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Bond Breaking Leads to Characteristic Features



Outline
•Experimental Observations - One View of Fracture

•Fundamental Questions About Fracture -
How does a crack propagate at all length scales?

• Experimental Tools - Fractography (FSA) , Fracture 
Mechanics (FM) & Fractal Analysis (FA)     
Fractoemission (FE), Crack Velocity Measurements

•Analytical Tools - Quantum Mechanics (QM),
Molecular Dynamics (MD), ab initio, Monte Carlo, 
FEM, FD

•Conclusions - FSA, FM, FA, MD & QM combine to 
form model of the scaled fracture process.
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J.J. Mecholsky, Jr., Fractography of Optical Fibers, in ASM Engineered 
Materials Handbook, 4, Ceramics and Glasses, Section 9:  Failure
Analysis, (1992).

Relationship Holds For Large Size & Stress Range

σ r1/2 = constant



Energy & Geometry Are Related 

In The Fracture Process

            2 γ =  a0  [ED*] 

    KC = Yσ (c)1/2  = (2 E γ)1/2

γ = fracture energy

E = Elastic Modulus

Y = Geometry & Loading Constant

σ = Fracture Stress (Strength)

C = Critical Crack Size

KC = Fracture Toughness



Characteristic Features Aid Failure 
Analysis

KC = Y σ (c)1/2         KBj = Y σ (rj)1/2

c = (a b )1/2 rj / c = constant 



Fracture Mechanics & Fractography Provide 
A Framework for Quantitative Analysis

KIC = Y  σ c 1/2 Crack Boundary

KB1 = Y1 σ r1
1/2 Mirror-Mist Boundary

KB2 = Y2 σ r2
1/2 Mist-Hackle Boundary

KB3 = Y3 σ r3
1/2 Crack Branching Boundary

[c/rj = constant]



FSA Can Be Applied To 
Single Crystals 



Slate Fracture Surface On Window Sill 
at Kimbull Union Academy

Courtesy of Prof. Yet-Ming Chiang



Fracture Markings Can Last 4000 Years

Titi’s Sarcophagus - Egypt c. 2500 BC   [Prof. Greenhut]



Epoxy Fracture With Glass Fiber As Origin



Glass Fiber Fractures Within Epoxy Matrix
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Fracture In Steel Shows Characteristic Features

σ =790MPa



Brittle Fracture Is Observed At Many Length Scales



Brittle Fracture Can Be Observed At Many Length Scales

Courtesy of Dr. Darryl Butt [UF]
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Mist and Hackle Appear Similar in Shape



Many Observations Lead To The 
Conclusion Of Fractal Fracture

• Scaling Behavior

• Self-Similarity In A Plane

• Scale Invariance



Fractal Geometry –
A Renewed Math
• Characteristics:

• Non-differentiable
• Defined by a Fractional 

Dimension (i.e. 1.3, 2.4, etc.)
• Self-similar features
• Scale invariant features

–http://math.rice.edu/~lanius/frac/



SCALING CAN BE DESCRIBED BY FRACTAL GEOMETRY 
 
 
  Fractal Geometry is 
 
   - a non-Euclidean geometry that exhibits  
     
   - self-similarity (or self-affinity) & 
     
   - scale invariance and is characterized by the  
 

- fractal dimension, D. 



Replicas Provide Multiple Slit Islands for Analysis



Log (Ruler Length)

Slope =  -D*Log Length (A-B)
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FRACTAL DIMENSION IS MEASURED ALONG CONTOUR

A-B = Slit Island Contour



 
Material Class D* (dimensionless) 
 
Single Crystals 
Glasses 
Glass Ceramics 
Polycrystalline Ceramics 
Polymers 
Metals 

 
0.07-0.12 
0.07-0.1 
0.06-0.3 
0.06-0.35 
0.2-0.29 
0.06-2.5 

 

