

Memory Industry Perspective of Chalcogenide Glass Uses and Issues

New NVM Technology is Rare

1967 → First Floating Gate Structure

Floating-Gate Concept

- ~ 40yr Old
- Evolutionary Changes EPROM \rightarrow E²PROM \rightarrow Flash

 $1971 \rightarrow FAMOS$

 $1977 \rightarrow \text{EPROM}$

 $1980 \rightarrow EEPROM$

1985 \rightarrow 1T EEPROM (Flash)

1988 → NOR Flash

1989 → NAND Flash

Memory Scaling is Increasingly Challenged

1995 →MLC Flash

- Critically Dependent on Fine Line/Space Pattering
- Storage/Stability Hindering Dielectric/Voltage Scaling

"Explosion" of "New" Memory Concepts

- New Storage Materials, New Storage Concepts
- Many Ideas, Varying Functionality/Cost, All Unproven

Alternative NVM Success Criteria

		Code	Data Performance	Data Density
Cell Size		$\sim < 4\lambda^2$	$\sim < 4\lambda^2$	$\sim < 2\lambda^2$
Write	Latency	~0.1µs	~10µs	~100µs
	Throughput	~5MB/s	~100MB/s	~20MB/s
	Granularity	~16Byte	~1kB	~10kB
Read	Latency	~0.1µs	~10µs	~100µs
	Throughput	~500MB/s	~100MB/s	~50MB/s
	Dynamic	1,000x	100x	100x
Enduranc e	Read	~10 ¹⁵	~10 ¹²	~10 ¹²
	Write	~10 ⁵	~10 ⁶	~10 ⁵
Retention		10yr	3yr	3yr

In All Cases: Theoretical scalability of storage mechanism to <10nm is a primary requirement

Sean Lee

Phase Change Memory Concepts

Storing Mechanism

 amorphous / poly-crystal phases of a chalcogenide alloy, usually Ge₂Sb₂Te₅ (GST)

Reading Mechanism

- resistance change of the GST

Writing Mechanism

self-heating due to current flow (Joule effect)

Cell Structure

-1 transistor, 1 resistor (1T/1R)

Sean Lee

2007 International Workshop on New Functionalities in Glass

Amorphous

Crystalline

Scalability of PCM Storage

Programming Current and Thermal Disturbs Scale Well

The Promise of PCM

Matches Today's Flash

- Cell size / Die size / Cost
- Fast random read performance
- Unlimited read endurance
- Good data retention
- Fast write performance
- CMOS compatible

Exceeds Today's Flash

- Bit granularity
- Long endurance

Long Term Roadmap

- Good scalability
- Multi-Level feasible

- ~ Flash NOR
- ~ 50 ns
- ~ 10 years
- ~ 100 ns

Multi-megabit Array From Intel-ST

Inte

PCM Array from Samsung

Endurance

2007 Interna

New Functionalities in Glass

Serrage Distributions

GST to Heater Contact Area is Defined by a Spacer Reduced Contact

Good Cycle Life and Array Distribution Data Observed

Characterization of Phase Change Kinetics of a Memory Device by Electrical Pumping

Electrical 'media map'

Sean Lee

(intel) Characterization of Phase Change Kinetics of an Memory Device by Elecrical Pumping

Top electrode

GST

Bottom electrode

Fully amorphized

Partially crystallized

Fully crystallized

Drift of Chalcogenide Glass Dielectric Breakdown (Threshold) Voltage

Time Betw een Amorphization and Breakdow n [s]

PCM Technical Challenges

- Intrinsic chalcogenide stability
 - Glassy phase electrical conductivity change with time.
 - Ge2Sb2Te5 is not a thermodynamically stable alloy and segregation occurs with repeated program-erase cycles.
- Extrinsic chalcogenide stability
 - Impurities introduced during chalcogenide processing.
 - Chalcogenide-metal junction (contact) compatibility.
- Material performance
 - Programming current (current density) to melt chalcogenide
 - Slow crystallization speed (trade-off with data retention)