Trends for Glass in Electrical Components and Systems

> Mike Lanagan Materials Research Institute Penn State University

Presented to the International Materials April 15, 2007

Components and Systems

- Multilayer Ceramic Components
 - Low cost electrodes in Multilayer Ceramic Capacitors (MLCCs)
 - Lower sintering temperatures in Low Temperature Co-fired Ceramics (LTCC)
- High Temperature Power Electronics
 - Reliability
 - Graceful failure coatings
- Pulsed Power Dielectrics
 - Nanocrystals in an amorphous matrix
 - High breakdown strength
- Metamaterials
 - GHz to THz
 - Periodic structures

Role of Glasses in MLCC

Presented by Dr. Song Moon Song, Center for Dielectric Studies Fall Meeting

Key Challenges for Glass Additives in MLCCs

- Particles
 - Must be nanoscale
 - Well dispersed with BaTiO3 powder
 - Low volume fraction loading
- Scale-up challenges
 - Li-B-Si-O glass for reduced sintering
 - Li activity in large furnaces
- Glass wetting angle in microstructure

Vision for Device Integration for Low-Temperature co-fired Ceramics (LTCC)

Capacitors high-permittivity dielectrics high Q-factor Low processing temperatures Inductors & Transmission Lines Low-permittivity dielectrics High-tolerance line definition Low resistivity in metal lines (Silver, Copper)

Resistors high-tolerance chemical compatibility low fire

Requires chemical compatibility with other materials in the system. Co-process dielectrics with high conductivity metal. Low sintering temperatures are required (T<930°C for Ag, T<660°C for Al). Glass is used to lower the sintering temperature

Metals for Co-processing with Ceramics

High Conductivity Metal Electrodes

Metal	Electrical Resistivity (μΩ·cm)	Melting Point (°C)	Application			
Cu	1.7	1083				
Au	2.3	1063	LTCC			
Ag	1.6	960				
AI	2.7	660	ULTCC			
Pd	10.3	1552	-			
Pt	10.6	1769	-			
Ni	6.9	1455	-			
W	5.5	3410				
Мо	5.8	2610				

Co- Sintering of BaTe₄O₉ with Glass/Aluminum

Co-firing Aluminum and BaTe₄O₉

Aluminum paste courtesy of ESL Corporation

D.-K. Kwon*, M.T. Lanagan, and T.R. Shrout, 2005, "Microwave Dielectric Properties and Low Temperature Co-Firing of BaTe4O9 with Aluminum Electrode," *J. Am. Ceram. Soc.* 88 (12):3419-3422 (Dec 2005).

Key Challenges for Glass Additives in LTCCs

- Lower sintering temperatures to be compatible with Ag, Cu, and Al.
- Chemical compatibility with other dielectrics.
- Control glass migration by viscosity and wetting
- Dielectric properties for low loss

Glass for High Temperature Power Electronic Components

 Replace polymer components with glass for high temperature operation?

Electrolytic DC bus Capacitors

Capacitor Design with thin Glass Sheet

Commercial Multilayer Ceramic Capacitor (16 μ F, 400V, 125°C) cost is \$ 20. Data based on ORNL report by Robert Staunton DOE goal is (2000 μ F, 600V, 140°C) and cost is \$ 30. Data based on DOE FreedomCar report

Dielectric Properties of Commercial Flat Panel Glass

- Dielectric Constant of commercial glass is twice that of commercial polymers
- The capacitor size will be reduced to 50% of the polymer film capacitors.

Dielectric Properties of Commercial Flat Panel Glass

- Meets DOE specifications for dielectric loss up to 270 °C
- Low dielectric loss will translate to a low ESR for large capacitors

Key Challenges for High Temperature Glass Power Capacitors

- Can we achieve 10 µm layers?
- Need to develop a graceful failure electrode system

Glass for Pulsed Power Systems

Biomedical, automotive, and military systems require high energy density dielectrics.

Particles in an amorphous matrix

- Dielectric contrast
 - difference between matrix and particles
- Role of interfaces
 - Increased breakdown strength
 - Reduction of space charge
- Interparticle distance

- Matrix Dielectric

 BOPP, PVDF, Glass?
- Particulates
 - Low ε_r : SiO₂, Al₂O₃
 - Med ε_r : ZrO₂, Nb₂O₅
 - High ε_r : TiO₂, BaTiO₃

Effect of Nanoparticle Addition on Breakdown Strength in Amorphous Polymer

Y. Cao et al., Trans. Diel. Elec. Insul. 2004

Enhanced Breakdown Strength of Polyimide with 5wt% Nanoparticle fillers

Why better than unloaded polymer and other nanoparticle species?

