
Lecture 14: NMR Spectroscopy of Glass – Practice and 

Application : Quadrupolar Nuclei

 Examine alkali borate glasses and the formation of 
tetrahedral borons

 Examine alkali thioborate glasses and the formation of 
tetrahedral borons

 Examine temperature dependence of spin lattice 
relaxation rate to probe ion dynamics in glass
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I = 3/2 11B, 27Al….

Bray JNCS 73(1985)19-45
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Powder pattern, amorphous, lineshape for I = 3/2 

Bray JNCS 73(1985)19-45
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11B NMR lineshapes for v=B2O3

Bray JNCS 73(1985)19-45
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Theoretical line shapes for I = 3/2 spin

Bray JNCS 73(1985)19-45
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NMR “wide line” CW spectra of v-B2O3

Bray JNCS 73(1985)19-45
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Computer simulation of 11B NMR CW static spectra

Bray JNCS 73(1985)19-45
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Comparison of derivative and integrated spectra

Bray JNCS 73(1985)19-45
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Fraction of tetrahedral borons in alkali borate glasses

Bray JNCS 73(1985)19-45
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Structural groups in alkali borate glasses

Feller, Dell, and Bray JNCS 51(1982)21-30
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B2O3 glass

 B2O3 glass exhibits high level 

of IRO

 Triangles form 6 membered 

“boroxyl” rings

 25% of borons are not in rings

 BO3/2 “loose” triangles

 75% of borons are in rings

 B3(O)3(O3/2)

 Equal numbers of boroxyl rings 

and loose triangles
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Tetrahedral boron formation in alkali borate glasses

 M+BO4/2
-1 units form with the 

addition of M2O to BO3/2

 Two tetrahedral units form, for 
every M2O added

 xM2O + (1-x)B2O3 >>

f (BO4/2) N4 =  [BO4]/Total B

=  2x/2(1-x)

=   x/(1-x)

 B fills it’s shell with octet of 
electrons

 Alkali ion acts as a “spectator”ion 
not actively involved in bonding
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Alkali modified borate glasses

 M2O + B2O3 glasses

 BO3/2 has 6 valence electrons

 Three B-O single bonds

 B can lower it’s energy by forming 
four B-O single bonds to over to 8 
(full “octet”) valence electrons

 It can do so by using M2O (M2
2+O=) 

an electron donor

 xM2O + (1-x)B2O3 >>

f (BO4/2) N4 =  [BO4]/Total B

=  2x/2(1-x)

=   x/(1-x)



SWMartin ISU Lecture 14: NMR Spectroscopy of  Glass:  Quadrupole Nuclei in Glass 14

Tetrahedral boron formation in alkali borate glasses

 Two tetrahedral borons form for 
every M+ added

 Alkali ions are “spectator” ions 
in the reaction

 All of the alkali ions, Li, Na, K, 
Cs, and Rb act in the same 
manner

 Affect is for M2O to cross-link 
borate glass structure

 xM2O + (1-x)B2O3 >>

f (BO4/2) N4 =  [BO4]/Total B

=  2x/2(1-x)

=   x/(1-x)
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Structure and NMR characteristics of various borate groups

Feller, Dell, and Bray JNCS 51(1982)21-30
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Composition dependence of structural groups in Li2O + B2O3 glasses

Feller, Dell, and Bray JNCS 51(1982)21-30
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B MASS NMR of alkali borate glasses

Prabakar, Rao, and Rao, Proc. R. Soc. Lond. A 429(1990)1-15
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High field high spin rate B MASS NMR
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Fraction of B4 in alkali borate glasses
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B4 in alkali borosilicate glasses

Bray JNCS 73(1985)19-45
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B3 in alkali borate glasses

Bray JNCS 73(1985)19-45
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2D MASS NMR of 11B in B2O3

Zwanziger, Youngman JNCS 168(1994)293-297
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2D 11B MASS NMR

Zwanziger, Youngman JNCS 168(1994)293-297
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2D 11B MASS NMR

Zwanziger, Youngman JNCS 168(1994)293-297
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Boroxyl ring fraction ~ 75%

Zwanziger, Youngman JNCS 168(1994)293-297



SWMartin ISU Lecture 14: NMR Spectroscopy of  Glass:  Quadrupole Nuclei in Glass 26

11B in alkali thioborate glasses

Sills and Martin, JNCS, 168(1994)86-96
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v-B2O3 compared to v-B2S3

Sills and Martin, JNCS, 168(1994)86-96
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Na2S + B2S3 glasses

Sills and Martin, JNCS, 168(1994)86-96
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B4 in alkali thioborate glasses

Sills and Martin, JNCS, 168(1994)86-96
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N4 in alkali thiobrate glasses

Sills and Martin, JNCS, 168(1994)86-96
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C-Na2B4S7

Sills and Martin, JNCS, 168(1994)86-96

N4 = 1, no quadrupole 

broadened line
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xCs2S + (1-x)B2S3
11B NMR

Cho, Meyer, Martin JNCS 270(2000)205-214
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N4 in x(Rb, Cs)2S + (1-x)B2S3 Glasses

Cho, Meyer, Martin JNCS 270(2000)205-214

Rb2S + B2S3Cs2S + B2S3



SWMartin ISU Lecture 14: NMR Spectroscopy of  Glass:  Quadrupole Nuclei in Glass 34