Fractal Dimension Varies For Different Materials

J. J. Mecholsky, Jr., Fractography, Fracture Mechanics and Fractal 
Geometry: An Integration, Ceram. Trans. 64, in Fractography of Glasses 
and Ceramics III, eds. J. P. Varner, V.D. Frechette, & G. D. Quinn, Am. 
Ceram. Soc. (1996).
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Toughness Increases With Fractal Dimension

Kc = E a0
1/2 D*1/2



D* Is Related To Flaw-to-Mirror Size Ratio 

  KIC =    E (a0
1/2) D*1/2  =    Y σa (c)1/2 

 
  KB1=    E (b0

1/2)       =    Y1σa (r1)1/2 
 
    [if     a0 = b0     and       Y = Y1] 

then, 
 
   D* = c/r1 
 



D* Is Related To Flaw-to-Mirror Size Ratio

Mecholsky & Freiman J ACerS 74[12]3136 (1991)



D* Is Related to Mirror-to-Flaw Size Ratio

Mecholsky & Freiman J ACerS 74[12]3136 (1991)
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3BaO•5SiO2
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Energy & Geometry Are Related 

In The Fracture Process

            2 γ =  a0  [ED*] 

    KC = (Ea0
1/2)  D*1/2   = (2 E γ)1/2 

γ = fracture energy

E = Elastic Modulus

D* = Fractal Dimensional Increment

a0 = Characteristic Structural Parameter

KC = Fracture Toughness
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Fracture Behavior Appears Related To Material Class

a0 = 2γ/ (ED*)



Fractal Geometry Has Been Used 
In Failure Analysis

• Silicon [J. Mater Res 6,1248 ‘91 ]
• Ocala Chert [J Mater Sci Ltrs 7, 1145 ’88]
• Intermetallics [J. Mater. Sci.6,1856 ’91]
• Si3N4 [J. Mater. Sci. 32 6317  ’97]
• Dental Glass Cer. [JACerS 78 3045 ’95]
• Epoxy Resin [Scanning 20 99  ’98]

2 γ =  a0 [ED*] ; Kc = a0
1/2 ED* 1/2 ;      D* = c/r1



Energy & Geometry Are Related 

In The Fracture Process

            2 γ =  a0  [ED*] 

    KC = (Ea0
1/2)  D*1/2   = (2 E γ)1/2

γ = fracture energy

E = Elastic Modulus

D* = Fractal Dimensional Increment

a0 = Characteristic Structural Parameter

KC = Fracture Toughness



Modeling Has to Explain Several 
Observations

• Scaling
– topography (mirror, mist, etc.)
– self similarity (self affinity)

• Fracto-emission
• Velocity (Chaotic) Behavior



Much evidence exists  
for chaotic and fractal scaling behavior  

  Fracto-emission : light, particles, molecules, etc. 
  [e.g., cf. Langford, et. al., J.Mat. Res. 4, 1272 (1989)] 
 
  Dynamic instability : chaotic crack velocities at branching 
  [e.g., cf. Fineberg, et. al., Phys.Rev.Ltrs 67,4(1991)] 
 
  Self-similar fracture surfaces :  crack branching 
  [e.g., Ravi-Chandar & Knauss, Inter.J.Fracture 26,65-80(1984) 
  Kulawansa et al., J. Mater. Res.9,2476 (1994) 
  Mecholsky et al., Adv. In Cer.22 ACerS (1988); J. Materials Res.13 ,11 (1998).] 
 
  Scaling :  Energy  (γc) & Geometry (a0, D*) 
  [e.g., cf. Passoja, Adv. In Cer. 22, 101 (1988) ACerS;  Mecholsky, Cer.Trans. 64 
   385-93, ACerS (1996); West et al., J. Non-crystalline Solids, 260 (1999) 99-108; 
   Y. Fahmy, J. C. Russ and C. C. Koch,  J. Mater. Sci. 6, 1856-1861 (1991).] 
 



Fracture In Materials

• Is there a mathematical formulation 
which permits insight into the fracture 
process at all scales?

There are several fundamental 
questions that need to be answered:

• How do bonds break?
• Once a bond “breaks”, how do the 
ensembles of “broken” bonds 
propagate?


