Transparent Amorphous Oxide Semiconductors and Their TTFT Application

Hideo HOSONO

Frontier Collaborative Research Center & Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, JAPAN & ERATO-SORST, Japan Science and Technology Agency

Thin Film Transistor : Switching device in display

present : TFT on glass Semiconductor:a-Si:H

future : TFT on plastic

http://www.pioneer.co.jp/

Electronics everywhere

a display that pulls out from a roll

Giant-microelectronics — flexible electronics,

TFT: Active Matrix Display

Market Forecast of Flexible Display

Examples of Flexible TFT

a-Si on SUS foil

LG. Philips LCD

Heavy Expensive (Passivation)

LG Philips

poly-Si (Transfer Technique) *SEIKO EPSON* Difficulty in large area fabrication Expensive

EPSON Athe Matrix Connoncetic Discourse SEIKO EPSON

Organic TFT

Philips & Polymer Vision Plastic Logic

> Low mobility Poor stability

Novel Material

Low process temperature Long-term stability High mobility

semiconductor

Excellent controllability of carrier

amorphous

low T formation of large area thin films

Amorphous semiconductor

Why Amorphous oxide semiconductor (AOS)?

Wide controllability of carrier concentration.
High optical transparency in invisible region.
Room temperature and large area deposition.
Unique carrier transport properties

Transparent & Flexible electronics

AOSs based flexible *pn* diodes

Adv. Mater. 15,1409 (2003)

A rectifying ratio : >10³

History of amorphous semiconductor

Proposal of materials design concept for a-TAOS with large mobility

Proc. of ICAMS-16

Journal of Non-Crystalline Solids 198-200 (1996) 165-169

Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples

Hideo Hosono ^{a,b,*}, Naoto Kikuchi ^a, Naoyuki Ueda ^b, Hiroshi Kawazoe ^a

^a Tokyo Institute of Technology, Research Laboratory of Engineering Materials, Nagatsuta, Midori-ku, Yokohama 226, Japan
^b Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Abstract

A working hypothesis for exploring optically transparent and electrically conducting amorphous oxides is proposed on the basis of simple considerations concerning chemical bonding. The hypothesis predicts that amorphous oxides composed of heavy metal cations with an electronic configuration of $(n - 1)d^{10}ns^0$ may be converted into transparent conducting amorphous oxides when doped by Li ion implantation or heating at temperatures below crystallization. Three new materials, amorphous Cd_2GeO_4 , $AgSbO_3$ and Cd_2PbO_4 , have been prepared as examples.

Ionic Amorphous Oxide Semiconductor : novel class of a-Semicon.

Material design concept (electron pathway)

covalent semicon.

crystal

ionic oxide semicon. M:(n-1)d¹⁰ns⁰ (n≥4)

JNCS(1996)

Conductivity change upon H+- implantation

E_F cannot exceed mobility gap

Why doping is inefficient for a-Si:H ?

Observed and calculated DOS

Contour map of wave function @ conduction band bottom

(a) crystalline

(b) amorphous

Cd-Cd correlations in RMC-fitted model

Electron Transport in a-IGZO

Ionic Amorphous Oxide Semicon.

Material system	Chemical bond	Mecha -nism	Hall effect	Mobility (cm²/(Vs))	Example
Tetrahedral	covalent	hopping	abnor mal	~1	Si:H
Chalcogenide	covalent	hopping	abnor mal	< 10 ⁻³	Tl ₂ Se- As ₂ Se ₃
Oxides (glass semiconductors)	covalent + Ionic	hopping		~10-4	V ₂ O ₅ -P ₂ O ₅
(lonic amorphous oxide semicondutors)	Ionic	Band condu- ction	norm al	10~60	In-Ga-Zn -O

Transparent FET on plastic

W / L : 200 / 50 (μ m)

Amorphous InGaZnO₄ Thin Fims

Transistor Performance

High performance transparent FET was fabricated on PET substrate

Material exploration

High mobility & carrier controllability N-type AOS, In-Ga-Zn-O (a-IGZO) $\mu_{Hall} > 15 \text{ cm}^2(\text{Vs})^{-1} : Ne < 10^{15} - 10^{21} \text{ cm}^{-3}$

Carrier transport

Localized to extended state

>10 cm²(Vs)⁻¹ @*Ne* >10¹⁸ cm⁻³

Device fabrication

 μ_{sat} ~ 12 cm² (Vs)⁻¹ cf. ~1 for a-Si:H, pentacene
 fON / OFF ratio ~10⁶

Normally-Off (V_{th} ~+1 V)

 Y_2O_x (high k) as gate insulator & RT

S = ~0.2 V/dec

a-IGZO can be deposited on plastic by the same process as ITO

Large process merit

Current Status of TFT for Elexible Displays

Channel material	Pentacene	a-Si:H	Poly-ZnO	a-IGZO
Thin Film Fabrication	Vacuum Evap.	CVD	PLD	sputter
Max. Tem.()	<100	300	300	RT
Mobility(cm ² V ⁻¹ s ⁻¹)	0.5	0.5	~5	~12
Current ON/OFF (log ₁₀)	5~6	>6	~5	~8
S (V/decade)	0.2	0.4	1.3	0.2

5-stage RO

0.5 mm

patterning

metals	lift-off
semiconductor	etching
insulator	etching

 $L_{Ld} = L_{Dr} = 10 \ \mu m$ $\beta_R = (W/L)_{Dr} / (W/L)_{Ld} = 5$

Voltage (V)

410 kHz (0.24 μ s/stage), 7.5 V_{p-p} @ V_{dd} = +18 (V)

amorphous/oxide TFT-based Ring Oscillators

	a-Si:H	Organic	Oxide	
		P3HT	IGO	<i>a</i> -IGZO
<i>L</i> (µm)	5	2 – 5	60	?
V _{DD} (V)	+30	-80	+80	?
f _{osc} (kHz)	83	106	9.5	?
∆t(µs/stag e)	0.54	0.68	11	?
Ref.	EDL 5, 224 (1984)	APL 81, 1735 (2002)	SSE 50, 500 (2006)	

Worldwide T(A)OS-TFT Activities

OLED monolithic 2Tr-1C pixel driver

3.5' OLED using TAOS-FET Backplane

Display size	3.5 inch diagonal	
Resolution	176 (x 3) x 220	
Display device	Top emission OLED	
TFT	IGZO (W/L=10 μm /20 μm)	

Table 1 Specification of OLED panel

Gate insulator; Si₃N₄

Fig. 8 Operation image of AM-OLED driven by IGZO TFTs

LG (IDW '06)

Images of Flexible Electrophoretic Displays Driven with a-IGZO TFT Array

TOPPAN

Electrophoretic imaging film supplied by 🥥 E · I N K

Toward New Continent of Transparent Oxide Electronics