N4 in xM2S + (1-x)B2S3 Glasses

Cho, Meyer, Martin JNCS 270(2000)205-214
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N4 in alkali thioborate glasses

Cho, Meyer, Martin JNCS 270(2000)205-214
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Dithioborate group: Cs2B4S7

Cho, Meyer, Martin JNCS 270(2000)205-214
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Formation of “normal” B4 in Cs2S + B2S3 glasses

Cho, Meyer, Martin JNCS 270(2000)205-214
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Dithioborate structure with N4 = 1

Sills and Martin, JNCS, 168(1994)86-96
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Na6B10S18 Crystal structure with N4 = 1

Royle, Cho, Martin JNCS  279(2001)97-109
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Spin-Lattice relaxation time measurements

 When the spins are flipped, it takes time for the spins to relax 

to the lower (ground) energy state

 This time is characterized by the spin-lattice relaxation time, 

T1

 T1 is typically very long for solids

 Few mechanisms to enable the spin to release its spin 

energy

 T1 is typically very short for liquids

 Rapid atomic, ionic, and/or molecular motion helps release 

spin energy through diffusion
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Spin-Lattice relaxation time measurements

 Spin lattice relaxation T1 can be used therefore to examine 

diffusion processes

 Temperature dependence of T1 can be used as a measure 

of molecular or atomic diffusion

 Temperature dependence of T1 can also be used as a 

measure of ionic diffusion

 Temperature dependence of T1 is a measure of atomic level 

displacements, diffusion

 T1 can be compared to ionic conduction processes in glasses

 Nuclear Spin Lattice Relaxation Time, T1

 Nuclear Spin Lattice Relaxation Time, 1/T1 R1
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Determination of the DAEs in Glass

 Direct measurement through NMR 

NSLR data

 Conduction process is by the 

percolation through low barrier 

sites

 Conductivity will only measure the 

low energy barriers

 NSLR measures all cations, both 

contribute to NSLR T1 Glassy FIC

Crystalline FIC

Stevels & Taylor DAEs model,
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NSLR to DAE to Conductivity
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NMR Relaxation of Spin Energy

H0

H1

z

x
y

= H0

Rf pulse
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Fluctuations from Ionic Motion
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Bloombergen-Purcell-Pound (BPP) Theory
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Low Temperature Asymmetry

K. H. Kim, Solid State Ionics 91 (1996).
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Distribution of Activation Energies
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NMR NSLR Data

 Determination of the DAEs from NSLR T1 measurements
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DAEs from FIC Li2S + GeS2 Glasses
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DAEs from FIC Li2S + GeS2 Glasses

 Average of distribution shifts to 

smaller activation energies 

with increasing Li2S

 Distribution does not change 

shape significantly, all have ~ 

same FWHM

 0.55 Glass is slightly 

narrower
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Multiple FIC Dynamics in Glass

 “Multiple Channel” ion relaxation in 

FIC glasses

 R1 data show evidence of multiple 

relaxation processes

 Fast process at low T, slower 

process at higher T

 Alkali thioborate glasses are 

speciated into tetrahedral borons 

and trigonal borons with NBS

 Are “slow” Li+ ions associated with 

NBS?

 Are “faster” Li+ ions associate with 

BS4/2
- groups?
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Multiple FIC Dynamics in Glass

 Relaxation spectra of both mobile 

Li+ ions and immobile frame work 

B ions were measured

 Multiple-channel relaxation was 

observed for Li+ ions

 BS3 and BS4 units have different 

relaxation rates and hence 

difference DAEs to characterize 

their dynamics

 N4 of 0.7Li2S is 0.05

 Most Li+ ions are associated with 

BS3
3- groups, as evidenced in the 

DAEs
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DAE Fittings Two Distributions
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Effects of Li2S Addition

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
1

10

100

1000

 Frequency = 8 MHz

xLi
2
S + (1-x)(0.5 B

2
S

3
 + 0.5 GeS

2
)

 

 

R
e
la

x
a
ti

o
n

 R
a
te

 (
s

-1
)

1000/T (K
-1
)

 x=0.35

 x=0.45

 x=0.55



SWMartin ISU Lecture 14: NMR Spectroscopy of  Glass:  Quadrupole Nuclei in Glass 56

Average Activation Energy
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LiI doped – Activation Energy
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Distribution of Activation Energies

xLi2S + (1-x)(0.5 B2S3 + 0.5 GeS2)
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Distribution of Lithium atoms

Using coupling constants within 10% of 

binary values yielded approximate Lithium 

sharing fractions of:

Sample Germanium sites Boron sites

x=0.35 0.70 0.30

x=0.45 0.75 0.25

x=0.55 0.80 0.20
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DAEs Treatment

 Using a DAEs to treat ion conduction in glass is not new

 Von Schweidler used a DRTs as early as 1907

 Ann. Physik. 24(1907)711.

 Cole and Cole, Cole and Davidson reported log Guassian DAEs

 J. Chem. Phys. 9(1941) 341

 H. E. Taylor used a DAEs to describe the dielectric relaxation 

 Modeling ’ and ” in soda-lime-silicate glass in 1955

 Trans. Fara. Soc. 51(1955)873.

 C. T. Moynihan used a log Guassian treatment

 Modeling conductivity relaxation in CKN melts and glasses in 1972

 Phys. Chem. Glasses 13(1972)171