- Particle Dispersion
- Lower ε_r
- Lower Conduction

Figure 6. ac breakdown strengths for PI with various nanofillers at 5wt% loading. The tests were performed with 500 v/s ramp rate on samples of 25 μ m thick. The remarkably low breakdown strength of SiC nanocomposites may be caused by the aggregation of SiC nanoparticles.

Y. Cao et al., Trans. Diel. Elec. Insul. 2004)

Particle dispersion in 0-3 composites

Enlarged TEM images showing the distributions of ZrO₂ particles in PVDF matrix

B. Neese, Q. Zhang, GaiYing Yang and Clive Randall, Penn State

Nanoparticulates in Vycor glass were previously studied for optical properties

- Process was demonstrated for iron oxide in Vycor
- Disperse Particles
- Uniform matrix
- 10 nanometer particle diameter.

Fig. 2. TEM micrograph of photolyzed sample after cor dating the glass at 1200 °C.

Key Challenges for Glass in High Energy Dielectrics for Pulse Power

- Particles
 - Must be nanoscale
 - Well dispersed
 - Controlled interface
- Glass Matrix
 - Intrinsically low conductivity
 - High breakdown strength

Glass Metamaterials

Cloaking Devices

*J.B. Pendry et al., Science **312**, 1780 (2006).

Moving Toward THz Applications

- Materials Trends
 - Lower permittivity (dielectric constant) and lower loss (higher Q)
 - All dielectric (no metal?) structures
- Design and Process Implications
 - More compact designs
 - Dimensional control becomes more critical

*http://www.fz-juelich.de/isg/isg2/isg2-sh/ebg_materials.htm

THz measurements

- Materials:
 - Silicon Nitride, Si₃N₄
 ε_r≈8.9
 - Brass
- □ Lattices:
 - Square
 - Hexagonal
- □ Unit cells:
 - 4mm
 - 3mm
 - 2mm

		1		0		0	0	0	0	0	0	0					
	•			9	0	0		0			0					-	
-	-		0		0	0	0	0	0	0	0	0	0	0		0	
0	•			3	0	0		0	0	0	0	0	0	0	0		
	0					0	a	0	0	0			0	0	0	6	
	•					ā	ā	ā		ā	ā	ā					
	@	6					ā	-									
		G	6					-	-		-	-					
	0		ė,					-	0	0	0	0	0		0	0	l
	-		6	6			0	0	0	0	0	0	0	0	0	0	
0	0	0	0	6) () (9	0	0	0	0	0	0	0	0	6	
	0	0	0	6		9	0	0	0	0	0	0	0		6		
0	0	0	0	0	6		9	ā	ā	ā	ā	ā	A	0	0	6	
	-		-	-						~	2						
0	0			-	0	1		•	0	9	Θ	0	0	6	6	6	

Mie theory (single sphere) and loosely coupled (unit cell = 4mm) array

Blue – Measured resonant frequencies Red – Scattering cross-section (Mie)

What's Next for Metamaterials?

- Higher Frequencies
 pushing into the THz
 range
- All dielectric structures
- Free space optical testing.

1 mm diameter silica spheres. Fabricated by Amanda Baker

Extra Slides

Metamaterials at THz*

New designer materials and THz technology could eventually lead to:

•Noninvasive imaging for security and medical

•Compact and high speed communications transceivers

•Phased array radar and Broad Band antenna

•Waveguide and signal routing for high speed signals

THz array

10 GHz array

3 mm Split ring resonator arrays UC San Diego

* Science: March 2004 Issue and http://news.bbc.co.uk/2/hi/science/nature/3537161.stm

Future Materials Research Microstrip Meta-materials (1-20 GHz)

- Periodic Array of Resonators
 - Ring Resonators (H-field)
 - Line Resonators (E-field)
- Resonator "plasma" frequency
 - Negative μ and ϵ terms
 - Optical Index n²= ($\epsilon\mu/\epsilon_{o}\mu_{o}$)
- Resonators are coupled
 - Coupling is directional
 - Potential for beam steering

V. G. Veselago, Soviet Phys. Vol. 10, p. 509 (1968) R. A. Shelby et al., Appl. Phys. Lett., p. 489 (2001) http://physics.ucsd.edu/~drs/left_home.htm

Double Negative Materials*

Magnetic Element

P.M. Markos and C. M. Soukoulis, Opt. Exp., p. 649 (2003)

Experimental Confirmation of a Meta-material*

R. A. Shelby et al., Science, pg. 77 (2001)

Metamaterial Characterization at Microwave Frequency

Measure the microwave power output at receiving probe as a function of angle.

M. Iwasaki

M. Iwasaki

Equatorial field distribution of single DR

-By simulation results, magnetic field distributions were drawn in longitudinal direction at the half height of DR.

M. Iwasaki