Fractal Geometry Applied To Fracture

J. J. Mecholsky, Jr.

Materials Science & Engineering Department
University of Florida
Gainesville, FL 32611-6400

jmech@mse.ufl.edu

Glass Tutorial Series: prepared for and produced by the International Material Institute for New Functionality in Glass An NSF sponsored program – material herein not for sale Available at www.lehigh.edu/imi

Bond Breaking Leads to Characteristic Features

Outline

- •Experimental Observations One View of Fracture
- •Fundamental Questions About Fracture How does a crack propagate at all length scales?
- Experimental Tools Fractography (FSA), Fracture Mechanics (FM) & Fractal Analysis (FA) Fractoemission (FE), Crack Velocity Measurements
- •Analytical Tools Quantum Mechanics (QM), Molecular Dynamics (MD), ab initio, Monte Carlo, FEM, FD
- •Conclusions FSA, FM, FA, MD & QM combine to form model of the scaled fracture process.

Characteristic Markings Are Observed

on the Fracture Surface

Relationship Holds For Large Size & Stress Range

J.J. Mecholsky, Jr., Fractography of Optical Fibers, in ASM Engineered Materials Handbook, 4, Ceramics and Glasses, Section 9: Failure Analysis, (1992).

Energy & Geometry Are Related

In The Fracture Process

$$K_C = Y\sigma(c)^{1/2} = (2 E \gamma)^{1/2}$$

$$2 \gamma = \mathbf{a_0} \ [ED^*]$$

 γ = fracture energy

E = Elastic Modulus

Y = Geometry & Loading Constant

 σ = Fracture Stress (Strength)

C = Critical Crack Size

 K_C = Fracture Toughness

Characteristic Features Aid Failure Analysis

$$K_C = Y \sigma (c)^{1/2}$$

 $c = (a b)^{1/2}$

$$K_{Bj} = Y \sigma (r_j)^{1/2}$$

 $r_j / c = constant$

Fracture Mechanics & Fractography Provide A Framework for Quantitative Analysis

 $K_{IC} = Y \sigma c^{1/2}$ Crack Boundary

 $K_{B1} = Y_1 \sigma r_1^{1/2}$ Mirror-Mist Boundary

 $\overline{K_{B2}} = \overline{Y_2 \sigma} r_2^{1/2}$ Mist-Hackle Boundary

 $K_{B3} = Y_3 \sigma r_3^{1/2}$ Crack Branching Boundary

 $[c/r_j = constant]$

FSA Can Be Applied To Single Crystals

Slate Fracture Surface On Window Sill at Kimbull Union Academy

Courtesy of Prof. Yet-Ming Chiang

Fracture Markings Can Last 4000 Years

Titi's Sarcophagus - Egypt c. 2500 BC [Prof. Greenhut]

Epoxy Fracture With Glass Fiber As Origin

Glass Fiber Fractures Within Epoxy Matrix

Fracture In Steel Shows Characteristic Features

AISI 4340

 $\sigma = 790MPa$

Brittle Fracture Is Observed At Many Length Scales

Brittle Fracture Can Be Observed At Many Length Scales

Courtesy of Dr. Darryl Butt [UF]

Characteristic Markings Are Observed

on the Fracture Surface

Mist and Hackle Appear Similar in Shape

Many Observations Lead To The Conclusion Of Fractal Fracture

- Scaling Behavior
- Self-Similarity In A Plane
- Scale Invariance

Fractal Geometry – A Renewed Math

- Characteristics:
 - Non-differentiable
 - Defined by a Fractional Dimension (i.e. 1.3, 2.4, etc.)
 - Self-similar features
 - Scale invariant features

SCALING CAN BE DESCRIBED BY FRACTAL GEOMETRY

Fractal Geometry is

- a non-Euclidean geometry that exhibits
- self-similarity (or self-affinity) &
- scale invariance and is characterized by the
- fractal dimension, D.

Replicas Provide Multiple Slit Islands for Analysis

FRACTAL DIMENSION IS MEASURED ALONG CONTOUR

Log Length (A-B)

Slope = -D*

A

B

Log (Ruler Length)

A-B = Slit Island Contour

Fractal Dimension Varies For Different Materials

Material Class	D* (dimensionless)
Single Crystals Glasses Glass Ceramics Polycrystalline Ceramics Polymers Metals	0.07-0.12 0.07-0.1 0.06-0.3 0.06-0.35 0.2-0.29 0.06-2.5

J. J. Mecholsky, Jr., Fractography, Fracture Mechanics and Fractal Geometry: An Integration, Ceram. Trans. 64, in Fractography of Glasses and Ceramics III, eds. J. P. Varner, V.D. Frechette, & G. D. Quinn, Am. Ceram. Soc. (1996).

