration Schemes

 There are many finite difference algorithms, and several are commonly 
used in MD simulations (many are related).

 Each has trade-offs: 

 accuracy

 stability

 time reversibility

 area preserving

 memory requirements

 complexity

 Many research papers just on algorithm design for solving F = ma.
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MD Simulation: Integration Schemes

 All algorithms start from assumption that the positions, 

velocities, and accelerations can be approximated by a Taylor 

series expansion:

r ( t t ) r ( t ) v ( t ) t
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2 1
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MD Simulation: Euler

 The Euler algorithm uses the positions, velocities and accelerations at time t to 

calculate the new positions r(t+ t):

 Simplest integration scheme.

 Bad: Not very accurate, so suffers from catastrophic  energy drift. Not area 

preserving or time reversible.

 NOT RECOMMENDED; never used.

 Problem: uses only values at one time to estimate new values.  All algorithms in 

use today “interpolate”.
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MD Simulation: Verlet

 The Verlet algorithm uses the positions and accelerations at time t, and the 

positions from the previous step r(t- t), to calculate the new positions r(t+ t):

 The velocities do not appear in the Verlet integration scheme: velocities are not 

necessary for generating particle trajectories.
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MD Simulation: Verlet

 To obtain the new velocities, we can calculate them 

from the difference between the positions at two 

different times:
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MD Simulation: Verlet

 Advantages:

 Implementation is straightforward.

 Storage requirements are modest: 

 two sets of positions and one set of accelerations.

 9N stored numbers 

 Disadvantages:

 Positions are calculated by adding a small term of order t2 to the difference of two 

much larger terms, which may lead to a loss in precision:

 Velocities always lag behind positions.

 Poor stability for large t.
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MD Simulation: Leap-Frog

 Several variations on the Verlet algorithm have been developed, including the 

leap-frog algorithm:

 The velocities at time t can be calculated from:

 The velocities leap-frog over the positions to give their values at t+ t/2. The 

positions then leapfrog over the velocities to give their new values at t+ t, then 

the  velocities at t +3 t/2, and so on.
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MD Simulation: Leap-Frog

 Advantages over standard Verlet:

 Explicitly includes velocity (needed for kinetic energy).

 Does not require calculation of differences of large numbers, so more accurate. 

 Same memory requirements (9N) as Verlet.

 Disadvantages over standard Verlet:

 Positions and velocities are not synchronized.

 Cannot calculate kinetic energy (from velocities) and potential energy (from positions) at the 

same time.

 Not a problem - can always estimate v(t) from v(t+ t/2) and v(t- t/2) if you need it.

Almost always used over Verlet.
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MD Simulation: Velocity Verlet

 The velocity Verlet method gives positions, velocities, and accelerations at the 

same time without compromising precision:

 Implemented in three stages since calculating velocities requires accelerations 

at both t and t+ t.

Swope, et al
1982
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MD Simulation: Velocity Verlet

 Actual implementation trick:

1. Velocities at t+1/2 t are calculated using information at t.

2. With these terms in memory, calculate:

3. Calculate ai(t+ t) from forces using positions at t+ t, and from this and vi(t+ t/2), 

calculate vi(t+ t).

Swope, et al
1982
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MD Simulation: Other Integration Schemes

 The “order” of an integration method is the degree to which the 
Taylor series expansion is truncated -- it is the lowest term not
present in the expansion. Sometimes this is not obvious.

 Verlet is a 4th order method since 3rd order terms (not shown) cancel when 

expressions are added, which means positions are accurate to order t4.  But, 

velocities only accurate to t2.

 Velocity verlet also accurate to 4th order in positions, 2nd order in velocities.

 Velocity-corrected Verlet is 4th order in positions and velocities.

 Predictor-corrector methods [Gear 1971] form a general family of 

integration algorithms from which one can select a scheme that is 

correct to any given order. 

- But, not area preserving and not time-reversible.
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MD Simulation: Predictor-Corrector Methods

Three basic steps:

1. Values of r(t+ t), v(t+ t), a(t+ t) and higher order terms predicted 

from Taylor expansion using values at time t only:
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MD Simulation: Predictor-Corrector Methods

Three basic steps:

2. Forces are calculated at r(t+ t) to give a second estimate for aF(t+ t).  

These values of acceleration are compared with those predicted from 

Taylor series expansion, a(t+ t).

3. The difference between the predicted and calculated accelerations is then 

used to correct the positions, velocities, etc. in the correction step:

a (t t ) a
F

(t t ) a (t t )
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MD Simulation: Predictor-Corrector Methods

Corrected values:

 Gear has suggested “best” values of the coefficients c0, c1, … . Which set of 

“magic numbers” to use depends on the desired order of the algorithm. Here the 

expansion has been truncated after the third derivative of the positions (4th order), 

and one uses c0 = 1/6, c1 = 5/6, c2 = 1, and c3 = 1/3.

r
c
( t t ) r

T
( t t ) c

0
a ( t t )

v
c
( t t ) v

T
( t t ) c

1
a ( t t )

a
c
( t t ) / 2 a

T
( t t ) / 2 c

2
a ( t t )

b
c
( t t ) / 6 b

T
( t t ) / 6 c

3
a ( t t )



Virtual Glass Course — 07 kieffer@umich.edu

45

MD Simulation: Comparing Integration Schemes

 Compare Predictor-Corrector vs. Verlet:

 Memory req’d for Gear is (O+1)x3N, where O = order of highest derivative in 

Taylor series expansion, 1 is for extra acceleration, 3N = # particle 

coordinates. Present example: 15N.

 Memory req’d for Verlet is 3 terms x 3N coords = 9N.

 Gear requires two force evaluations per time step, but may permit a t that is 

more than twice as long.
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MD Simulation: Comparing Integration Schemes

 Which algorithm is “best”?

 Fast

 Require minimal memory

 Easy to program

 Time reversible - not always needed.

 Area preserving - not always needed.

 Accurate: conserve energy and momentum

 NVE - total energy is constant, except for accuracy 
of algorithm (and machine precision - only matters 
for forces).

– A variation of one part in 104 is acceptable for most 
applications. 

 Different algorithms vary in rate at which error varies 
with time step

– E.g. Predictor-corrector accurate for short time steps, 
Verlet more accurate for larger time steps.

 Stable for large t

Most meet this requirement
on today’s computers.

U
2

1 2

t

Verlet

Gear P.-C.
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MD Simulation: Choosing the Time Step

 Want as large a t as needed to generate a trajectory over time scales 
sufficient for problem.

 Time step t can’t be too large or integration algorithm will be inaccurate 
and could be unstable.

 If step too large, force will change too much: this causes inaccuracy.

 If forces become too large (i.e. particles move too close together in a single 
time step, this causes instability.)

tsmaller

tlarger
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MD Simulation: Choosing the Time Step

 Time step t must be smaller than the smallest time relevant to 

oscillatory motion.

 Atomic systems: t << toscillation (typically t = 2 fs)

 Molecular systems: t < 0.1tshortest osc. period

 Usually the highest frequency vibrations are due to bond 

stretches, especially due to bonds to H atoms, and 

tshortest = tbond stretch.  (tC-H 10 fs so t = 1 fs)
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Questions?