Toughness Increases With Fractal Dimension

D* Is Related To Flaw-to-Mirror Size Ratio

$$K_{IC} = E(a_0^{1/2}) D^{*1/2} = Y \sigma_a(c)^{1/2}$$
 $K_{B1} = E(b_0^{1/2}) = Y_1 \sigma_a(r_1)^{1/2}$
[if $a_0 = b_0$ and $Y = Y_1$]
then,

D* Is Related To Flaw-to-Mirror Size Ratio

Mecholsky & Freiman J ACerS 74[12]3136 (1991)

D* Is Related to Mirror-to-Flaw Size Ratio

Mecholsky & Freiman J ACerS 74[12]3136 (1991)

Fracture Surfaces Polished Surfaces

D*=0.13

 $K_c = 1.0 I$

AR = 1.4

D*=0.16

 $K_c = 1.3 I$

AR = 3.6

D*=0.26

 $K_c=2.2 I$

AR = 8

 $I = MPam^{1/2}$

3BaO•5SiO₂

Glass:

 $K_{c} = 0.7 I$

 $D^* = 0.1$

Energy & Geometry Are Related

In The Fracture Process

$$K_C = (Ea_0^{1/2}) D^{*1/2} = (2 E \gamma)^{1/2}$$

$$2 \gamma = \mathbf{a_0} \ [ED^*]$$

 γ = fracture energy

E = Elastic Modulus

D* = Fractal Dimensional Increment

 a_0 = Characteristic Structural Parameter

 K_C = Fracture Toughness

Fracture Behavior Appears Related To Material Class

Fractal Geometry Has Been Used In Failure Analysis

- Silicon [J. Mater Res **6**,1248 '91]
- Ocala Chert [J Mater Sci Ltrs 7, 1145 '88]
- Intermetallics [J. Mater. Sci.6,1856 '91]
- Si₃N₄ [J. Mater. Sci. **32** 6317 '97]
- Dental Glass Cer. [JACerS 78 3045 '95]
- Epoxy Resin [Scanning 20 99 '98]

$$2 \gamma = a_0 [ED^*]; K_c = a_0^{1/2} ED^{*1/2}; D^* = c/r_1$$

Energy & Geometry Are Related

In The Fracture Process

$$K_C = (Ea_0^{1/2}) D^{*1/2} = (2 E \gamma)^{1/2}$$

$$2 \gamma = \mathbf{a_0} [\mathbf{ED}^*]$$

 γ = fracture energy

E = Elastic Modulus

D* = Fractal Dimensional Increment

 a_0 = Characteristic Structural Parameter

 K_C = Fracture Toughness

Modeling Has to Explain Several Observations

- Scaling
 - -topography (mirror, mist, etc.)
 - -self similarity (self affinity)
- Fracto-emission
- Velocity (Chaotic) Behavior

Much evidence exists for chaotic and fractal scaling behavior

Fracto-emission: light, particles, molecules, etc.

[e.g., cf. Langford, et. al., J.Mat. Res. <u>4</u>, 1272 (1989)]

Dynamic instability : chaotic crack velocities at branching [e.g., cf. Fineberg, et. al., Phys.Rev.Ltrs <u>67</u>,4(1991)]

Self-similar fracture surfaces: crack branching

[e.g., Ravi-Chandar & Knauss, Inter.J.Fracture <u>26</u>,65-80(1984) Kulawansa et al., J. Mater. Res.<u>9</u>,2476 (1994) Mecholsky et al., Adv. In Cer.<u>22</u> ACerS (1988); J. Materials Res.13 ,11 (1998).]

Scaling: Energy (γ_c) & Geometry (a_0, D^*)

[e.g., cf. Passoja, Adv. In Cer. <u>22</u>, 101 (1988) ACerS; Mecholsky, Cer.Trans. <u>64</u> 385-93, ACerS (1996); West et al., J. Non-crystalline Solids, 260 (1999) 99-108; Y. Fahmy, J. C. Russ and C. C. Koch, J. Mater. Sci. 6, 1856-1861 (1991).]

Fracture In Materials

There are several fundamental questions that need to be answered:

- How do bonds break?
- Once a bond "breaks", how do the ensembles of "broken" bonds propagate?
- Is there a mathematical formulation which permits insight into the fracture process at all scales?